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Stability analysis of a magnetic waveguide with self-generated offset field
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The unexpected emerging stability of a time-modulated magnetic guide, realized without external offset fields,
is demonstrated. We found a steady periodic solution around which the nonlinear dynamics is linearized. To
investigate the orbital stability of the guiding, a formal criterion based on the analysis of the eigenvalues of the
monodromy matrix of the system dynamics is used. To circumvent the difficulty in finding an analytical expression
for these eigenvalues, a Lyapunov transformation of the system variables is proposed. From this transformation,
an equation of state for the system parameters is derived, and it allows one to estimate an upper bound for the
computed stability domains. In particular, we found a general expression for the threshold modulation frequency
below which the guiding is unstable. Using experimentally accessible parameters, the stable guiding of *’Rb

atoms is investigated.
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I. INTRODUCTION

The actual technological progress allows the miniaturiza-
tion of sensors to a level where the laws of the quantum
world control the working principles of these devices. Among
the outstanding realizations, we can cite the superconducting
quantum interference device (SQUID) magnetometers [1], the
electrical resistance standard based on the quantum Hall effect
[2], and the superconducting gravimeter [3]. In recent decades,
important efforts have been carried out for the application of
matter wave interferometers which belong to another class of
quantum devices using cold neutral atoms [4-7]. In this sense,
when the development of compact matter wave interferometers
is considered, atom chips come up as a promising technol-
ogy for the manipulation of cold atoms using complicated
geometries [8]. Indeed, it is possible to microfabricate on
an atom chip a complex wire pattern to create miniature
magnetic potentials with the shape required by the targeted
application. We can, for example, design arrays of potential
wells for quantum information processing [9-11], traps for
acceleration measurements [12], and toroidal waveguides for
rotation sensing [13-16].

So far all the classical realizations of magnetic potentials,
in free space or on atom chips, use a homogeneous offset
magnetic field to lift the degeneracy between the confined and
not-confined atomic states. Generally, a pair of macroscopic
coils in a Helmholtz configuration is used to achieve this goal.
However, this method is neither practical for the development
of a compact device nor compatible with miniature magnetic
potentials of complex shapes.

In particular, for a ring guiding potential of a rotation
sensor, the use of coils is the simplest and most straightforward
way to obtain the offset field that fits the symmetry of the
potential. However, the switching time of the potential in
this situation is undesirably increased, limiting the device
operation. In fact, the use of coils runs against the realization
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of high-bandwidth and low-power-consumption sensors, two
key performance ingredients for embedded applications such
as inertial navigation. This extra timing, added to the already
important time required to prepare the samples between each
interferometric measurement, will degrade the stability via the
Dick effect [17].

Here, a solution to generate the offset field of a mag-
netic toroidal waveguide that takes into account the above-
mentioned problems is proposed. The considered magnetic
waveguide is generated by three concentric microwires fabri-
cated on an atom chip. The currents in the inner /; and outer I3
microwires will be assumed to flow in the same direction, and
opposite to the current /; in the central microwire. This currents
will be modulated at a frequency w, as in the configuration
used to suppress the magnetic potential roughness (see Fig. 1
in Ref. [18]). However, instead of setting and trying to keep
an exact phase difference of = between the currents I, = I3
and I, here a small phase offset ¢ < 7 is introduced so that
the total phase difference is 7 + ¢ : I,(t) = A; cos(wt) and
L(t) = L(t) = Ay cos(wt + T + ¢).

The existence of ¢ has two main consequences on the
magnetic guiding potential. The first one is the presence of a
residual roughness [18,19] that could affect the propagation
of atoms close to the surface. This question is beyond the
scope of the present work and will be analyzed in detail
elsewhere. Nevertheless, this is not a limiting factor for the
proposed solution because we can always find a minimum
working distance from the atom chip surface where the effects
of the roughness on the propagation are totally negligible (see,
for example, Fig. 63 in Ref. [20]). This distance is typically
on the order of a few hundreds of microns in the atom chip
experiments dealing with matter wave interferometry. The
proposed guide with self-generated offset field is also com-
patible with these working distances. The second consequence
is that the obtained time-varying magnetic potential has a
dynamical minimum with zero field that goes through the
initial atom cloud location, and this fact raises the question
about the nonintuitive and unexpected emerging stability of
this waveguide against atom losses, to be demonstrated below.
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FIG. 1. Current configuration generating the magnetic guide. In
the enlargement, the considered linear section of the circular guide is
represented together with the magnetic field lines map created by the
currents. The red point in this map indicates the guide minimum at a
given time instant.

II. ORBITAL SOLUTION OF THE SYSTEM DYNAMICS

In this paper, an attempt to approach the analytical answer to
this stability question is presented. To simplify the mathemati-
cal treatment without loss of generality, we will consider a lin-
ear section of a ring magnetic guide with a radius much larger
than the microwires separation /, as shown in Fig. 1. Let us as-
sume that the currents flow in the y direction of alocal reference
frame, centered at the field minimum (red point in the field lines
map above the central wire), for ¢ = 0 and ¢ = 0, in the z di-
rection perpendicular to the chip surface. Then the dynamics of
the atoms in the x-z plane is described by the equations [21-23]

d*x 0
77 = Ma[n -B(r,n)], (D
d*z 0
dn
hz = un x B(r,?), 3)

where M, u, and n are the mass of an atom, its magnetic
moment, and a unit vector in the direction of the magnetic
moment, respectively. The magnetic field produced by the
microwires B(r,¢) can be written to first order in the position
coordinates, and for ¢ < 7, as [20]

B(r,t) = [bz cos(wt) + ¢ By sin(wt)]i + bx cos(wt)k, (4)

where By is the magnetic field produced by the inner and
outer microwires only, and b is the field gradient. Introducing
the dimensionless positions and velocities X = x /[, Z = z/1,
T=wt, Vy, =v/lw, and V, = v,/lw, the time evolution of
the external and internal degrees of freedom of an atom in
the magnetic guide with self-generated offset field can be
described by the expressions

X = —an; cos(T), 7= —an, cos(T),

ny = —opny X cos(t),

ny = —oa[n,Z — n,X]cos(t) — azn, sin(t),
n; = axny, Z cos(t) + azn, sin(t), (@)

where for simplicity we have omitted the time dependence of
the system’s variables. In these equations, n(t) = (ny,n,,n;)
will give the instantaneous direction of the atom’s magnetic
moment and the dimensionless constants «; are defined by the
equations

_ grugb o _ grubl  Q
o = = —, O = = —,
Mw?l w? how 1)
B
o = griBP By _ ﬂ’ ©)
hw w

where gr and pp are respectively the Landé factor and the
Bohr’s magneton. In the quantum mechanical situation, we
need to consider Egs. (6) describing the atoms with the total
angular momentum F and magnetic moment u = —grugF/h.

Together with the definitions of the «; parameters, we also
introduced the three characteristic frequencies that determine
the different time scales involved in this dynamics: the Larmor
frequency of the atoms in the field produced by the two external
microwires, w;, = grupPBy/h; the characteristic frequency
of the atomic transverse motion, w; = /grupb/MI; and the
characteristic Rabi frequency at which the magnetic moment
couples to the modulated field gradient, 2 = grupbl/h.
Using these characteristic frequencies, the solutions expressed
in terms of the o’s can be applied to any magnetically trappable
atomic species.

Equations (5) represent a system of nonlinear differential
equations (NDEs). As usual, we will start the analysis of its
stability by linearizing it around a steady periodic solution
or orbit. Indeed, it turns out that some properties of the
linearized system are also valid for the original nonlinear
system, in particular the stability. Thus, we shall seek for
periodic solutions in the form

X(t) = X (1) cos(t) + X,(7)sin(7), @)

Z(t) = Z.(t)cos(t) + Zy(t) sin(1), (8)

based on the fact that we have harmonic driving of the
system’s variables. In Egs. (7) and (8), the envelopes
X (1), X(7),Z.(1),Zs(7) are supposed to be slowly varying
when compared to sin(r) and cos(r). In addition, since by
definition at any time we must have n%(7) = 1, we will assume
the following form for the components of this unit vector:

n,(t) = cos[@(t)] sin[v(7)], ©)]
ny(t) = sin[6(z)] sin[v(7)], (10)
n,(t) = cos[v(r)]. (11D

Substituting Egs. (7)—-(11) in Egs. (5), neglecting high-order
derivatives of the slowly varying envelopes, and equating
the coefficients in front of the sin(t) and cos(r) terms in
the right-hand side (RHS) and left-hand side (LHS) of the
position equations, we arrive finally at the following system
of first-order NDEs:

. 1 . 1 (03]
X.=—=X,;, Xy==-X.— —cos(v),
2 2 2
Zoe—tz 2Ly N @) sinw)
c=—=2Zs, Zy=—=Z.— — cos(0)sin(v),
27 T 2
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6 = — cos(0) cot(v){az[ Z. cos*(t) + Z sin(t) cos(1)]
+ o3 8in(7)} + o2 [ X, cos?(7) + X, sin(r) cos(7)],
v = —sin(0){ar[Z, cosz(r) + Z; sin(t) cos(7)]

It is not difficult to find the steady periodic solutions of
equations (12) which are given by 6, = km, v,, = 2m +
Dr/2, X, =X, =272, =0,and Z, = (=D o, with k and m
integers. If we linearize Eqgs. (12) around this steady orbit, then
we obtain the following matrix of time varying coefficients to

+ assin(t)}. (12)  describe the linearized dynamics:
|
0 —1/2 0 0 0 0
1/2 0 0 0 0 (—=D)"ay /2

B 0 0 0o -1/2 0 0

Alr) = 0 0 12 0 0 0 ’ a3)
o cos>(t) o sin(t) cos(T) 0 0 0 f(ay,0,a3,T)
0 0 0 0 —f(ay,00,03,7) 0
with

flan,a,03,7) = (=D (=1 a1; cos*(t) + a3 sin(7)]. (14)

III. SPIN-ORBIT COUPLING STABILITY
EQUATION OF STATE

Now, let us introduce the formal mathematical framework
for the analysis of the qualitative behavior of the linearized
system. Because of the harmonic terms appearing in Egs. (5)
and (13), and because of the periodic solutions we are interested
in, here we are concerned with the orbital stability as defined by
Theorem 7.4 in Ref. [24]. In addition, the matrix A(t) is con-
tinuous 2 -periodic and consequently, by virtue of the Floquet
theorem the fundamental matrix ®(t) of A(t) can be written
as a product of two matrices and it satisfies the equation [25]

®(t 4 27) = D(T)M. (15)

The matrix M is called the monodromy matrix (or Floquet
multipliers matrix) and its eigenvalues determine the stability
behavior of (12). Indeed, a necessary and sufficient condition
for orbital stability of the periodic solution is that all
eigenvalues of M have modulus smaller than 1. This is
the criterion that will be used to investigate the stability by
linearization of our system of NDEs.

If ®(7) is a fundamental matrix solution with ®(0) =1,
being [ the identity matrix, then we can find M and its eigen-
values from Eq. (15). Unfortunately, the matrix A(t) is not
commutative on [0,400) and hence it is not possible to easily
find a closed form for ®(7) that can give some insights on the
physics and the underlying structure of the periodic solution.
Still, an approximated solution can be found using a Péano-
Baker series as given by the Lemma 2.1 in Ref. [26], namely

O(r) = I+/ dllA(ll)-I-/ dllA(ll)/ldtzA(lz)
0 0 0

+[ dtlA(ll)/ldtzA(tz)/zd[3A(t3)+"' .
0 0 0
(16)

The above presented formalism is summarized in the fol-
lowing algorithm used to check the stability of our magnetic
waveguide with self-generated offset field.

(

Step 1. Find the steady periodic solution of Eqs. (12) and
linearize this system around this orbit.

Step 2. Using the matrix A(7) resulting from step 1, compute
the fundamental matrix solution from Eq. (16).

Step 3. For a given point in the parameter space {«,x2,03},
compute the monodromy matrix M using (15).

Step 4. Find the eigenvalues of M for the parameter values
chosen in step 3. If all these eigenvalues are smaller than 1
in modulus, then the system is orbitally stable in this point;
otherwise, it is not.

Notice that this algorithm is based only on the analysis of the
structure of NDEs and thus it is general and can be applied to
any matrix A(t). As an example, let us investigate the guiding
of 8Rb atoms, trapped initially in the state |F = 2,mp = 2)
state, in a magnetic guide with a self-generated offset field
produced by three microwires separated by [ = 15 um, with
By, =~ 1.5 G and b = 290 G/cm. The stability phase diagram
calculated with these realistic experimental parameters is
shown in Fig. 2. This figure is obtained using a fourth-order
Péano-Baker series and 0.1% precision. We found that for m
even, the phase diagrams with k£ even, 3 < O andk odd, a3 > 0
coincide. By inspecting the matrix A(t) we see that this is
an expected result. In addition, the steady periodic solution
indicates that the magnetic moment of the atom is aligned along
the x axis since 6, = kx and v,, = 2m + 1)z /2. In fact, this
is not surprising; after all, the self-generated offset field ¢ By,
is oriented along this axis. The phase diagram shown in Fig. 2
represents the global stability of the investigated system. This
implies that the actual extent of the stable domain, for a given
situation, will be defined by how far the initial conditions are
from the steady periodic solution around which we linearize
the system dynamics. In other words, the atoms need to be
injected in the stable orbits sustained by the guide.

The calculation of the stability boundary requires the
knowledge of the analytical expressions of the eigenvalues
of M, which are very difficult to calculate for the actual
problem. Therefore, the physical mechanisms participating
in the stable guiding of the atoms are not easily accessible.
Nevertheless, we can gain some insight by applying the
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FIG. 2. Stability phase diagram of the magnetic waveguide with
self-generated offset field, for (a) k = 1,m =0and (b) k =m = 1.
The blue line is an estimation of the upper bound of the stability
domain computed with Eq. (19). The threshold frequency corresponds

to ar /ey = /2420t A 6 x 10°.

Lyapunov transformation L(7)

1 0 0 O 0 0
0O 1 0 O 0 0
PO L R A
0 0 0 0 cos[B(r)] —sin[B(7)]
0 0 0 0 sin[A(1)] cos[B(1)]
to the Eq. (13), with B(7) defined by the equation
B() + fler,a,3,7) = 1. (18)

The Lyapunov transformation (17) does not reduce the
linearized system given by Eq. (13) to a system with constant
coefficients as usually desired [27]. However, here is shown
that it is enough for this transformation to be of Lyapunov
type to obtain the physical behavior of the system. Indeed, a
Lyapunov transformation does not change the characteristic
exponents of a linear system and preserve its regularity.
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FIG. 3. Stability phase diagram for k = m = 0.

The function B(t) is constrained to be periodic, satisfying
the condition B(;r) = B(2m), that translates into the following
equation of state for the parameters of the system:

' (_1)k+m
T =(—1) [Tnalaz - 20{3]. (19)

Then, using Eqgs. (6), we can obtain the valid pairs of values
(w,wr) which set an upper bound for the stability domain for
the case k = 1, m = 0 considered, for example, in Fig. 2(a).
Indeed, in this particular case, Eq. (19) reads

a)z(w—za) )—leQ—O (20)
P 2 T
from where we can conclude that since w? € is always positive
we must have w > (2/7)w, . In Fig. 2(a), we have represented
the curve (20) by the solid line which starts at w,;, =/ a)ﬁ_Q /2,
approximately equal to 2w x 3 kHz for the parameter values
considered in this particular example. Below this threshold
frequency, the dynamics is unstable independently of the value
of ¢. The same conclusion can be drawn from Fig. 2(b)
calculated for k = m = 1, where the same threshold frequency
is observed. Therefore, the stable guiding in these situations
requires a modulation frequency above the Larmor frequency.
Finally, in Fig. 3 the stability phase diagram covering positive
and negative values of a3 (or ¢) is presented for k = 0, m = 0.
Comparing this figure with Fig. 2, we can notice the expected
symmetry between k even, o3 < 0 and k odd, a3 > 0.

IV. CONCLUSION

Here, we have demonstrated using formal arguments the
existence of guiding stability domains in a magnetic waveguide
created by a linear section of three concentric microwires car-
rying modulated currents. The striking point of this waveguide
is that, in the absence of an external offset field, it can be made
orbitally stable against atom losses by properly choosing the
modulation frequency and the phase relationship between the
currents. This unexpected emerging stability is established by
analyzing the eigenvalues of the monodromy matrix of the
dynamics linearized around a steady periodic solution. We
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found that the stability results from the interplay between
the characteristic frequencies, as seen from the estimated
limiting conditions obtained from a Lyapunov transformation
of the system variables. More specifically, we found a lower
bound for the modulation frequency determined by the Larmor
frequency of the atoms. The next important question to be
investigated is the coherence of matter waves during propaga-
tion in such a guide. We believe this work to be of relevance
not only when considering the design of toroidal magnetic
guides for high bandwidth rotation sensing with atom chips,
but also for the design of complex miniature fast switching

magnetic potentials for the study of low-dimensional physics
using atom-chip-based devices [13,15,28].
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