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Microscopic dynamical Casimir effect
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We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction
with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the
mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced
transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular
distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency
is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs,
which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of
the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating
macroscopic metallic mirror.
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I. INTRODUCTION

One of the cornerstones of classical electrodynamics is
that accelerated point charges emit radiation. Within the realm
of quantum mechanics, one might expect that a ground-state
atom undergoing an accelerated motion could also produce
radiation. Neutral macroscopic bodies in nonuniform motion
are predicted to emit photons out of the quantum vacuum state,
an elusive effect that has so far defied experimental verification,
and which is known as the dynamical Casimir effect (DCE)
(for reviews see [1,2]). Several geometries [3–8] and material
models [9–11] have been analyzed. DCE is greatly enhanced
by making use of a cavity resonance [12–19]. Analog models
have been proposed [20–24] and realized experimentally [25].
More recently, several applications in quantum information
have been investigated [26–29].

Standard treatments of DCE are usually based on bound-
ary conditions (or more generally scattering matrices) for
scalar [30–34] or vector field operators [35–37] satisfying the
macroscopic Maxwell equations. In this paper, we investigate
the microscopic origin of DCE, by considering a ground-
state atom undergoing a center-of-mass oscillation. Instead
of boundary conditions or scattering matrices, our approach
builds on standard quantum optical Hamiltonian treatments for
the coupling between an atom in a highly excited external state
of an atom trap and the electromagnetic vacuum state. In the
same spirit of the Ewald-Oseen microscopic approach [38] to
classical electrodynamics, our main purpose is to gain insight
into the physics of the DCE at the more fundamental atomic
level and identify possible universal features of this effect.

We consider a standard inertial frame in which the atom
oscillates. However, our results can be reinterpreted in terms
of a comoving frame. The key point is that the vacuum state of a
quantum field is in general not invariant under a transformation
to a noninertial frame. For instance, in the Unruh effect, the

vacuum is seen as a thermal field by an observer with uniform
proper acceleration [39,40] (for a review see [41]).

Moving atoms provide a particularly illuminating example
in connection with the Unruh effect, since they behave as local
probes of the quantum field. In the specific Unruh scenario
of uniform proper acceleration, the excitation of an internal
state of a pointlike detector [42,43] or atom [44] coupled to a
scalar field was analyzed in detail. More recently, the interplay
between entanglement and the Unruh effect for a two-atom
system has been investigated [45]. Most theoretical works
address the specific case of a constant proper acceleration, in
which case no radiation is produced [46,47].

In contrast, a ground-state atom oscillating at a prescribed
frequency does produce radiation, as discussed in this paper. By
defining a mechanical frequency scale, we are able to develop a
physical picture based on the principle of energy conservation
and on the analogy with standard nonlinear optical effects.
More general motions can be considered by generalizing our
formalism to the case in which the motion contains different
Fourier components. Considering a harmonic motion also
allows us to build a direct comparison with the results for
oscillating planar plates [36] and spheres [48], thus providing
insight into the microscopic origin of the DCE.

When the external oscillation frequency ωcm is larger than
the atomic internal transition frequency, we show that the
leading-order effect is the motion-induced transition to an
excited internal state, with the emission of a single photon
carrying the excess energy. The opposite limit, with ωcm much
smaller than the transition frequencies, is more common for
real atom traps. In this case, the external motion is quasistatic
with respect to the internal degrees of freedom, but not with
respect to the electromagnetic field modes with frequencies
smaller than ωcm. Therefore, no real internal transition takes
place, but the low-frequency field modes are parametrically
excited by the DCE emission of photon pairs.
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FIG. 1. (a) Energy-level diagram for the motion-induced exci-
tation showing the internal (ω0), external (ωcm), and photon (ω)
frequencies. (b, c) Angular distribution of the light emitted through
motion-induced excitation for (b) ωcm = 1.01 ω0 and (c) ωcm = 3 ω0.
The distributions are normalized by the value of the emission rate per
unit solid angle along the direction of the external motion, which is
indicated by a horizontal dashed line.

Here we calculate the DCE angular and frequency spectra
for an atom in free space. Atoms in motion in the vicinity
of a material surface give rise to a variety of additional
interesting effects, including nonlocal [49,50], nonadditive
[51], and geometric [52] phases; decoherence of the internal
degrees of freedom [53]; corrections to the Casimir-Polder
interaction [47,54]; and nonequilibrium forces [55].

This paper is organized as follows. The next section is ded-
icated to the motion-induced excitation (MIE) effect involving
a one-photon process. In Sec. III we develop the theory of
the microscopic DCE and consider in detail the corresponding
two-photon emission process. Final remarks are presented
in Sec. IV.

II. MOTION-INDUCED EXCITATION

Our system is composed by a ground-state atom undergoing
a prescribed oscillation in a harmonic trap. We consider
a regime where the external atomic motion can be treated
classically. Our model approximates the case of semiclassical
coherent wave packets in magnetic or optical atom traps [56].
In order to simplify the notation, we consider in this section a
two-level atomic model. Details of the derivation are presented
in Appendix B for the more general case of a multilevel atom.

To first order in perturbation theory, the atomic external mo-
tion might induce a transition to the excited state, accompanied
by the emission of a single photon containing the excess energy,
as illustrated by Fig. 1(a). Such process is the analog of the
Stokes-Raman effect with the center-of-mass motion playing
the role of the pump field. Instead of inelastic Raman scattering,
we have photon emission out of the vacuum field state. We
show that the corresponding angular distribution is in general
anisotropic, and its shape is determined by the ratio between
the mechanical frequency and the transition frequency. Other
analogies can be proposed. For instance, in the ionization
process by monochromatic radiation, the ionized electron is

the analog of the emitted photon, while the incident radiation
plays the role of the center-of-mass motion.

We model our system by the Hamiltonian H = HA + HF +
Hint, where HA stands for the internal atomic degrees of
freedom, HF stands for the free electromagnetic field, and Hint

describes the atom-field interaction. In the dipole approxima-
tion, the interaction Hamiltonian assumes the following form:

Hint(t) = −d ·
[

E(r(t)) + v(t)

c
× B(r(t))

]
, (1)

where r(t) is the atomic center-of-mass position and v(t) =
dr(t)/dt is the associated velocity. The operators in the inter-
action picture E and B represent the electric and magnetic field,
respectively, whereas d denotes the atomic electric dipole. We
assume the motion to be nonrelativistic so that v(t) � c at all
times. The second term in the right-hand side of Eq. (1) stands
for the Röntgen contribution and is crucial to assure Lorentz
covariance to first order in v/c [57,58].

Initially, the atom is in the ground state and the electromag-
netic field is in the vacuum state. We investigate the population
of one-photon states resulting from the atomic motion. We
use the notation |s,1kλ〉 ≡ |s〉 ⊗ |1kλ〉, where s represents the
internal ground (g) or excited (e) state, while |1kλ〉 is the
one-photon field state with wave vector k and polarization λ.

The probability for photon emission after a duration T is given
by standard first-order time-dependent perturbation theory:

pkλ = 1

h̄2

∣∣∣∣
∫ T

0
〈 1kλ, e|Hint(t)|g, 0〉dt

∣∣∣∣
2

. (2)

Note that the absence of permanent dipole moment for the
ground state implies that the one-photon emission process only
occurs by concomitantly exciting the atom.

When computing (2), we take

r(t) = a cos(ωcmt) (3)

in Eq. (1). We also define the maximum external velocity vm =
ωcma. We consider long interaction times T � 1/ω0, where
ω0 is the atomic transition frequency. This corresponds to a
stationary regime in which only resonant processes contribute.
Although we describe the external motion as a classical pre-
scribed trajectory, Eq. (3) defines the energy quantum h̄ωcm as
usual in time-dependent perturbation theory with a sinusoidal
perturbation Hamiltonian [59]. Thus, the emitted spectrum
only contains a single frequency ωk = c |k| = ωcm − ω0 as
illustrated in Fig. 1(a), provided that ωcm > ω0. Since ωk <

ωcm, the external amplitude a is much smaller than the relevant
field wavelengths: ωka/c < vm/c � 1, allowing us to expand
the electromagnetic fields in Eq. (1) to linear order in a.

The number of emitted photons is proportional to the
duration T in the stationary regime, enabling the definition
of a photon emission rate �MIE describing the motion-induced
excitation. We express our results in terms of the spontaneous
emission rate �0 = |〈e|d(0)|g〉|2ω3

0/(6πh̄c3) of the two-level
atom at rest. We first compute the angular distribution of
photons, namely, the number of photons emitted per unit of
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solid angle and per unit time (see Appendix A for details):

d�MIE

d�k̂
= �0v

2
m

4c2
�(ωcm − ω0)

(
ωcm

ω0
− 1

)3

×
[

2

(
ω0

ωcm

)2

(k̂ · â)2 + (k̂ × â)2

]
. (4)

We have introduced the Heaviside function defined as �(x) =
1 if x � 0 and �(x) = 0 if x < 0, as well as the unit vectors
k̂ and â along the directions of the photon emission and of the
atomic motion, respectively.

Equation (4) shows that the angular distribution receives
two separate contributions associated to the projections of
the wave vector parallel or perpendicular to the direction of
motion. For ωcm = √

2ω0, these two projections contribute
with equal weights, yielding an isotropic radiation in this
case. When ωcm is smaller (larger) than

√
2ω0, the angular

distribution is maximum (minimum) along the direction of
motion. The radiation emitted by motion-induced excitation
can be highly anisotropic, as illustrated in Figs. 1(b) and 1(c).

We take a mechanical frequency barely higher than the
atomic transition frequency in Fig. 1(b). In this case, the
moving atom radiates nearly twice along the direction of
motion as compared to the orthogonal direction. In classical
electrodynamics, emission by an accelerated pointlike electric
dipole along the direction of motion is also possible [60].
However, no classical analogy is available when the frequency
scales for the atomic dipole fluctuations (ω0) and for the
external motion (ωcm) are comparable. On the other hand, when
ωcm � ω0, the distribution illustrated by Fig. 1(c) approaches
a classical antennalike angular distribution. In this limit, the
slow dipole fluctuations may be neglected during the fast
center-of-mass oscillation. The resulting radiation pattern may
then be constructed by averaging the classical distribution over
all possible atomic dipole orientations. This is illustrated by the
inset of Fig. 1(c), which suggests that the radiation field can
be obtained by the superposition of the fields produced by the
oscillating point charges with opposite signs.

For a multilevel atom, Eq. (4) gives the contribution of each
possible transition to the total angular distribution. Since the
atomic excitation is accompanied by the emission of a single
photon, we can obtain the excitation rate �MIE for the transition
of frequency ω0 by integrating the right-hand side of (4) over
the solid angle:

�MIE

�0
= 2v2

m

3c2
�(ωcm − ω0)

(
1 + ω0

ωcm

)2(
ωcm

ω0
− 1

)3

. (5)

The excitation rate scales as (vm/c)2 [61] and is an increasing
function of the center-of-mass frequency ωcm. The frequency
dependence results in part from the density of field modes at
frequency ω = ωcm − ω0 to which the ground-state atom is
resonantly coupled through the atomic motion, given that the
atom ends up in an excited state [see Fig. 1(a)]. Indeed, the
larger the difference between ωcm and the ω0, the larger
the density of vacuum modes accessible for the coupling
through motion-induced excitation. Should the mechanical
frequency be smaller than the transition frequency, no resonant
process can take place to first order in the interaction. The
corresponding contribution then vanishes, as indicated by the

FIG. 2. (a) Energy-level diagram for the microscopic dynamical
Casimir effect showing the internal (ω0), external (ωcm), and photon
frequencies (ω1 and ω2). (b, c) DCE angular distributions for (b) TE
and (c) TM polarizations. The red (light gray), green (dashed line),
and blue (dark gray) correspond to photon frequencies ω = 0.01 ωcm,

0.5 ωcm, and 0.99 ωcm, respectively. The distributions are normalized
by the value at ω = ωcm along the direction of the external motion
(horizontal dotted line).

presence of the Heaviside function in (4) and (5). However,
photon emission through higher-order resonant processes may
still occur in this case, as discussed in the next section.

III. MICROSCOPIC DYNAMICAL CASIMIR EFFECT

In this section, we consider the microscopic DCE arising
from a ground-state atom undergoing a mechanical oscillation.
We assume that the external frequency is smaller than the
smallest atomic transition frequency. In this case, and differ-
ently from the previous section, only virtual atomic excitations
may occur up to second-order in the interaction [62], and the
atom stays in the ground state at all times, as illustrated by
Fig. 2(a). The atom-field interaction may then be described by
an effective Hamiltonian obtained from the standard dipolar
Hamiltonian through a unitary transformation [63]:

H rest
eff (r) = −1

2

∑
kλ

α(ωk)Ekλ(r) · E(r), (6)

written here for the instantaneous rest frame of the atom. In
(6), α(ω) stands for the atomic polarizability, given for freely
rotating atoms by a sum over all possible excited states [64]:

α(ω) = (2/3h̄)
∑

e

ωeg|〈e|d(0)|g〉|2/(
ω2

eg − ω2
)
. (7)

H rest
eff is quadratic in the electric field and thus leads to the

generation of photon pairs out of the vacuum state, as depicted
in Fig. 2(a) and discussed in detail below.

There are two main advantages in using Eq. (6) instead
of the more standard dipolar Hamiltonian (1). First, virtual
transitions are accounted for through the atomic polarizability
so that H rest

eff does not operate on the internal atomic degrees
of freedom—it simply acts on the Hilbert space associated
to the electromagnetic field. Second, the microscopic DCE is
obtained already to first order of perturbation theory, whereas
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a more involved second-order derivation would be required
when using (1).

In order to obtain a description of the DCE in the laboratory
frame, one must Lorentz transform the electric field in Eq. (6).
We assume the external motion to be nonrelativistic and expand
to first order in v/c, leading to an effective Hamiltonian in the
laboratory frame containing a Röntgen interaction term:

Heff = H rest
eff (r(t)) + v(t)

2c
·
∑
kλ

α(ωk)[Ekλ(r(t)) × B(r(t))

− Bkλ(r(t)) × E(r(t))], (8)

with the field operators taken in the interaction picture.
We consider the sinusoidal motion (3) and the velocity is

v(t) = −vm sin(ωcmt) â. The field frequencies are bounded by
ωcm, allowing us to expand the right-hand side of (8) to first
order in ωka/c � 1 as in Sec. II. However, in contrast with the
analysis of Sec. II, we assume that ωk < ωcm � ωeg, for all
atomic internal transitions so that the relevant field modes are
very slow in comparison with the atomic internal dynamics. As
a consequence, we see from Eq. (7) that we can approximate the
dynamical polarizability by the static one, α(ωk) ≈ α(0) ≡ α0,

leading to further simplification of (8). We then find

Heff (t) ≈ − 1
2α0E2 + Vα cos(ωcmt) + Vβ sin(ωcmt), (9)

Vα = − 1
2α0 a · ∇ E2, (10)

Vβ = − 1
2 α0

vm

c
â · [E × B − B × E] (11)

with all field operators taken at r = 0. The production of
photon pairs results from the terms which depend explicitly
on time, namely, the ones proportional to Vα and Vβ in Eq. (9),
with the latter accounting for the Röntgen contribution.

It is insightful to build an analogy between Heff and the
Hamiltonian describing the emission of photon pairs by spon-
taneous parametric down-conversion in nonlinear crystals [65].
Both Hamiltonians are quadratic in the electric field. Here, the
external oscillation plays the role devoted to the laser pump,
and the atomic polarizability is the analog of the nonlinear
susceptibility. The quantum state of the light field resulting
from the microscopic DCE can be obtained using first-order
time-dependent perturbation theory. Its generic decomposition
in terms of two-photon states is given by

|ψ(t)〉 = |0〉 +
∑

k1λ1k2λ2

ck1λ1k2λ2 (t)|1k1λ1 1k2λ2〉. (12)

We compute the two-photon amplitudes ck1λ1k2λ2 (t) to first
order in the perturbation Heff and take the rotating-wave
approximation:

ck1λ1k2λ2 (t) = −2πα0vm

L3c
(ω1ω2)1/2ei�ωt/2 sin(�ω t/2)

�ω

× â ·
[

c

ωcm
εk1λ1 ·εk2λ2 (k1 + k2) + (k̂1 × εk1λ1 )

× εk2λ2 + (k̂2 × εk2λ2 ) × εk1λ1

]
(13)

where �ω = ω1 + ω2 − ωcm. We have introduced the short-
hand notation ωj ≡ ωkj

and the volume L3 associated to the
quantization of the electromagnetic field.

We now investigate the photon emission spectrum in the
stationary regime. By taking the long time limit and squaring
the coefficients given by Eq. (13), one retrieves Fermi’s “golden
rule” for the probability of two-photon emission. In this limit,
energy conservation is enforced and the photon frequencies of
the emitted pair satisfy [see Fig. 2(a)]

ω1 + ω2 = ωcm. (14)

As a consequence, the frequencies are distributed in the range
0 � ω � ωcm.The emission probability increases linearly with
the interaction time t, enabling the definition of a stationary
radiation emission rate. We first compute the angular spectrum
representing the number of photons with polarization λ emitted
per unit of time, solid angle, and frequency interval. For
that purpose, we sum over all possible wave vectors and
polarizations for the accompanying photon, as detailed in
Appendix B:

d�
(λ)
DCE

dωd�k̂
(ω,θ )= (α0vm)2

60π2c8
ω3(ωcm − ω)3f (λ)

(
ω

ωcm
,θ

)
, (15)

f (TE)(x,θ ) = (1 − x)2(5 cos2 θ + 2) + 5x, (16)

f (TM)(x,θ ) = (1 − x)(1 − 6x) cos2 θ + (1 − x)2 + 5, (17)

where θ is the angle between the direction of photon emission k̂
and the direction of motion â. We have denoted the polarization
with the electric field perpendicular to the plane defined by the
unit vectors k̂ and â as transverse electric (TE), and likewise for
the transverse magnetic (TM) one. When θ = 0,π, the angular
spectra must be independent of polarization by symmetry, as
can be verified from Eqs. (15)–(17). Our results also check
a second symmetry property: the angular spectra must be
invariant when replacing θ → π − θ, since the two opposite
directions â and −â are equivalent for our harmonic motion
when considering long interaction times.

The sign of the coefficient multiplying cos2 θ in Eqs. (16)
and (17) determines the shape of the angular spectrum. For
TE polarization, the coefficient 5(1 − ω/ωcm)2 is non-negative
and hence the distribution is elongated along the direction of
motion, except at the upper frequency limit ω → ωcm. At this
limit, both TE and TM distributions become isotropic, but
the intensity vanishes as the local density of states becomes
arbitrarily small. The TM angular distribution also favors
emission close to the direction of motion for frequencies ω <

ωcm/6, but then becomes more elongated perpendicular to this
direction for frequencies above ωcm/6, since the coefficient
(1 − ω/ωcm)(1 − 6ω/ωcm) in (17) becomes negative in this
case. Such properties are illustrated by Figs. 2(b) and 2(c) for
TE and TM polarizations, respectively.

In short, the direction of motion is always a maximum of
the TE distribution and a minimum of the TM one for most
of the frequency range. Since the two distributions coincide
along this direction, this observation suggests that there are
more TM than TE emitted photons. To be more quantitative,
we first compute the TE and TM frequency spectra by a solid
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angle integration of Eq. (15):

d�
(λ)
DCE

dω
(ω)= (α0vm)2

45πc8
ω3(ωcm − ω)3F (λ)(ω/ωcm), (18)

F (TE)(x) = 11x2 − 7x + 11, (19)

F (TM)(x) = 9x2 − 13x + 19 (20)

in the range 0 � ω � ωcm. The total frequency spectrum

d�DCE

dω
(ω) = 2(α0a)2

3πc8
ω3(ωcm − ω)3

[
ω2

cm − 2

3
ω(ωcm − ω)

]

is invariant under the transformation ω → ωcm − ω. This is a
direct consequence of the energy conservation condition for
the emitted photon pair given by Eq. (14). Indeed, each photon
emitted at frequency ω is accompanied by a twin emitted at
frequency ωcm − ω. The same property holds for the DCE with
a macroscopic planar surface [36]. However, whereas for the
latter the TE and TM spectra are also separately symmetric with
respect to ω = ωcm/2, here the TE (TM) spectrum is slightly
shifted towards frequencies larger (smaller) than ωcm/2. Such
asymmetry arises from the emission of mixed TE-TM pairs,
preferably with the TE twin emitted at the upper half of the
frequency interval.

We obtain the total emission rates for each polarization by
integrating (18) over the frequency interval [0,ωcm].The result-
ing TM rate is larger than the TE one by approximately 42%.

The total rate is given by �atom = (23/5670π )(α0a)2ω9
cm/c8.

The same frequency dependence can be found in a different
context, involving a macroscopic metallic sphere treated in
terms of boundary conditions. In fact, we can use the principle
of energy conservation in order to derive the total photon
emission rate from the result for the vacuum dissipative
force on an oscillating perfectly reflecting sphere obtained
in [48]. When the sphere radius R is much smaller than
the typical field wavelength λ ∼ 2πc/ωcm, we find �sphere =
(1/10 368π3)(αspha)2ω9

cm/c8, where αsph = 4πR3 is the elec-
tric polarizability of the metallic sphere [66].

Such comparison between the total emission rates for an
atom and a metallic sphere suggests that our microscopic
approach is capable of explaining several features of the DCE
for macroscopic bodies. In classical electrodynamics, physical
insight is obtained by treating material media as a collection of
dipoles, instead of employing the more standard macroscopic
Maxwell equations and the corresponding boundary condi-
tions, as often discussed in the context of the Ewald-Oseen
extinction theorem [38].

Here we propose to build the first steps of a similar construc-
tion concerning the DCE. In classical electrodynamics, the case
of a material medium with a planar interface provides the most
illustrative example for the comparison with the microscopic
approach. For the DCE, [36] presents a detailed macroscopic
theory of the radiation emitted by an oscillating perfectly
reflecting planar interface. Our results for a single atom already
share some common features with the DCE by a planar
interface: there are more TM than TE photons, and TE photons
are preferably emitted close to the direction of motion. In order
to bridge the gap between [36] and our microscopic results,
we consider that the material half space, limited by a planar

FIG. 3. Comparison between the angular spectra arising from the
oscillation of a single atom for (a) TE and (b) TM polarizations, with
the spectra for an oscillating perfectly reflecting mirror, also shown
for (c) TE and (d) TM polarizations. For the atomic case, we only
consider photon pairs satisfying the constraint (21) associated to the
planar symmetry. The red (light gray), green (dashed gray), and blue
(dark gray) correspond to photon frequencies ω = 0.3 ωcm, 0.5 ωcm,
and 0.7 ωcm, respectively. In the last case, emission is restricted to the
angular sector θ � arcsin(ωcm/ω − 1) ≈ 25o bounded by the dotted
thin lines. Both atom (a, b) and mirror (c, d) oscillate along the
direction indicated by the horizontal dashed black line. The angular
distributions associated to different frequencies have been plotted
using different (arbitrary) scales in (a, b).

interface, is constituted of ground-state atoms oscillating in
phase along the direction â perpendicular to the interface.
Symmetry of translation parallel to the interface implies that
the two photons of a given pair have the same polarization and
satisfy the condition

â × (k1 + k2) = 0, (21)

in addition to energy conservation (14). Accordingly, we as-
sume that the emission amplitudes associated to different atoms
interfere destructively except for the propagation directions
satisfying (21), and for all directions when considering mixed
TE-TM pairs.

We now compute the angular spectra from Eq. (13) by
enforcing such symmetry conditions. Then, a given k1 and λ1

determines a single possibility for the accompanying photon
wave vector k2 and polarization λ2 = λ1. The resulting angular
distributions for TE and TM polarizations are sketched in
Figs. 3(a) and 3(b), respectively. We also show the angular
spectra for a perfectly reflecting plane surface in Figs. 3(c) (TE)
and 3(d) (TM) calculated in [36]. For frequencies in the upper
half interval ωcm/2 < ω � ωcm, Eqs. (14) and (21) jointly

032514-5



SOUZA, IMPENS, AND NETO PHYSICAL REVIEW A 97, 032514 (2018)

imply that emission is restricted to the angular sector around
the direction of motion given by θ � θ0 = arcsin(ωcm/ω − 1).
For the atomic case shown in Fig. 3(b), the TM distribution
develops a sharp peak near the boundary θ0, whereas for
the macroscopic perfect reflector shown in Fig. 3(d) the TM
distribution diverges as θ → θ0. The comparison between the
atomic and the perfect reflector distributions indicates that
the highly singular behavior of the latter at θ = θ0 results
from the unphysical assumption of perfect reflectivity. For all
frequencies, the direction of motion is a local minimum for TM
photons, and a maximum for TE polarization, in both atomic
and macroscopic cases.

Overall, Fig. 3 shows that the main properties of the spectra
for a plane perfectly reflecting surface are already present
at the atomic level when considering only photon pairs that
do not violate the planar symmetry: TE photons are mostly
emitted near the direction of motion, whereas TM photons are
preferably emitted as far from this direction as allowed by
conditions (14) and (21).

IV. CONCLUSION

We have developed a systematic analysis of a ground-
state atom undergoing a prescribed nonrelativistic motion and
coupled to the quantum electromagnetic field, supposed to be
initially in the vacuum state. We have assumed a harmonic
motion of frequency ωcm. However, more general situations
can be obtained from our formalism by Fourier decomposition.

When ωcm is larger than the internal frequency ω0, the
external motion drives a transition to an internal excited
state, together with the emission of a single photon carrying
the excess energy. We have calculated the motion-induced
excitation to first order in the perturbation provided by the
dipolar Hamiltonian with a Röntgen correction. The photons
are emitted according to an angular distribution the shape
of which depends strongly on the ratio ωcm/ω0. The total
excitation rate is small since it scales as (vm/c)2. However, it in-
creases with ωcm/ω0, with �MIE ≈ (2/3)(vm/c)2(ωcm/ω0)3�0

for ωcm/ω0 � 1.

In the opposite case ωcm/ω0 < 1, the leading effect is the
parametric excitation of photon pairs to second order in the
dipolar Hamiltonian. Our approach provides a more fundamen-
tal perspective into the DCE, which is usually considered for
macroscopic bodies with the help of constitutive equations and
boundary conditions. We have shown that several properties
of the DCE can be explained at the atomic scale. For instance,
the dependence of the total emission rate on the oscillation
frequency for small compact objects is already obtained within
our atomic model.

Another important example is provided by an oscillating
plane mirror. We have modeled the material medium as a
collection of ground-state atoms. We have assumed destruc-
tive interference along the emission directions violating the
translational symmetry parallel to the mirror. In this way,
we were able to explain the main properties of the emission
angular distributions known for perfect metals, although our
description is clearly more appropriate for rarefied dielectric
materials. This indicates that the DCEs for different materials
share common universal features which are already present at
the atomic level.

ACKNOWLEDGMENTS

We thank C. Farina, D. Dalvit, W. Wolff, R. Decca, R. L.
Matos, H. Mirandola, and G. Bié for valuable discussions
and the Brazilian agencies National Council for Scientific and
Technological Development (CNPq) and Carlos Chagas Filho
Foundation for Research Support of Rio de Janeiro (FAPERJ)
for support. P.A.M.N. also acknowledges support from the Co-
ordination for the Improvement of Higher Education Personnel
(CAPES), the National Institute of Science and Technology
Complex Fluids (INCT-FCx), and the São Paulo Research
Foundation (FAPESP, Grant No. 2014/50983-3).

APPENDIX A: ONE-PHOTON PROCESS

In this Appendix, we detail the derivations of Sec. II
corresponding to the motion-induced excitation. We specify
the main steps in order to recover Eq. (4). For clarity, here
we write the explicit time dependence of the operators in
the interaction picture. We consider the electromagnetic field
operators quantized in a finite cubic box of side L, expressed
in Gaussian units as

Ê(r) =
∑
kλ

i

(
2πh̄ω

L3

)1/2

akλe
ik·rεkλ + H.c., (A1)

B̂(r) =
∑
kλ

i

(
2πh̄ω

L3

)1/2

akλe
ik·r k̂ × εkλ + H.c. (A2)

H.c. denotes the Hermitian conjugate of the series on the
right-hand side, ω = |k|c, k · r = k · r − ωt , and εkλ are the
polarization unit vectors. We first evaluate the matrix elements
involving the Hamiltonian (1):

〈1kλ,es |Hint(t)|g,0〉

= i

(
2πh̄ω

L3

)1/2

〈es |d̂j (t)|g〉

× e−ik·r(t)

[
(εkλ)j + εjmn

vm(t)

c
(k̂ × εkλ)n

]
. (A3)

We have used Einstein’s convention for the summation over
repeated indices and introduced the antisymmetric Levi-Civita
tensor εjmn such that ε123 = 1. We have considered the general
case in which there may be several excited states labeled by
s. The coupling (A3) contains simultaneously a static and
a velocity-dependent contribution associated respectively to
the electric and magnetic components of the Lorentz force.
Substituting the above expression into Eq. (2) we obtain for
the probability of emission a sum of three terms related to
contributions quadratic in the electric field, quadratic in the
magnetic field, and bilinear in both fields.

Note that the dipolar matrix elements can be written
as 〈es |d̂i(t)|g〉 = 〈es |d̂i(0)|g〉e−iωs t in the interaction picture,
where the frequency ωs corresponds to the Bohr frequency
between the ground state g and the excited state es . Further-
more, when averaging over the possible atomic dipole con-

figurations, by isotropy one obtains 〈es |d̂i(0)|g〉〈g|d̂j (0)|es〉 =
δij |〈es |d(0)|g〉|2/3.

From now on, we detail specifically the contribution to the
probability of emission p

(EE)
skλ induced by terms quadratic in
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the electric field. We take the continuum limit
∑

k pskλ →
L3

8π3

∫
d3kpsλ(k) and sum over the possible polarizations λ:

p
(EE)
sk = |〈es |d(0)|g〉|2ω

6π2h̄

∫ T

0
dtdt ′e−i(ω+ωs )(t−t ′)eik·(r(t)−r(t ′)).

(A4)

As exposed in Sec. II, in the nonrelativistic regime one can treat
perturbatively the external atomic motion described by Eq. (3),
i.e., one expands the complex exponential up to second order
in the small parameter ka � 1. It is then convenient to perform
a variable change (t,t ′) → (η = 1

2 (t + t ′),τ = t − t ′). Finally,
one takes the long time limit, since one monitors the atomic
emission over a time which is several orders of magnitude
larger than the inverse of the atomic transition frequency. In this
stationary limit, only resonant terms contribute to the emission
process:

p
(EE)
sk = |〈es |d(0)|g〉|2ωT

12πh̄
(k · a)2δ(ω + ωs − ωcm). (A5)

The contributions p
(EM)
sk and p

(MM)
sk , respectively associated to

terms bilinear in the electric and magnetic fields and quadratic
in the magnetic field, may be obtained by following the same
steps. Special care must be taken to work out consistently the
perturbative expansion of the complex exponential as to obtain
contributions on the order of (v/c)2.Finally, by integrating over
the frequencies of emission one obtains the angular distribution
of emitted photons: d�MIE/d�k = (1/T )

∑
s

∫ ∞
0 (p(EE)

sk +
p

(EM)
sk + p

(MM)
sk )k2dk. The resulting expression is given by a

sum of contributions of the form (4) for each excited state es,

with ω0 replaced by ωs and �0 by the spontaneous emission
rate �s between the excited state es and the ground state g.

APPENDIX B: TWO-PHOTON PROCESS

In this section we present the derivation leading from
Eqs. (13) to (15). First of all, from Eq. (12) we see that the
probability that two photons are created in the state |1k1λ1 1k2λ2〉
is given in the stationary limit by

Pk1λ1,k2λ2 = lim
t→+∞ |ck1λ1k2λ2 (t)|2, (B1)

where the limit physically means t � 1/�ω. Now we use the
identity (see for instance [59])

lim
t→+∞

sin2(�ω t/2)

πt�ω2/2
= δ(�ω), (B2)

when substituting Eq. (13) into Eq. (B1):

Pk1λ1,k2λ2

t
= 2π3α2

0ω1ω2v
2
m

L6c2
δ(�ω)

×
{

â ·
[

c

ωcm
(k1 + k2)(εk1λ1 · εk2λ2 )

+ (k̂1 × εk1λ1 ) × εk2λ2 + (k̂2 × εk2λ2 ) × εk1λ1

]}2

.

(B3)

The Dirac delta ensures the conservation of energy in the
stationary regime. In the continuum limit we have

∑
k1,k2

→ L6

64π6

∫
d3k1d

3k2 (B4)

and the probability becomes a density of probability given by

Pλ1,λ2 (k1,k2)

t

= α2
0ω1ω2v

2
m

32π3c2
δ(�ω)

×
{

â ·
[

c

ωcm
(k1 + k2)(εk1λ1 · εk2λ2 ) + (k̂1 × εk1λ1 )

×εk2λ2 + (k̂2 × εk2λ2 ) × εk1λ1

]}2

. (B5)

In order to obtain the photon production rate, we integrate out
one of the photons in the pair:

Pλ(k) =
∑
λ2

∫
d3k2Pλ,λ2 (k,k2). (B6)

Performing the Fourier space integration in spherical coordi-
nates, we obtain from Eq. (B5)

Pλ(k)

t
= α2

0ω(ωcm − ω)3v2
m

32π3c5

∑
λ2

∫
d�k2

×
(

â ·
{

c

ωcm

[
k +

(
ωcm

c
− k

)
k̂2

]
(εk1λ1 · εk2λ2 )

+ (k̂1 × εk1λ1 ) × εk2λ2 + (k̂2 × εk2λ2 ) × εk1λ1

})2

.

(B7)

The angular integrals can be readily evaluated from sym-
metry considerations by relating them with averages over all
spatial directions. Let us then analyze each type of integral
required for the evaluation of Eq. (B7). First,∑

λ2

∫
d�k2 (εkλ · εk2λ2 )2 = 4πεkλ

i εkλ
j

∑
λ2

ε
k2λ2
i ε

k2λ2
j , (B8)

where we employed Einstein summation convention. From
symmetry, the tensor obtained by averaging over all directions
in the right-hand side of Eq. (B8) must be isotropic since we
have summed over polarizations [67]:∑

λ2

ε
k2λ2
i ε

k2λ2
j = Cδij = 2

3
δij , (B9)

where the constant C was determined by contracting the
indices i and j on both sides of the equation. Then, there

is a term proportional to
∑

λ2
k̂2iε

k2λ2
j ε

k2λ2
m which must be

proportional to the only isotropic tensor of rank 3, εijm.

However, the latter is antisymmetric in the exchange j ↔ m,

while the former is symmetric, hence this term must vanish.

There are also terms proportional to
∑

λ2
k2iε

k2λ2
j . These must

be proportional to δij and then vanish upon contraction of
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the indices. The most difficult integral we must deal with is
proportional to∑

λ2

k2mk2nε
k2λ2
i ε

k2λ2
j = C1δij δmn + C2(δimδjn + δinδjm),

(B10)

where we used the most general form of a 4-rank isotropic
tensor symmetric upon the change i ↔ j. Imposing that a
contraction of i with m vanishes while a contraction of n with
m yields 2δij /3, we obtain the system of equations

C1 + 4C2 = 0, 3C1 + 2C2 = 2
3 , (B11)

which yields C1 = 4/15 and C2 = −1/15.

We may evaluate (B7) with the results obtained in the
previous paragraphs. In order to obtain Eq. (15), we must only
relate the probability of creating a photon with the number of
photons created, which is given by the relation

dNλ(k) = Pλ(k)d3k = Pλ(k)ω2

c3
dωd�k̂. (B12)

Defining the rate of photon production by � = N /t, we write
the spectral rate of photon creation by solid angle as

d�λ

dωd�k̂
(ω,k̂) = ω2Pλ(ω,k̂)

tc3
. (B13)
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