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Repulsive vacuum-induced forces on a magnetic particle
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We study the possibility of obtaining a repulsive vacuum-induced force for a magnetic point particle near a
surface. Considering the toy model of a particle with an electric-dipole transition and a large magnetic spin,
we analyze the interplay between the repulsive magnetic-dipole and the attractive electric-dipole contributions
to the total Casimir-Polder force. Particularly noting that the magnetic-dipole interaction is longer ranged than
the electric dipole due to the difference in their respective characteristic transition frequencies, we find a regime
where the repulsive magnetic contribution to the total force can potentially exceed the attractive electric part
in magnitude for a sufficiently large spin. We analyze ways to further enhance the magnitude of the repulsive
magnetic Casimir-Polder force for an excited particle, such as by preparing it in a “super-radiant” magnetic
sublevel and designing surface resonances close to the magnetic transition frequency.
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I. INTRODUCTION

That the quantum fluctuations of the electromagnetic (EM)
field in vacuum state can lead to forces between neutral objects
is a fascinating feature of quantum electrodynamics (QED) [1].
Such fluctuation forces, often addressed by different names de-
pending on the geometry, separation, and material properties of
the interacting objects, such as van der Waals [2], London [3],
Casimir-Polder [4], Casimir-Lifshitz [5], or more generally
Casimir [6] forces, arise as a result of the interaction mediated
between the fluctuating dipole moments that constitute two
neutral bodies via the quantum fluctuations of the EM field.

When considering atom-surface interactions, Casimir-
Polder (CP) forces become significant in comparison to ex-
ternally applied forces at distances smaller than atomic wave-
lengths. Being typically attractive and short-ranged, fluctuation
forces are considered as a detrimental influence when trying to
trap and control quantum systems near surfaces. For example,
the typical magnetic and optical trap forces are easily overcome
by vacuum forces at the nanoscale. As a result, when trying
to interface trapped atoms with surfaces, the atoms tend to be
lost from the relatively weak trapping potentials and adhere to
surfaces [7].

With growing efforts towards miniaturization of photonic
systems both with the fundamental motivation to explore
quantum phenomena at increasingly shorter length scales, and
the practical goal of replacing large-scale optical elements
with modular on-chip architectures [8–14], atom-surface in-
teractions have become an increasingly relevant aspect of
understanding and designing nanoscale photonic devices. For
example, Casimir interactions become an inevitable element
of consideration in trapping schemes [15,16], surface mod-
ification of decay rates [17–20], and decoherence of atomic
spins [21–23] when trapping atoms near nanofibers [24–28],
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photonic crystals [29–31], and micro- and nanoscale cavities
[32,33]. Thus, given that vacuum forces play an important
role in state-of-the-art experiments, it is interesting to explore
whether they can be engineered in a way to achieve better
control and coherence of quantum systems interacting at
nanoscales. Particularly, we examine here the possibility of
using repulsive vacuum forces to stably trap a particle near a
surface.

However, an analog of the Earnshaw’s theorem for fluctu-
ation forces forbids stable equilibria for nonmagnetic objects
separated by vacuum [34]. Some possible ways to overcome
this no-go theorem are [35] going out of equilibrium us-
ing temperature gradients [36–38] or external drives [39],
replacing the vacuum by a medium with appropriate per-
mittivity relative to the interacting objects [40–42], using
material anisotropies [43–45] and topological properties of the
interacting bodies [46,47], or designing specific geometrical
configurations [48].

As another way to circumvent the no-go theorem, one can
use the magnetic response of the interacting bodies [49–51].
For example, when considering the force on a magnetic atom
interacting with the vacuum EM field near a perfectly conduct-
ing surface, it is known that the electric-dipole (ED) interaction
between the atom and the EM field leads to an attractive CP
force, while the magnetic-dipole (MD) interaction leads to
a repulsive force [52,53]. Previous works that have studied
repulsive CP forces due to MD interaction between atoms
and surfaces [54–56] show that the MD interaction induced
repulsion is limited due to the smallness of magnetic interaction
in comparison to the electric.

Keeping this in consideration, in this paper we study the
possibility of using the magnetic-dipole interaction between a
pointlike magnetic particle with a large spin and a surface to
realize an overall repulsive CP force. We find that the force
due to the MD interaction has two components—a broadband
Casimir-Polder contribution and a zero frequency contribu-
tion coming from the magnetostatic interaction between the
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magnetic dipole and its image, which can be significant for
a perfect conductorlike surface. We show that for a large
enough spin, in the appropriate distance regime where one has a
weak short-ranged ED contribution while the MD contribution
is considerable, one can have an overall repulsive vacuum-
induced force. We then study two particular ways of further
enhancing the magnetic CP contribution for a particle in an ex-
cited magnetic sublevel—using superradiancelike effects [57]
and by engineering the response of the surface at the resonant
frequency for the MD transition [39].

The paper is structured as follows. In Sec. II, we present
a theoretical model to describe a magnetic point particle
interacting with the vacuum EM field in the presence of a
surface. We study the surface-induced modifications to the
internal dynamics of the atom as described by the second-order
Born-Markov master equation in Sec. III. In Sec. IV A, we
analyze the force on a ground-state particle with an arbitrarily
large spin near a perfectly conducting surface coming from
ED and MD interactions. Further, adding gravity, we study
the feasibility of creating stable equilibrium by combining
a repulsive magnetic force and the attractive gravitational
force. In Sec. IV B, we consider the particle near a metal
surface described by Drude and plasma models. In Sec. V,
we study potential ways to preferentially enhance the repulsive
magnetic CP force relative to the attractive electric CP force by
considering the particle to be in an excited magnetic sublevel.
We discuss the conclusions and prospects of our work in
Sec. VI.

II. MODEL

We consider a fixed magnetic point particle at the posi-
tion r0 = (0,0,z0)T (z0 > 0) placed above a planar medium
that occupies the half-space z < 0. The half-space around
the particle (z > 0) is assumed to be vacuum. The internal
degrees of the particle consist of an electric-dipole transition
between ground and excited states |a〉 and |b〉, respectively,
and a magnetic spin of dimension S. We assume a classical
magnetic field B0(r0) = |B0(r0)|ez along the z axis at the
position of the particle. We consider the particle to be in a
magnetic state |S,mS〉, such that Ŝ2|S,mS〉 = S(S + 1)|S,mS〉,
and Ŝz|S,mS〉 = mS |S,mS〉, with mS ∈ {−S, . . . ,S − 1, + S}.
We note that the spin operators (Ŝx,Ŝy,Ŝz) obey the canonical
commutation relations [Ŝi ,Ŝj ] = iεijkŜk .

To describe the interaction between the particle and the
vacuum EM field in the presence of a surface, we write the
total Hamiltonian as

Ĥtot = ĤP + ĤF + ĤPF . (1)

The first term

ĤP = h̄ωeσ̂+σ̂− + h̄ωmŜz (2)

refers to the free Hamiltonian of the particle, with ωe as the
transition frequency for the ED transition. The ladder operators
for the ED transition are defined as σ̂+ ≡ |b〉〈a| ⊗ 1 = (σ̂−)†.
The Zeeman splitting ωm = γ0|B0(r0)| is given by the MD
interaction term −m̂ · B0(r0) = h̄ωmŜz, where m̂ = −h̄γ0Ŝ
corresponds to the magnetic moment operator and γ0 is the
gyromagnetic ratio [58]. The Hamiltonian ĤF describing the

free dynamics of the vacuum EM field in the presence of the
surface is defined in Eq. (A1) [59,60].

The interaction between the particle and the vacuum EM
field in the multipolar coupling scheme, using the electric and
magnetic dipole approximations, is given as [61]

ĤPF = −d̂ · Ê(r0) − m̂ · B̂(r0)

= −(dσ̂+ + d∗σ̂−) · Ê(r0)

+ h̄γ0[Ŝzez + Ŝ+e+ + Ŝ−e−] · B̂(r0). (3)

Here d ≡ √
2|〈b|d̂|a〉|e+, e± ≡ (ex ∓ iey)/2, and the spin

raising and lowering operators Ŝ± ≡ Ŝx ± iŜy are defined as

Ŝ±|S,mS〉 =
√

S(S + 1) − mS(mS ± 1)|S,mS ± 1〉. (4)

We have assumed the ED moment to be circularly polarized
for later convenience. The electric- and magnetic-field opera-
tors for the medium-assisted EM field, evaluated at the position
of the particle, Ê(r0) and B̂(r0), are defined in Eqs. (A4)
and (A5), respectively.

III. SURFACE-INDUCED MODIFICATIONS TO
THE INTERNAL DYNAMICS OF THE PARTICLE

To find the influence of the medium-assisted EM field on
the particle, we derive the surface-induced modifications to
the master equation describing the dynamics of the reduced
density matrix ρ̂P , that corresponds to the internal degrees
of freedom of the particle [39]. Assuming that the particle
and the field are weakly coupled, and that the EM field bath
correlations decay much faster than the relaxation time scale
for the particle’s internal dynamics, we use the Born and
Markov approximations to write the equation of motion for
ρ̂P as [62]

dρ̂P

dt

= − 1

h̄2 TrF

∫ ∞

0
dτ

[
H̃ sc

PF (t),
[
H̃ sc

PF (t − τ ),ρ̂P (t) ⊗ ρ̂F

]]
,

(5)

where H̃ sc
PF (t) ≡ e−i(ĤP +ĤF )t Ĥ sc

PF ei(ĤP +ĤF )t stands for the in-
teraction Hamiltonian in the interaction picture, including
only the part of the EM field scattered off the surface, as in
Eq. (A10). The reduced density matrix ρ̂F = |0〉〈0| refers to
that of the vacuum EM field. Tracing out the field, we obtain
the surface modifications to the second-order Born-Markov
master equation for the particle dynamics as

dρ̂P

dt
= − i

h̄
[�ĤP ,ρ̂P ] + �LP [ρ̂P ], (6)

where �ĤP corresponds to the surface-induced dispersive
corrections to the particle Hamiltonian and �LP refers to the
surface-induced modifications to the dissipative dynamics of
the particle. We remark that we have considered here only the
part of the EM field scattered off the surface, without including
the free-space contribution that leads to the Lamb shift and the
free-space dissipation.
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The corrections to the particle Hamiltonian are given by

�ĤP = u(+)
e σ̂+σ̂− + u(−)

e σ̂−σ̂+

+u(+)
m Ŝ+Ŝ− + u(−)

m Ŝ−Ŝ+ + u(z)
m Ŝ2

z . (7)

The energy-level shifts u(−)
e (u(+)

e ) in Eq. (7) to the ground
(excited) state coming from the ED interaction between the
particle and the field are defined as [4,59,60,63,64]

u(−)
e = 2μ0ωe|d|2

π

×
∫ ∞

0
dξ

ξ 2

ξ 2 + ω2
e

(e−)T ¯̄Gsc(r0,r0,iξ )e+, (8)

u(+)
e = −2μ0ωe|d|2

π

∫ ∞

0
dξ

ξ 2

ξ 2 + ω2
e

(e+)T ¯̄Gsc(r0,r0,iξ )e−

− 2μ0ω
2
e |d|2Re[(e+)T ¯̄Gsc(r0,r0,ωe)e−]. (9)

Here ¯̄Gsc(r0,r0,ω), given by Eq. (B1), refers to the scattering
Green’s tensor corresponding to a point dipole at r0 radiating
near a surface [65].

Next, we consider the shifts from the MD interaction in
Eq. (7). The energy-level shifts u(−)

m (u(+)
m ) to the magnetic

sublevels coming from the transition to the upper (lower) level
and u(z)

m coming from the diagonal (∼Ŝz) interaction term can
be found as follows [55,59,60]:

u(−)
m = h̄2μ0ωmγ 2

0

π

∫ ∞

0

dξ

ξ 2 + ω2
m

(e−)T ¯̄Gsc(r0,r0,iξ )e+, (10)

u(+)
m = − h̄2μ0γ

2
0 ωm

π

∫ ∞

0

dξ

ξ 2 + ω2
m

(e+)T ¯̄Gsc(r0,r0,iξ )e−

+μ0γ
2
0 Re[(e+)T ¯̄Gsc(r0,r0,ωm)e−], (11)

u(z)
m = h̄2μ0γ

2
0

2
lim
ξ→0

[(ez)
T ¯̄Gsc(r0,r0,iξ )ez], (12)

where we have defined the double curl of the scattering Green’s
tensor, given by Eq. (B2), as

[ ¯̄Gsc(r0,r0,ω)]il

≡ lim
r1,r2→r0

εijkεnml

∂2

∂r1j ∂r2m

[ ¯̄Gsc(r1,r2,ω)]kn. (13)

The ground-state shifts Eqs. (8) and (10), coming purely
from the energy nonconserving terms in the particle-field
interaction Hamiltonian, can be attributed to the emission and
reabsorption of a virtual photon scattered off the surface by the
particle. The energy-conserving terms lead to the excited level
shifts as in Eqs. (9) and (11). There are two contributions to
the total excited-state shifts, the first terms in Eqs. (9) and (11)
correspond to the off-resonant process as in the ground-state
shifts, wherein the particle transits from the excited to the
ground state and back, emitting and reabsorbing a virtual

photon at a frequency ω = ωe,m. In addition, the second term
in Eqs. (9) and (11) represents a resonant contribution that
corresponds to the interaction of the particle with a real photon
emitted at the resonant frequency for the ED or MD transitions.

Additionally, we note that for the MD interaction, the
diagonal part of the interaction Hamiltonian that goes as
∼Ŝz yields an energy shift u(z)

m , as given in Eq. (12). Such
a term is nonvanishing only for a surface with a nonzero
response at static frequencies, for example, a perfect conductor.
This contribution can be thus understood in terms of a static
component of the magnetic dipole interacting with its image
such that the normal component of the B field at the surface
vanishes [66–68]. We consider this static contribution to the
magnetic level shift as separate from the fluctuation-induced
CP potentials in Eqs. (8)–(11).

Considering the Liouvillian part of the master equation, we
can write the modification to the dissipative dynamics of the
internal levels of the particle as follows:

�LP [ρ̂P ] = ��e

2
[2σ̂−ρ̂P σ̂+ − σ̂+σ̂−ρ̂P − ρ̂P σ̂+σ̂−]

+ ��m

2
[2Ŝ−ρ̂P Ŝ+ − Ŝ+Ŝ−ρ̂P − ρ̂P Ŝ+Ŝ−],

(14)

where the corrections to the dissipation rates for the excited
states are given as

��e = 4μ0ω
2
e |d|2

h̄
Im[(e+)T ¯̄Gsc(r0,r0,ωe) e−], (15)

��m = −2h̄μ0γ
2
0

h̄
Im[(e+)T ¯̄Gsc(r0,r0,ωm) e−]. (16)

Here ��e refers to the correction to the dissipation for the
excited state |b〉 and ��m(〈S,mS |Ŝ+Ŝ−|S,mS〉) is the modified
spin-flip rate for transition between the magnetic sublevel
|S,mS〉 → |S,mS − 1〉 in the presence of the surface [21–23].

IV. CASIMIR-POLDER FORCE ON A GROUND-STATE
MAGNETIC PARTICLE

Having obtained the general expressions for the surface-
induced dispersive Eqs. (8)–(12) and dissipative Eqs. (15)
and (16) corrections to the particle dynamics, we now consider
a particle in the ground state |a,S,mS = −S〉 placed near a
planar surface and study the resulting vacuum-induced forces.

The level shift for the ground state can be written as

〈a,S, − S|�ĤP |a,S, − S〉 = U (−)
e + U (−)

m + U (z)
m , (17)

where we have defined U (−)
e ≡ u(−)

e , U (−)
m ≡ Su(−)

m , and U (z)
m ≡

S2u(z)
m . Using the Green’s tensor for a point dipole near a planar
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surface, as defined in Eqs. (B1) and (B2), one obtains

U (−)
e = 3h̄�0

8π

∫ ∞

0

dξ

ωe

ξ 2

ξ 2 + ω2
e

∫ ∞

ξ/c

dκ⊥
ke

e−2κ⊥z0

[
rs(κ⊥,iξ ) − rp(κ⊥,iξ )

κ2
⊥c2

ξ 2

]
, (18)

U (−)
m = 3h̄�0

8π
ω̃ηS

∫ ∞

0

dξ

ωe

ξ 2

ξ 2 + ω2
m

∫ ∞

ξ/c

dκ⊥
ke

e−2κ⊥z0

[
rp(κ⊥,iξ ) − rs(κ⊥,iξ )

κ2
⊥c2

ξ 2

]
, (19)

U (z)
m = −3h̄�0

8
ηS2 lim

ξ→0

∫ ∞

ξ/c

dκ⊥
ke

e−2κ⊥z0
1

k2
e

(
κ2

⊥ + ξ 2

c2

)
rs(κ⊥,iξ ). (20)

Here �0 ≡ |d|2k3
e /(3πε0h̄) refers to the spontaneous emis-

sion rate for the ED transition in free space, ω̃ ≡ ωm/ωe,
ke ≡ ωe/c, and rs,p are the Fresnel coefficients [see Eq. (B3)]
for the field reflecting off the planar half space that include
the surface material properties. We define the characteristic
magnetizability to polarizabilty parameter as

η ≡ h̄2γ 2
0

|d|2c2
= α2

|d|2/(ea0)2 , (21)

with α as the fine-structure constant, e as the electronic charge,
and a0 as the Bohr radius. The parameter η determines the
characteristic strength of the magnetic to electric CP potential,
thus playing a key role in deciding the overall sign of the CP
force. It can be seen from Eqs. (19) and (20) that the effective
strength of the total magnetic potential has a factor of S for the
off-resonant interaction term and S2 for the diagonal Ŝz term
in the interaction Hamiltonian. The latter contributes only for
surfaces with a nonvanishing static frequency response [66],
and the scaling of the potential as ∼S2 can be understood in
terms of the magnetostatic interaction of the dipole with its
image.

By rewriting the electric and magnetic dipole moments
for the particle in terms of a corresponding polarizability,
the foregoing analysis is generally applicable to a magnetic
particle that can be described as a point electric and magnetic
dipole near a planar surface, such as a nanosphere with a radius
smaller than other relevant length scales in the problem [69].
The electric and magnetic polarizability tensors for the mag-
netic particle in its ground state can be written as follows [59]:

¯̄αe(ω) = |d|2ωe

h̄
(
ω2

e − ω2
)e+e−, (22)

¯̄αm(ω) = 2h̄ωmγ 2
0 S

ω2
m − ω2

e+e− + πh̄γ 2
0 S2δ(ω)ezez. (23)

We note that the static electric polarizability can be re-
lated to the free-space spontaneous emission as αe(0) =
3πε0�0/(k4

e c).

A. Ground-state particle near a perfect conductor

For the case of a particle placed near a perfect conductor,
such that the reflection coefficients are rp = 1 and rs = −1
[59], the level shifts Eqs. (18), (19), and (20) can be written as

Ũ (−)
e = − 3

32πz̃3

∫ ∞

0

dξ ωe

ξ 2 + ω2
e

f

(
2ξz0

c

)
, (24)

Ũ (−)
m = 3

32πz̃3
ηS

∫ ∞

0

dξ ωm

ξ 2 + ω2
m

f

(
2ξz0

c

)
, (25)

Ũ (z)
m = 3

32z̃3
ηS2. (26)

We have defined the dimensionless particle-surface distance
z̃ ≡ kez0, the dimensionless potentials Ũ (±,z)

e,m ≡ U (±,z)
e,m /(h̄�0),

and f (x) ≡ (1 + x + x2)e−x . As an important point, we note
that while the electric CP potential is attractive, the magnetic
CP potential is repulsive. This can be understood from the
method of images in electromagnetism, since an electric dipole
placed near an infinite planar perfect conductor is attracted
towards its image, while a magnetic dipole experiences a re-
pulsive force [4,70]. We further note that the static contribution
to the magnetic level shift Eq. (26) coincides with the energy
of a static magnetic dipole interacting with its image near a
perfectly conducting planar surface [68].

We consider the CP potentials U (−)
e,m in two asymptotic

limits depending on the particle-surface distance relative to
the characteristic length scales for ED and MD interactions.
For example, in the nonretarded limit where z0 � c/ωe(m),
the corresponding electric (magnetic) CP potential interaction
scales as ∼1/z3

0. In the retarded limit, given by z0 � c/ωe(m),
the electric (magnetic) CP potential scales as ∼1/z4

0. Further
assuming that ωe � ωm,1 one can define the three regimes
depicted in Table I as follows.

(i) Region I, defined by z0 � c/ωe,m, wherein both the
electric and magnetic CP forces are nonretarded (NR) and
defined as

Ũ (NR)
e ≡ lim

z0�c/ωe

Ũ (−)
e ,

Ũ (NR)
m ≡ Ũ (z)

m + lim
z0�c/ωm

Ũ (−)
m . (27)

(ii) Region III, defined by z0 � c/ωe,m such that both the
electric and magnetic CP potentials are retarded (R), such that

Ũ (R)
e ≡ lim

z0�c/ωe

Ũ (−)
e ,

Ũ (R)
m ≡ Ũ (z)

m + lim
z0�c/ωm

Ũ (−)
m . (28)

1We restrict our attention here to magnetic dipole transitions within
a single electronic level, which typically occur at microwave or radio
frequencies, unlike optical magnetic dipole transitions [71] that can
occur between different electronic levels.
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TABLE I. Energy-level shifts for a magnetic particle in the ground state |a,S,mS = −S〉 placed near a (1) perfectly conducting planar
surface, and a metal surface described by the (2) Drude, and (3) plasma models for dielectric permittivity. The level shifts in (non)retarded
asymptotic limits are defined as in Eqs. (27) and (28). For the Drude and plasma models, there being a separate length scale corresponding
to the plasma frequency of the surface, there is a different asymptotic behavior for the magnetic CP potential in the intermediate distance
regime where one is in the nonretarded limit relative to the MD transition frequency but retarded relative to the plasma frequency of the surface
(c/ωp � z0 � c/ωm), as defined in Eq. (37). It can be seen that, in the retarded limit, the level shifts for the plasma (Drude) model mimic
those for the perfect conductor, with (without) the static frequency contribution, since in the far-field limit the response of the metal surface at
low frequencies corresponds to that of a perfect conductor. The coefficients Ck

j for Drude and plasma models are defined in Eqs. (C5)–(C7).

Perfect conductor Drude model Plasma model

I ŨNR
e ≈ − 3

64z̃3 ŨNR
e ≈ C(3)

e,D

z̃3 ŨNR
e ≈ C(3)

e,D

z̃3

z0 � c/ωe,p,m ŨNR
m ≈ 3

64z̃3 ηS(2S + 1) ŨNR
m ≈ C(1)

m,D

z̃ ŨNR
m ≈ C(1)

m,P

z̃

II ŨR
e ≈ − 3

16πz̃4 ŨR
e ≈ − 3

16πz̃4 ŨR
e ≈ − 3

16πz̃4

c/ωe,p � z0 � c/ωm ŨNR
m ≈ 3

64z̃3 ηS(2S + 1) Ũ Int
m ≈ 3

64z̃3 ηS Ũ Int
m ≈ 3

64z̃3 ηS(2S + 1)

III ŨR
e ≈ − 3

16πz̃4 ŨR
e ≈ − 3

16πz̃4 ŨR
e ≈ − 3

16πz̃4

c/ωe,p,m � z0 ŨR
m ≈ 3

16πz̃4
ηS

ω̃
( πSz̃ω̃

2 + 1) ŨR
m ≈ 3

16πz̃4
ηS

ω̃
ŨR

m ≈ 3
16πz̃4

ηS

ω̃
( πSz̃ω̃

2 + 1)

(iii) Region II, defined by c/ωe � z0 � c/ωm such that
the electric CP potential is retarded (R), while the magnetic
CP potential is nonretarded (NR).

The CP potentials in these asymptotic limits are given in
Table I.

Let us define the dimensionless total force on the particle
as

F̃tot = F̃V + F̃G, (29)

where F̃V refers to the vacuum-induced force and F̃G to the
gravitational force, assumed along the negative z direction.
Assuming the mass of the particle to beM = Smu, wheremu ≈
1.66×10−27 kg refers to the atomic mass unit and the dimen-
sionless gravitational force is defined as F̃G ≡ −Mg/(h̄�0ke),
g being the acceleration due to gravity.

The dimensionless vacuum-induced force due to the ED
and MD interactions is given by F̃V ≡ F̃ (−)

e + F̃ (−)
m + F̃ (z)

m ,

where F̃ (j )
e,m ≡ −∂Ũ

(j )
e,m/∂z̃. We further define the total force

excluding the magnetostatic contribution as the sum of the CP
forces and gravity

F̃CP
tot ≡ F̃ (−)

e + F̃ (−)
m + F̃G, (30)

which is relevant for surfaces with a vanishing static frequency
response.

In the following, we analyze the total force with and
without the magnetostatic contribution as given by Eq. (29)
and Eq. (30), respectively. For estimate purposes, we choose
ωe = 2π×1015 Hz, ωm = 2π×1010 Hz, and �0 = 18 MHz,
which corresponds to an ED moment value of |d| ≈ ea0/2.

(i) Casimir-Polder repulsion (excluding magnetostatic con-
tribution): the threshold value of the spin to facilitate an overall
repulsive CP force, given by Eq. (30), in the region I is roughly
given as

ηSCP
0 ≈ 1 or SCP

0 ≈ 104, (31)

as can be seen from Fig. 1(a). Thus the condition S � SCP
0

defines a key constraint for achieving near-field CP repulsion

for a magnetic particle in the ground state. In the retarded
regime (region III), the condition for having a repulsive CP
force becomes

ηS � ω̃, (32)

as seen from Fig. 1(a). This can be readily realized for ω̃ �
10−4, thus yielding a repulsive force in the far-field limit. For
S > SCP

0 , approximating the total force as F̃CP
tot ≈ F̃ (−)

m + F̃G,
the position for having a stable equilibrium is given as

z̃CP
eq =

(
9ηh̄�0ke

64mug

)1/4

. (33)

We note that with both the repulsive magnetic CP (F̃ (−)
m ) and

attractive gravitational (F̃G) contributions to the total force
scaling as ∼S, the equilibrium position is independent of the
spin, as seen from the dotted vertical line in Fig. 1(b). It can be
also verified from Fig. 1(a) that the gravitational force becomes
comparable in magnitude to the magnetic CP force for z̃ ≈ z̃CP

eq .
(ii) Total vacuum-induced repulsion (including magne-

tostatic contribution): considering the total vacuum-induced
force along with gravity, as defined in (29), we see from Table I
that to achieve a repulsive near-field total force one requires
ηS(2S + 1) � 1. Assuming that |d| ≈ ea0/2, we obtain a
threshold spin value of

S0 ≈
√

1/(2η) or S0 ≈ 50, (34)

for near-field repulsion. For S > S0, the total force can be
well approximated by F̃tot ≈ F̃ (z)

m + F̃G, such that with the
near-field magnetostatic repulsion and far-field gravitational
attraction, one obtains a stable equilibrium point

z̃eq ≈
(

9ηSh̄�0ke

32mug

)1/4

. (35)

We note from the above that the equilibrium point gets pushed
away from the surface on increasing the spin value S.

We have discussed here the general conditions and pa-
rameter regimes for realizing a repulsive force between a
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FIG. 1. (a) Relative magnitudes of the rescaled electric CP force (blue solid) and gravity (red solid) compared to the magnetic CP force on
a ground-state particle as a function of distance. The three distance regimes as shown in Table I are depicted as the dashed gray vertical lines. In
region I (III), the electric and magnetic CP forces are such that F̃ (−)

m /F̃ (−)
e ≈ ηS (F̃ (−)

m /F̃ (−)
e ≈ ηS/ω̃), yielding the condition given by Eq. (31)

[Eq. (32)] for near-(far-)field Casimir repulsion. For a large enough spin, the condition |F̃G/F̃ (−)
m | ≈ 1 defines the condition for achieving a

stable equilibrium, as shown by the intersection point for the red solid and gray dashed-dotted curves. It can be seen that this point coincides
with the approximate analytical expression obtained in Eq. (33) as depicted by the vertical blue dotted line. (b) Spin value S(F̃ (CP)

tot = 0,z̃) as
a function of the particle-surface distance z̃ for the total force F̃ (CP)

tot with(out) the magnetostatic contribution to be zero shown in black solid
(gray dashed-dotted) curve. The threshold spin value S

(CP)
0 for near-field repulsion defined by [Eq. (31)] Eq. (34) is shown by the red (dotted)

dashed line. The approximate stable equilibirum point given by [Eq. (33)] Eq. (35) are shown in blue (dotted) dashed curve.

ground-state magnetic particle and a perfectly conducting
planar surface using MD interaction and the possibility of
levitating it against gravity. In the following section we study
how these conditions generalize for the particle placed near a
more realistic metal surface described by the Drude or plasma
model.

B. Ground-state particle near metal surfaces

The dielectric permittivity of a metal can be modeled by
the Drude or plasma models as described by the permittivity
functions as in Eqs. (36) and (41), respectively. The key differ-
ence in the two models is that the plasma model disregards the
relaxation of conducting electrons in the metal. This difference
matters the most for the low-frequency response of the metals,
and can lead to very different resulting Casimir forces [72–74].
Such a discrepancy has been much debated in the literature,
with the experimental results favoring the plasma model in
some cases, and Drude in others [75–81].

Particularly, the response of the metal at zero frequency is
largely different between the two models. For example, while
the Fresnel coefficient rs(κ⊥,0) → 0 for the Drude model, it is
nonvanishing for the plasma model [74]. As we have seen from
Eq. (20), the Fresnel coefficient rs(κ⊥,0) is crucial for deter-
mining the magnetostatic contribution. Thus, for a ground-state
particle, given that the Ŝz term contribution scales as ∼S2, as
opposed to the broadband CP contribution that scales as ∼S

[see Eq. (17)], the two models for the dielectric permittivity
of the metal could yield a very different magnetic force for a
large enough spin system. In the following sections we study
the conditions for achieving an overall repulsive force from the
ED and MD interactions near a metal surface described by the
Drude and plasma model, particularly noting the difference in
the two results due to the magnetostatic contribution.

1. Drude model

Considering a metal surface with a Drude model for dielec-
tric permittivity

εD(iξ ) = 1 + ω2
p

ξ 2 + γ ξ
, (36)

where ωp is the plasma frequency of the metal and γ � ωp

corresponds to the loss. Using the above dielectric permittivity
for the optical response of the surface, one can find the ground-
state level shifts as given by Eqs. (18) and (19). Assuming
ωp,e � ωm [55], there are three limiting cases of the resulting
level shifts as summarized in Table I. In region (I) III, both
the ED and MD interaction induced level shifts are in the
(non)retarded limit. In addition to the retarded and nonretarded
regimes, there is a separate length scale in the problem that
corresponds to the plasma frequency of the metal. This leads
to a different asymptotic behavior for the magnetic level shift in
the intermediate regime demarcated by c/ωp � z0 � c/ωm,
defined as

Ũ Int
m ≡ Ũ (z)

m + lim
c/ωp�z0�c/ωm

Ũ (−)
m . (37)

We note that in the retarded limit the metal surface behaves
as a perfect conductor, as far as the electric level shift is
concerned. This can be physically understood by considering
that the relevant frequencies for the far-field interaction being
small, the plasma frequency of the metal appears infinite, which
corresponds to the response of a perfect conductor.

Importantly, it can be seen from Eq. (B3) that, with
limξ→0 rs(κ⊥,iξ ) = 0, the static contribution as given by
Eq. (20) vanishes, such that the total magnetic CP potential
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is given as

Ũ (−)
m = 3

8π
ω̃ηS

∫ ∞

0

dξ

ωe

ξ 2

ξ 2 + ω2
m

∫ ∞

ξ/c

dκ⊥
ke

e−2κ⊥z0

×
[
rp(κ⊥,iξ ) − rs(κ⊥,iξ )

κ2
⊥c2

ξ 2

]
, (38)

which can be calculated in the three asymptotic limits using
the approach in Appendix C, as summarized in Table I.
Specifically, we note here that the above potential scales
linearly with the total spin S, in contrast to the case of a perfect
conductor.

It can be seen from Table I that, for the total CP force to be
repulsive in region I, one requires∣∣∣∣ ŨNR

m

ŨNR
e

∣∣∣∣ ≈ C(1)
m,D

C(3)
e,D

z̃2 ∼ ηS
ω2

p

ω2
e

ln (γ /ωm)

γ /ωm

z̃2, (39)

with the coefficients C(1)
m,D and C(3)

e,D given by Eq. (C6) and
Eq. (C5), assuming ωp ∼ 100γ ∼ 10ωe ∼ 107ωm. Consider-
ing the particle near a gold surface with ωp ≈ 1.36×1016 Hz
and γ ≈ 1014 Hz, one requires

ηS � 103

z̃2
(40)

for the total CP force in region I to be repulsive. For a particle-
surface separation z0 ≈ 10 nm, we find that one requires the
total spin to be as large as S � 108 to achieve repulsion.

2. Plasma model

We now consider the plasma model for dielectric permittiv-
ity, by setting the relaxation parameter in the Drude model to
zero

εP (iξ ) = 1 + ω2
p

ξ 2
. (41)

Using the above dielectric response in Eq. (18) and Eq. (19),
one can find the ED and MD interaction induced potentials
in the three asymptotic limits as outlined in Table I. In the
near-field limit, one can thus write the ratio of the repulsive
magnetic potential to the attractive electric part as∣∣∣∣ ŨNR

m

ŨNR
e

∣∣∣∣ ≈ C(1)
m,P

C(3)
e,D

z̃2 ∼ ηS(2S + 1)
ω2

p

ω2
e

z̃2, (42)

where the coefficients C(1)
m,P and C(3)

m,D are given by Eq. (C7)
and Eq. (C5), respectively, assuming ωp ∼ 10ωe ∼ 107ωm.
Again, considering the particle near a gold surface with ωp ≈
1.36×1016 Hz, one requires

ηS(2S + 1) � 10−2

z̃2
, (43)

which yields, assuming a particle-surface separation of z0 =
10 nm, a spin value of S � 102 for the total force in the near-
field regime to be repulsive. Thus we see that one requires a
much smaller spin value to achieve an overall repulsive force
for a particle near a metal surface if the surface response at
zero frequency is described by the plasma model as opposed
to the Drude model. Further, comparing Eqs. (39) and (42), we

see that the repulsive magnetic level shift for the Drude model
relative to the plasma model is smaller by a factor ∼ωm/(Sγ ).

Considering that one requires spin values as large as S ∼
108 to achieve an overall repulsive CP force near a metal surface
described by the Drude model, we further propose some
possible ways to boost the repulsive magnetic contribution to
the total CP force in the following section.

V. CASIMIR-POLDER FORCE ON AN EXCITED
MAGNETIC PARTICLE

As discussed in Sec. II, for a particle in the ground state,
its only possible interactions with the field are via virtual
excitation processes that can occur at all frequencies, making
the interaction essentially broadband. However, for a particle in
the excited state, there can be a real transition to lower-energy
states accompanied by the emission of a real photon, which
yields a resonant shift to the excited state and modifies the
dissipation rate in the presence of a surface. With the resonant
shift depending singularly on the response of the surface at the
transition frequency of the particle as opposed to a broadband
response, as a result the excited-state shifts can be manipulated
relatively easily by altering the density of field modes at the
transition frequency [39].

In addition, we further note from Eq. (7) [and Eq. (4)]
that if we consider the magnetic particle to be in the excited
level |S,mS = 0〉, the characteristic strength for the magnetic
CP interaction (excluding the static contribution) is larger
by a factor of S in comparison to that for the ground state.
Drawing the analogy between a spin system and the Dicke
model [82,83], such an enhancement can be understood as
that in the case of superradiance in a collection of atoms.
In the case of Dicke superradiance, the enhancement in the
transition amplitude for the superradiant state corresponding
to |S,mS = 0〉 leads to a boost by a factor of S in the collective
spontaneous emission rate of the atoms. Since the CP force
is also a fluctuation phenomenon, one can naturally expect the
cooperative effects that influence the spontaneous emission for
a collection of atoms to also influence the CP force [57,84].

Thus, given that (i) the excited-state shifts depend on the
response of the surface at the resonant transition frequency,
such that one can enhance the repulsive magnetic CP potential
by appropriately engineering the surface response, and (ii) that
by preparing the particle in an excited state one can further
boost the repulsive magnetic CP force, we therefore consider
the CP interaction for a particle in the state |a,S,mS = 0〉. We
analyze these two effects in the following.

A. Magnetic CP potential for the excited sublevel |S,mS = 0〉
The total level shift of the state |S,mS = 0〉 comprises of

three contributions. First, there is an off-resonant contribution
from the virtual transition to the level |S,mS = +1〉 as de-
scribed by Eq. (10). Next, considering the transition to the
level |S,mS = −1〉 there is an off-resonant and a resonant
contribution as seen from the first and second terms in Eq. (11),
respectively.

Adding together the contributions from the transition to the
levels |S,mS = ±1〉 using Eq. (11) and Eq. (10), we find the
total magnetic CP shift on the level |S,mS = 0〉 for a particle
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near a planar surface,

Ũ (0)
m = −3ηS(S + 1)ω̃3

16
Re

∫ ∞

0

dk‖
km

k‖
κ⊥

e−2κ⊥z0

×
[
rp(κ⊥,ωm) + rs(κ⊥,ωm)

κ2
⊥

k2
m

]
. (44)

Comparing the above with the broadband contribution
in Eq. (19), the magnetizability to polarizability for the
|S,mS = 0〉 level is larger by an additional factor of S with
respect to the ground state. We also note that, for mS = 0,
the contribution from the diagonal interaction term in Eq. (20)
vanishes.

Considering the particle placed near a perfectly conducting
surface, we write the magnetic CP potential for the state
|a,S,mS = 0〉 as

Ũ (0)
m = 3ηS(S + 1)

64z̃3
[cos(2ω̃z̃)

+ 2ω̃z̃ sin(2ω̃z̃) − 4ω̃2z̃2 cos(2ω̃z̃)]. (45)

In the nonretarded regime for the magnetic CP poten-
tial (ω̃z̃ � 1), the above potential reduces to Ũ (0),NR

m ≈
3ηS(S + 1)/(64z̃3). Thus for the total CP force to be repulsive
in the near-field regime such that ŨNR

e + Ũ (0),NR
m > 0, one

requires ηS(S + 1) � 1, or S � 102.
Adding together the CP force and gravity as before, the

total potential in the near-field regime (considering S � 102)
can be described approximately as the sum of the nonretarded
magnetic CP potential and the gravitational potential as

F̃ approx
tot ≈ 9ηS(S + 1)

64z̃4
− Mg

h̄�0ke

. (46)

Thus there is a stable equilibrium point along the z direction
at

z̃(0)
eq ≈

(
9ηSh̄�0ke

64mug

)1/4

, (47)

where the attractive gravitational force balances the magnetic
repulsion. We see that, on increasing S, the magnetic repul-
sion increases more than the gravitational attraction and the
equilibrium point gets pushed further away from the surface.

The modified spin-flip rate given by Eq. (16) in the
nonretarded limit is given as ��(0),NR

m ≈ �0ηS(S + 1)ω̃3/3 ∼
10−9 Hz [21–23], considering a spin value of S = 100. In the
absence of surface losses, the decay rate is independent of the
particle-surface separation in the nonretarded limit, as expected
from image theory [63].

In the following section we study the possibility of combin-
ing such a “super-radiant” enhancement to the repulsive CP
force together with an additional boost coming from surface
resonance for a particle placed near a metal surface described
by the Drude model.

B. Enhancing the magnetic CP force using surface resonances

It can be seen from Eq. (44) that the off-resonant shift con-
tribution from the virtual transition to the level |S,mS = +1〉
cancels with that to the level |S,mS = −1〉, as expected
from second-order perturbation theory, such that the overall
magnetic shift on the |S,mS = 0〉 level contains only the

resonant contribution. As a result, the total magnetic CP
potential depends singularly on the response of the surface at
the resonant transition frequency ωm. Thus we consider here
the possibility of boosting the magnetic CP force resonantly
by engineering the response of the surface at ωm following the
approach in [39].

Modeling the surface response using the Drude model given
by Eq. (36), one can see from Eqs. (44) and (B3) that in order to
find the CP potential one only requires the dielectric response
of the surface at the resonance transition frequency εm ≡
ε(ωm) [assuming μ(ωm) = 1]. In the nonretarded limit for MD
interaction (ω̃z̃ � 1), we use the approach in Appendix C to
write an asymptotic expression for the nonretarded magnetic
CP potential near a metal surface as

Ũ (0),NR
m ≈ 3ηS(S + 1)ω̃2

128z̃
Re

[
(εm − 1)(εm + 5)

εm + 1

]
. (48)

The above potential undergoes a resonance for (εm + 1) → 0
near the plasmon resonance given by ωm → ωp/

√
2. We define

the quality factor for the surface material as Q ≡ ωp/(
√

2γ )
and the dimensionless detuning with respect to the plasmon
resonance as δp ≡ (ωm − ωp/

√
2)/γ . Assuming a high Q

factor for surface resonance and large detuning such that
Q � |δp| � 1, one can rewrite the nonretarded magnetic CP
potential as

Ũ (0),NR
m ≈ −3ηS(S + 1)ω̃2

256z̃

(
Q

δp

)
. (49)

The ratio of the magnetic to electric CP potential given by
Eq. (C5) in region I goes roughly as∣∣∣∣ Ũ (0),NR

m

ŨNR
e

∣∣∣∣ ∼ ηS(S + 1)ω̃2z̃2

(
Q∣∣δp

∣∣
)

, (50)

such that to achieve near-field repulsion we require

ηS(S + 1) � 1

ω̃2z̃2

(∣∣δp

∣∣
Q

)
. (51)

For a particle-surface distance of z0 = 10 nm, assuming |δp| ∼
102, Q ∼ 1012, gives a spin value of S ∼ 102, which is
significantly smaller than the spin value required for the case
of a ground-state particle near a Drude surface (S ∼ 108). We
note that this value is only limited by the quality factor of
the surface resonance and can in principle be made arbitrarily
small.

The spin-flip rate for the state |a,S,mS = 0〉 in the nonre-
tarded limit, near the plasmon resonance of the surface, is given
by Eq. (16),

��(0),NR
m ≈ −3�0ηS(S + 1)ω̃2

16z̃
Im

[
(εm − 1)

εm + 1

]

≈ 3�0ηS(S + 1)ω̃2

64z̃

(
Q

δ2
p

)
. (52)

For the chosen set of values, assuming S ∼ 102, the deco-
herence rate becomes ��(0),NR

m ≈ 1 MHz. We note here that
the dispersive and dissipative corrections, given by Eqs. (49)
and (52), contain factors of Q/|δp| and Q/|δp|2, respectively,
which are characteristic of a generic coupling between a
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particle and a resonator [39,85]. One can thus find a large
enough quality factor Q along with a large detuning δp, such
that the dispersive shifts can be large without increasing the
spin decoherence rate significantly.

VI. DISCUSSION

In this work, we analyze the possibility of realizing a
repulsive force between a magnetic particle and a planar
surface interacting via the vacuum EM field. Considering the
toy model of a particle with an electric-dipole transition and
a large magnetic spin, we find that as a result of the interplay
between the relatively long-ranged repulsive magnetic-dipole
contribution and the short-ranged attractive electric-dipole part
to the total vacuum-induced force, one can possibly achieve a
repulsive interaction for (i) large enough magnetizability to
polarizability ratio of the magnetic particle and (ii) in distance
regimes where the ED contribution to the total force is retarded
and thus weak, while the MD contribution is nonretarded and
can potentially overtake the attractive ED part (see Fig. 1). We
find that the level shifts induced due to the MD interaction for
a ground-state magnetic particle near a perfectly conducting
surface contain two contributions, one that can be attributed to
the broadband Casimir-Polder interaction and a zero frequency
contribution that can be understood as coming from the
interaction between the static dipole and its image. Thus we
find that as a fundamental constraint for achieving near-field
repulsion via MD interaction for a ground-state particle near a
perfectly conducting surface one requires a spin S larger than
∼1/α (∼102), where α refers to the fine-structure constant, as
in Eq. (34). In the absence of the static frequency contribution,
the minimum spin value required for achieving a repulsive CP
force is ∼1/α2 (∼104), as in Eq. (31). We formulate similar
conditions and estimates for achieving Casimir repulsion via
MD interaction for the particle placed near surfaces described
by Drude and plasma models, given by Eqs. (39) and (42).
We also propose some possible ways to enhance the repulsive
magnetic CP interaction, such as by preparing the particle in
a superradiant state and using surface resonances, considering
particularly the level |S,mS = 0〉. Using the analogy between
the Dicke model and a spin system, similar to the enhancement
in spontaneous emission, one can understand the enhancement
in the magnetic CP force on the magnetic sublevel level
|S,mS = 0〉 in terms of Dicke superradiance [57].

Our results could be instructive in identifying potential
systems, mechanisms, and regimes where one could realize
stable levitation via repulsive magnetic-dipole induced forces.
For example, we remark that the desired spin values of
S ∼ 100 are not far from the large spin values realized for
single molecular magnets (SMMs) [86,87]. In the field of
molecular magnetism, there has been a significant interest
in creating single molecular complexes with magnetic spins
that can be as large as S = 105/2 [86,87]. For purposes of
a rough estimate, assuming that an SMM with spin S ≈ 50
constitutes roughly N ≈ 104 atoms [86], such that its electric
polarizability can be approximated as αe ∼ 104α0, α0 being
the single-particle electric polarizability as considered earlier,
and mass M ≈ 104 amu, we find that such a molecule placed
near a perfectly conducting surface could possibly be levitated
via the magnetic-dipole interaction.

Other systems with large quantum spins, such as single-
domain magnetic nanoparticles [88], can potentially exhibit a
macroscopic spin as large as S ∼ 105. We remark that such a
particle can be used to differentiate between the zero frequency
response of a metal surface that is described by a Drude
or a plasma model [see Eqs. (40) and (43)]. As shown in
Sec. IV B, the static frequency contribution being absent for
the case of a Drude model, a particle with a large spin “sees”
an MD interaction-induced force that is smaller by a factor
∼ωm/(γ S) than in the case of a surface described by the plasma
model.

Further, identifying collective phenomena as a potential tool
to tailor vacuum forces, one can speculate using cooperative
effects as a means to probe otherwise weak vacuum forces,
or suppress attractive Casimir forces by preparing systems in
appropriate collective states [57].
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APPENDIX A: MEDIUM-ASSISTED EM FIELD

Using the macroscopic QED formalism [59,60], the Hamil-
tonian for the vacuum EM field in the presence of the surface
can be written as

HF =
∑

λ=e,m

∫
d3r

∫
dω h̄ω f̂†λ(r,ω) · f̂λ(r,ω), (A1)

with f̂†λ(r,ω) and f̂λ(r,ω) as the bosonic creation and annihila-
tion operators respectively that take into account the presence
of the media. Physically these can be understood as the ladder
operators corresponding to the noise polarization (λ = e) and
magnetization (λ = m) excitations in the medium-assisted EM
field, at frequency ω, created or annihilated at position r.
The medium-assisted bosonic operators obey the canonical
commutation relations

[f̂λ(r,ω),f̂λ′ (r′,ω′)] = [f̂†λ(r,ω),f̂†λ′ (r′,ω′)] = 0, (A2)

[f̂λ(r,ω),f̂†λ′(r′,ω′)] = δλλ′δ(r − r′)δ(ω − ω′). (A3)

The electric- and magnetic-field operators evaluated at the
position of the particle are given as

Ê(r0) =
∑

λ=e,m

∫
d3r

∫
dω

× [ ¯̄Gλ(r0,r,ω) · f̂λ(r,ω) + H.c.], (A4)

B̂(r0) =
∑

λ=e,m

∫
d3r

∫
dω

[(
− i

ω

)
[
−→∇ × ¯̄Gλ(r0,r,ω)]

·f̂λ(r,ω) + H.c.

]
,x (A5)
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respectively, where

[
−→∇ × ¯̄Gλ(r,r′ω)]il = εijk∂rj

[ ¯̄Gλ(r,r′,ω)]kl . (A6)

The coefficients ¯̄Gλ(r1,r2,ω) are defined as

¯̄Ge(r,r′,ω) = i
ω2

c2

√
h̄

πε0
�[ε(r′,ω)] ¯̄G(r,r′,ω), (A7)

¯̄Gm(r,r′,ω) = i
ω2

c2

√
h̄

πε0

�[μ(r′,ω)]

|μ(r′,ω)|2
−→∇ × ¯̄G(r,r′,ω), (A8)

with ε(r,ω) and μ(r,ω) as the space-dependent permittivity
and permeability and ¯̄G(r1,r2,ω) as the Green’s tensor for
a point dipole near a planar semi-infinite surface [59,60,65].
Since we specifically want to study the effect of the presence
of surface on the particle-field interaction, assuming that the
corrections from the free-space Green’s tensor ¯̄G0(r1,r2,ω)
such as the Lamb shift and the free-space spontaneous emission

are already taken into account, we consider only the part of
the field that is scattered off the surface and interacts with
the dipole. This corresponds to the scattering part of the total
Green’s tensor defined as

¯̄Gsc(r1,r2,ω) = ¯̄G(r1,r2,ω) − ¯̄G0(r1,r2,ω). (A9)

We can thus define the interaction Hamiltonian corresponding
to the interaction between the ED and MD with the part of the
total EM field scattered off the surface as

H sc
AV = −d̂ · Êsc(r0) − m̂ · B̂sc(r0), (A10)

where the field operators Êsc(r0) and B̂sc(r0) are as defined in
Eq. (A4) and Eq. (A5), with the total Green’s tensor replaced
by its scattering part [ ¯̄G(r,r′,ω) → ¯̄Gsc(r,r′,ω)].

APPENDIX B: SCATTERING GREEN’S TENSOR
NEAR A PLANAR SURFACE

For a point dipole near an infinite half space, one can write
the scattering Green’s tensor and its double curl as [59]

¯̄Gsc(r0,r0,iξ ) = 1

8π

∫ ∞

0

dk‖ k‖
κ⊥

e−2κ⊥z0

⎡
⎣−rp(κ⊥,iξ )

c2

ξ 2

⎛
⎝κ2

⊥ 0 0
0 κ2

⊥ 0
0 0 2k2

‖

⎞
⎠ + rs(κ⊥,iξ )

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠

⎤
⎦, (B1)

¯̄Gsc(r0,r0,iξ ) = ξ 2

8πc2

∫ ∞

0

dk‖ k‖
κ⊥

e−2κ⊥z0

⎡
⎣rp(κ⊥,iξ )

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ − rs(κ⊥,iξ )

c2

ξ 2

⎛
⎝κ2

⊥ 0 0
0 κ2

⊥ 0
0 0 2k2

‖

⎞
⎠

⎤
⎦, (B2)

where rs,p are the Fresnel reflection coefficients for the s and p polarizations reflecting off the surface and κ2
⊥ = ξ 2/c2 + k2

‖ . We
see that all the information about the surface material is accounted for in the reflection coefficients, which are given as

rp(κ⊥,iξ ) =
ε(iξ )κ⊥ −

√
(ε(iξ )μ(iξ ) − 1)ξ 2/c2 + κ2

⊥

ε(iξ )κ⊥ +
√

(ε(iξ )μ(iξ ) − 1)ξ 2/c2 + κ2
⊥

, rs(κ⊥,iξ ) =
μ(iξ )κ⊥ −

√
(ε(iξ )μ(iξ ) − 1)ξ 2/c2 + κ2

⊥

μ(iξ )κ⊥ +
√

(ε(iξ )μ(iξ ) − 1)ξ 2/c2 + κ2
⊥

. (B3)

APPENDIX C: ASYMPTOTIC POTENTIAL
FOR A PARTICLE NEAR A METAL SURFACE

Let us consider a particle near a surface described by the
Drude model with a dielectric permittivity given by Eq. (36). In
the nonretarded limit, one can expand the Fresnel coefficients
in Eq. (B3) to lowest order in

√
ε(iξ ) − 1ξ/(κ⊥c) as

rp(κ⊥,iξ ) ≈ ε(iξ ) − 1

ε(iξ ) + 1
− ε(iξ )(ε(iξ ) − 1)

(ε(iξ ) + 1)2

ξ 2

κ2
⊥c2

, (C1)

rs(κ⊥,iξ ) ≈ −1

4
(ε(iξ ) − 1)

ξ 2

κ2
⊥c2

. (C2)

We can then use the above to write the electric CP potential in
the nonretarded limit (z̃ � 1) as

ŨNR
e ≈ − 3ωp

64(
√

2ωe + ωp)z̃3
. (C3)

In the retarded limit (z̃ � 1) for the electric CP interaction, one
can approximate all the response functions involved (particle
polarizability and the Fresnel coefficients) by their static values
(ξ → 0), such that one can then simplify the electric CP
potential as

ŨR
e ≈ − 3

16πz̃4
, (C4)

which we can note from Table I is the same as the retarded
potential for the particle near a perfectly conducting surface.
This can be understood physically in terms of the fact that if
the particle is far enough away from the surface such that at
the typical frequencies relevant for the length scale involved
the surface response effectively appears as that for a perfect
conductor.

We use a similar approach to study the asymptotic behavior
of the level shifts due to ED and MD interactions for the particle
in different regimes, as summarized in Table I. The coefficients
Ck

j for Drude and plasma models used in Table I are defined as
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follows:

C(3)
e,D ≡ 3ωp

64(
√

2ωe + ωp)
, (C5)

C(1)
m,D ≡ 3ω̃ηSωp

64ωe

[
ωp

ωm + ωp/
√

2
+ ωp(ωm + 2γ /π ln(γ /ωm))

2
(
ω2

m + γ 2
)

]
, (C6)

C(1)
m,P ≡ 3ω̃ηSωp

64ωe

[
ωp

ωm + ωp/
√

2
+ ωp

2ωm

]
+ 3

64

ω2
p

ω2
e

ηS2. (C7)
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