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Isotope shift, nonlinearity of King plots, and the search for new particles
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We derive a mean-field relativistic formula for the isotope shift of an electronic energy level for arbitrary angular
momentum; we then use it to predict the spectra of superheavy metastable neutron-rich isotopes belonging to the
hypothetical island of stability. Our results may be applied to the search for superheavy atoms in astrophysical
spectra using the known values of the transition frequencies for the neutron-deficient isotopes produced in the
laboratory. An example of a relevant astrophysical system may be the spectra of the Przybylski’s star where
superheavy elements up to Z = 99 have been possibly identified. In addition, it has been recently suggested
to use the measurements of King plot nonlinearity in a search for hypothetical new light bosons. On the other
hand, one can find the nonlinear corrections to the King plot arising already in the standard model framework.
We investigate contributions to the nonlinearity arising from relativistic effects in the isotope field shift, the
nuclear polarizability, and many-body effects. It is found that the nuclear polarizability contribution can lead to
the significant deviation of the King plot from linearity. Therefore, the measurements of the nonlinearity of King
plots may be applied to obtain the nuclear polarizability change between individual isotopes. We then proceed
with providing a rough analytical estimate of the nonlinearity arising solely from the effect of a hypothetical
scalar boson. Our predictions give theoretical limitations on the sensitivity of the search for new interactions and
should help to identify the most suitable atoms for corresponding experiments.
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I. INTRODUCTION

Isotope shift (IS) phenomena in heavy atoms are an impor-
tant way of probing various scenarios in nuclear physics and
can aid the search for new physics beyond the standard model.

Nuclear theory predicts the existence of long-lived isotopes
for elements with Z � 104 (see, e.g., Refs. [1,2]), in particular
isotopes with a magic neutron numberN = 184. However, pro-
ducing these neutron-rich isotopes in laboratories by colliding
lighter atoms is currently impossible. The Coulomb repulsion
for nuclei grows as Z2; in order to compensate for this with the
attractive strong force, the neutron number N must grow more
quickly than Z. Consequently, an isotope from the island of
stability with N = 184 cannot be produced from the collision
of a pair of lighter isotopes with smaller N/Z ratios.

In contrast to laboratories, various astrophysical events such
as supernovae explosions, neutron star–black hole and neutron
star mergers generate high neutron fluxes and may create
environments favorable for the production of neutron-rich
heavy elements. For example, a new mechanism of such a kind
due to the capture of the neutron star material by a primordial
black hole has been suggested in Ref. [3]. Furthermore, neutron
star–neutron star mergers are predicted to generate optimal
environments for the production of heavy atoms [4,5]. As
a consequence, astrophysical data may be the best place to
observe superheavy metastable elements. It is possible that
optical lines of elements up to Z = 99 have already been
identified in the spectra of Przybylski’s star [6]. These elements
include heavy, short-lived isotopes which may be products of
the decay of long-lifetime nuclei near the island of stability
[7].

IS calculations for superheavy elements can help trace the
hypothetical island of stability in existing astrophysical data.
It may be possible to predict a spectral line of a neutron-rich
isotope ν ′ based on the experimental spectrum of a neutron-
poor isotope ν and calculations of IS δν as ν ′ = ν + δν. The
results can then be used to search for the long-lifetime neutron-
rich elements in complicated astrophysical spectra such as that
of Przybylski’s star.

Spectroscopic measurements of IS may also be relevant to
the search for strange matter. Strange nuclei consist of up,
down, and strange quarks (see Ref. [8] and references therein).
A strange-matter nuclei of charge Z would have a very different
radius in comparison to any regular isotope. A formula for IS
can be used to predict the effects of this change in radius on
atomic spectra.

Accurate numerical calculations of IS for heavy and su-
perheavy elements are usually carried out using sophisticated
many-body theory, for example, combining a configuration
interaction (CI) and many-body perturbation theory approach
(MBPT) (see, e.g., Refs. [7] and the references therein). How-
ever, in the absence of experimental data a simple analytical
formula may be useful for quick estimates of IS and better
qualitative understanding of this phenomenon. In the present
work, we derive a relativistic mean-field analytic formula
for the field shift, which is the dominating source of IS in
heavy atoms. Since the relative magnitude of the many-body
corrections to the mean-field case is approximately the same
for atoms with similar electronic structure of outer shells, our
formula may be used to make reasonable extrapolations from
the experimental data of lighter atoms to superheavy elements
where no data are available.
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It should be noted that relativistic corrections produce an
important difference in the dependence of the field shift on
the nuclear radius r . The traditional expression for field shift
is known as Fiδ〈r2〉 where Fi is an electronic structure factor
and δ〈r2〉 is a nuclear parameter. Instead, the field shift in a
relativistic approach should be written as F̃iδ〈r2γ 〉 where γ =√

(j + 1/2)2 − Z2α2, j is the electron angular momentum,
and α is the fine structure constant; the electronic factor F̃i

is calculated in the present work. If one insists on using the
traditional formula for the field shift Fiδ〈r2〉, the factor Fi will
depend on the nuclear radius; i.e., there will be no factorization
of the electron and nuclear variables.

Because of the relativistic effects in heavy atoms, the field
shift of the p1/2 orbital is comparable to that of the s1/2: The
ratio is ∼(1 − γ )/(1 + γ ). The Zα expansion gives the ratio
∼Z2α2/4 but for Z = 137, γ ≈ 0, and for the superheavy
elements the ratio tends to 1. For j > 1/2, the direct mean-field
single-particle field shift is small. However, the mean-field
rearrangement effect (the correction to the atomic potential
δV due to the perturbation of the s and p1/2 orbitals by
the field-shift operator) produces the same dependence of
field shift on nuclear radius for all orbitals: F̃iδ〈r2γ 〉, where
γ = [1 − Z2α2]1/2.

Our formula for the field shift allows us to estimate the
King-plot nonlinearity of a given element. New long-range
forces such as Yukawa-type interactions between electrons
and nuclei can lead to nonlinearities in a King plot for a
series of isotopes [9]. It is useful to understand other possible
sources of nonlinearities in the IS in order to constrain new
physics beyond the standard model. We estimate the mean-field
rearrangement corrections and quadratic effects in the field
shift. We also estimate the contribution to IS from the nuclear
polarizability which is found to give a bigger contribution to the
King-plot nonlinearity than the relativistic corrections to the
field shift. This fact in principle allows an experimental probe
of the change of nuclear polarizability between isotopes based
on measuring the King plot nonlinearity, under the assumption
that the effect of possible new physics interactions is negligible.

II. FIELD SHIFT IN THE MEAN FIELD APPROXIMATION

In Refs. [10,11], the Racah-Rosenthal-Breit formula for
IS of s-wave energy levels was derived using first-order
perturbation theory. However, it is found that for relativistic
cases the formula is unjustified, as it relies on perturbation
theory using the Coulomb wave functions for a pointlike
nucleus when finding the correction to the energy due to
the finite nuclear size. This is not valid because, while the
energy perturbation due to the potential inside the nucleus is
small, the perturbed and nonperturbed wave functions within
this region are completely different. Indeed, the relativistic
wave functions for s1/2 and p1/2 orbitals tend to infinity at
r = 0 while for the finite nucleus they remain finite. This
problem was already recognized by the authors of the initial
publication and since then numerous attempts have been made
to account for this large wave function distortion (see Ref. [12]
and references therein). Furthermore, it should be pointed
out that a high-precision analytical formula for the finite
nuclear-size corrections in one-electron atoms and ions was
developed, taking into account the fine details of nuclear charge

distribution [13]. However, our goal is to obtain results for
many-electron atoms and ions. In this work, we aim to find a
simple analytical expression of the field shift in many-electron
atoms for arbitrary valence electron angular momenta j,l based
on the first-order perturbation theory, but starting from a more
realistic initial approximation than a pointlike nucleus.

A. Mean-field isotope shift in many-electron atoms for arbitrary
orbital angular momentum

The dominant contribution to IS in heavy atoms is the field
shift arising from the change of nuclear radius, rather than the
mass shift which is smaller [14]. Let us first consider a model
allowing for the estimation of field shift for wave functions with
arbitrary Dirac quantum numbers j and l, where j = l ± 1

2 .
Through this work, we assume the nucleus to be a uniformly
charged sphere of radius R. The nuclear electric potential is

V (r,R) =
{

−Ze2

r
for r � R ,

−Ze2

R

(
3
2 − r2

2R2

)
for r � R .

(1)

In superheavy nuclei, V − Z
r

(the difference between a finite-
size and pointlike nucleus) is not a small perturbation (we
remind the reader of the collapse of the spectrum for a pointlike
nucleus with Z = 137). The perturbation used in this work is
the change of the potential due to a small relative change of
nuclear radii between isotopes, which can be defined as

δV = dV (r,R)

dR
δR = 3

2

Ze2

R

(
1 − r2

R2

)
δR

R
. (2)

Using perturbation theory and integrating over the nucleus, we
can find the shift in energy as

δEκ =
∫

nuc.
�†

κδV �κd�r . (3)

Radial parts of wave functions can be found from the following
Dirac system of radial equations:{

( d
dr

+ κ
r
)rf (r) = (m + E − V )rg(r),

( d
dr

+ κ
r
)rg(r) = (m − E + V )rf (r),

(4)

where κ = ∓(j + 1
2 ), and f (r) and g(r) are the upper and

lower radial components of the Dirac spinor respectively. We
approximate the potential energy near r = 0 to be constant:

u = V (0) = −3Ze2

2R
, E,m 	 u. (5)

After equating F = rf (r) and G = rg(r), we find that{
F ′ + κ

r
F + uG = 0 ,

G′ − κ
r
G − uF = 0 .

(6)

One can check that the solutions at small distances can be
written as

κ < 0 : F = ar |κ| + a1r
|κ|+2 , G = au

2|κ| + 1
r |κ|+1,

κ > 0 : G = br |κ| + b1r
|κ|+2 , F = − bu

2|κ| + 1
r |κ|+1.
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where a, b are normalization constants and

a1 = − u2a

2(2|κ| + 1)
, b1 = − u2b

2(2|κ| + 1)
.

Here we neglected higher orders in r2/R2; see also Ref. [15].
More accurate calculations have demonstrated that their con-
tribution to the field shift is small (see next subsection).

It can be shown that in both cases

(F 2 + G2) ∝ r2|κ|
[

1 − 9

2

Z2α2|κ|
(2|κ| + 1)2

( r

R

)2
]
. (7)

To determine the field shift, we match the expression for the
radial density f 2 + g2 inside the nucleus to the radial density
outside the nucleus. At the surface, ρinside = ρoutside, since ρ is
continuous. Near the nucleus, the nuclear Coulomb potential
is not screened, and all atomic wave functions are proportional
to the corresponding Coulomb wave functions. Therefore, we
use expressions of these wave functions at small distances
(presented in Appendix C) to approximate the radial density at
the nuclear surface (r = R):

ρsurface = f 2
surface + g2

surface

= 1

(zi + 1)

Z

a3
B

(
I

Ry

)3/2 4

[	(2γ + 1)]2

( aB

2ZR

)2−2γ

× 2κ(κ − γ ) , (8)

where γ = √
κ2 − Z2α2, I = (zi+1)2

ν2 Ry is the ionization en-
ergy for an orbital with effective principal quantum number ν in
the ion of charge zi , and Ry = e2

2aB
is the Rydberg constant. As

shown above, the electron density inside the nucleus behaves
approximately as

ρ(r) ≈ ρsurface

( r

R

)2(|κ|−1)
. (9)

This expression approximates the electron density inside the
nucleus significantly better than the Coulomb solution and
should give more accurate results than the Racah-Rosenthal-
Breit approach. Corrections to Eqs. (7)–(9) are in the next
subsection. Their contribution to the isotope shift is small.

Using Eq. (3) and introducing x = r/R, one can find that

δEκ = 3

2
Ze2R2 δR

R

∫ 1

0

(
f 2

κ + g2
κ

)
(1 − x2)x2dx

= 3

2
Ze2R2 δR

R

∫ 1

0
ρsf x2(|κ|−1)(1 − x2)x2dx, (10)

which gives

δEκ = 1

(zi + 1)

12κ(κ − γ )

(2|κ| + 1)(2|κ| + 3)[	(2γ + 1)]2

×
(

2ZR

aB

)2γ
I 3/2

Ry1/2

δR

R
. (11)

B. Isotope shift for s and p1/2 waves

From Eq. (7), we see that Z2α2r2/R2 corrections to the
electron density decrease with the increase of |κ|. Indeed,
the ratio of the potential |V | and the centrifugal term |κ|/r

in the Dirac equation decreases as 1/|κ|. Therefore, to analyze

the role of the corrections it is sufficient to consider the case of
the minimal |κ| = 1, of s (κ = −1) and p1/2 (κ = 1) waves.
These are also the most important cases for the isotope shift.

The potential inside the nucleus V = −Ze2

R
( 3

2 − r2

2R2 ) is
quadratic and wave functions inside the nucleus correspond to
the solutions for the relativistic oscillator. These solutions must
be matched with the Coulomb solutions outside the nucleus.1

The result may be presented in the following form (see, e.g.,
Ref. [16]):

�s1/2 =
(

fs
s

igs
p1/2

)
, (12)

�p1/2 =
(

−Ap

As
gs
p1/2

i
Ap

As
fs
s

)
, (13)

where fs , gs , As , and Ap are defined in Appendix A. As before,
we treat the change in the potential within the nucleus due to
the isotope effect (2) as our perturbation. Again, we find the
energy shifts:

δEs = 3

2
Ze2R2 δR

R

∫ 1

0

(
f 2

s + g2
s

)
(1 − x2)x2dx , (14)

δEp1/2 = 3

2
Ze2R2

(
Ap

As

)2
δR

R

×
∫ 1

0

(
g2

s + f 2
s

)
(1 − x2)x2dx . (15)

These expressions for the isotope shift are evaluated and
expanded over small Z2α2 to give

δEs = 1

zi + 1

1

[	(2γ + 1)]2

(
2ZR

aB

)2γ
I

3/2
s

Ry1/2

×4

5
(1 − 0.24Z2α2)

δR

R
, (16)

δEp = 1

zi + 1

Z2α2

[	(2γ + 1)]2

(
2ZR

aB

)2γ
I

3/2
p

Ry1/2

×1

5
(1 + 0.26Z2α2)

δR

R
. (17)

Up to corrections ±0.01Z2α2, these two expressions may be
presented as one equation:

δE|κ|=1 = 4

5

1

zi + 1

κ(κ − γ )

[	(2γ + 1)]2

×
(

2ZR

aB

)2γ
I 3/2

Ry1/2

δR

R
. (18)

One can see that the expression (18) directly follows from
(11), if we put |κ| = 1. Estimates show that the higher order
correction ∼Z4α4 comes with a small coefficient.

1These Coulomb solutions include regular and irregular at r = 0
components.
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TABLE I. Estimates of the isotope shift δν [using Eq. (11)] for
a given transition in superheavy atoms. A1 is the atomic number of
already synthesized reference isotope. A2 = Z + 184 is the isotope
of a given element belonging to the hypothetical island of stability
with magic neutron number N = 184.

Atom δν δν

Symbol Z A1 A2 Transition (cm−1) (GHz)

Cf 98 251 282 5f 107s2 → 5f 107s7p −7.3 −218
Es 99 252 283 5f 117s2 → 5f 117s7p −7.8 −233
Fm 100 257 284 5f 127s2 → 5f 127s7p −7.7 −230
Md 101 258 285 5f 137s2 → 5f 137s7p −8.5 −255
No 102 259 286 7s2 → 7s7p −9.6 −286
Lr 103 266 287 7s27p → 7s28s 0.78 23.3
Rf 104 263 288 6d27s2 → 6d27s7p −11.5 −344
Db 105 268 289 6d37s2 → 6d37s7p −11.7 −351
Sg 106 269 290 6d47s2 → 6d47s7p −14.1 −424
Bh 107 270 291 6d57s2 → 6d57s7p −17.1 −511
Hs 108 269 292 6d67s2 → 6d67s7p −22.3 −670
Mt 109 278 293 6d77s2 → 6d77s7p −17.3 −518
Ds 110 281 294 6d87s2 → 6d87s7p −17.8 −533
Rg 111 282 295 6d97s2 → 6d97s7p −21.1 −632
Cn 112 285 296 6d107s2 → 6d107s7p −21.1 −633
Nh 113 286 297 7s27p → 7s28s −0.35 −10.5
Fl 114 292 298 7p2 → 7p8s −0.64 −19.3

Note that the ratio of the isotope shifts for p1/2 and s1/2 is
equal to(

Ap

As

)2

=
(

Ip

Is

)3/2
z2α2

4

(
1 + z2α2

4

)2

≈
(

Ip

Is

)3/2 1 − γ

1 + γ
.

III. QUANTITATIVE FIELD SHIFT ESTIMATES

A. Estimates for field shifts in superheavy atoms

Table I depicts the estimates for isotope shift in superheavy
atoms which were calculated using Eq. (18). The ionization
potentials used to calculate the field shift for each level in a
given atom has been detailed in Appendix D. Furthermore,
the nuclear radius R was found using R = r0A

1/3, where
we assumed that r0 = 1.15 fm for the purpose of these
calculations.

One of the motivations for the current work was to provide a
simple method to estimate IS which is suitable for superheavy
atoms and provides a better understanding of its dependence
on the nuclear and atomic parameters. Accurate many-body
calculations of the field shift for No, Lr, Nh, Fl, and Ra
have recently been performed and presented in Ref. [7].
The CI+MBPT isotopic shift value for No was found to be
−7.28 cm−1. Our approximate IS value for No is −9.6 cm−1

as presented in Table I. The difference is actually comparable
to 20% error of the CI+MBPT value.

The calculated IS for Lr, Nh, and Fl is small due to large
cancellations in the shifts between the lower p state and excited
s state. We hence can provide only an order of magnitude
estimates when calculating IS for transitions for p → s states
using the method presented in this paper. Indeed, the 7p1/2 state
IS is suppressed by the factor (1 − γ )/(1 + γ ) but enhanced
by the higher 7p1/2 ionization potential than that of 8s. This

TABLE II. Comparison of experimental field shifts in Ca, Yb, and
Hg with theoretical prediction based on formula (11) and experimental
values of mean nuclear charge radii. Both measured field shifts and
nuclear charge radii are found in Ref. [18].

Atom A1 A2 Transition δνexper (MHz) δνtheor (MHz)

Ca 46 48 3p64s2 → 3p64s4p − 25.3 ± 1.0 −31
Yb 174 176 4f 146s2 → 4f 146s6p 993 ± 250 1217
Hg 202 204 5d106s2 → 6d106s6p 5238 ± 11 4939

is why IS of 7p1/2 and 8s states nearly cancel each other out.
While the absolute accuracy of IS calculations is the same,
the relative accuracy of IS of the transition energy is poor.
The value for the overall IS of Nh in our case is −0.35 cm−1,
which is significantly smaller than and opposite in sign to the
CI+MBPT value for Nh, which was stated to be 1.42 cm−1.
Similarly, we calculated an IS of −0.64 cm−1 for Fl, which
is the same order of magnitude as CI+MBPT value given as
0.12 cm−1 yet also opposite in sign. Our approximate value
of IS for Lr is 0.78 cm−1, which is notably smaller then the
CI+MBPT value of 3.134 cm−1. We reiterate that the relative
accuracies of the analytical formula and the CI+MBPT method
in these cases are low, and all that we can conclude is that the
IS is small and the frequencies of the transitions in all isotopes
will be approximately the same.

B. Estimates for field shifts in Ca, Ca+, Yb, and Hg

We calculated field shifts of s → p transitions for Ca, Ca+,
Yb, and Hg to compare with known experimental data. The
results are presented in Tables II and III. The agreement for s-p
transitions is good. However, in the case of Ca+, formula (11)
underestimates the measured field shifts of 3p63d 2D3/2 →
3p64p 2P1/2 transition [17] by two orders of magnitude. The
reason is that the direct field IS in d-p transitions in light atoms
is very small and the actual field IS is dominated by the mean-
field rearrangement effect (the change of atomic potential due
to the isotope shift in s and p1/2 wave functions), which will
be discussed in the next section.

IV. NON-LINEARITIES IN KING PLOT
FOR ISOTOPE SHIFTS

As we will show below, the nonlinear corrections to the
King plot may be due to the nonfactorization of the electronic
and nuclear parameters in the expression for the field IS.
This nonfactorization appears if we have two or more nuclear

TABLE III. Comparison of experimental field shifts for the
3p64s 2S1/2 → 3p64p 2P1/2 transition in Ca+ [17] with theoreti-
cal results using formula (11) and nuclear charge radii data from
Refs. [18,19].

MHz
δν

40, 42
field δν

40, 44
field δν

40, 48
field

Theory − 60.1 − 85.2 − 0.30
Exp. − 60.9(2.0) − 79.6(2.7) 1.27(1.69)
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parameters which are not proportional to each other and appear
in different combinations for different atomic transitions. As
a rule, the second nuclear parameter gives a contribution to
IS which is several orders of magnitude smaller than the
contribution of the first nuclear parameter. This means that
the nonlinearity is small.

A. King plot in the mean-field approximation

With μAA′ = 1
mA

− 1
mA′ , where the masses of isotopes A

and A′ are denoted as mA and mA′ respectively, the IS can be
written as follows:

νAA′
i = KiμAA′ + Fiδ〈r2γ1〉AA′ + Giδ〈r2γ2〉AA′ . (19)

The first term expresses the mass shift, both normal and
specific. The second term is the leading-order contribution to
the field shift discussed in the previous section. For s-wave
in the nonrelativistic limit (γ1 → 1), this term scales with the
difference of mean squares of nuclear charge radii between
the isotopes A and A′: δ〈r2〉AA′ . The third term expresses
a correction to the field shift produced by higher waves.
For example, for p3/2 in the nonrelativistic limit, γ2 → 2
and δ〈r2γ2〉AA′ = δ〈r4〉AA′ . A similar term may appear as a
subleading correction to the s-wave field shift but it does not
produce a contribution to the nonlinearity of the King plot since
it only redefines the the main s-wave contribution Fiδ〈r2γ1〉AA′ ;
i.e., it produces a correction which is the same in different
atomic transitions. The nonlinearity appears when the ratio
Gi/Fi changes, as will be shown below.

Next we divide Eq. (19) by μAA′ and hence define a new
modified frequency ni = νAA′

i /μAA′ :

ni = Ki + Fix + Giy , (20)

with x = δ〈r2γ1〉AA′/μAA′ and y = δ〈r2γ2〉AA′/μAA′ . Here i =
1,2 are the two transitions examined in a chain of isotopes. A
plot of n1 vs n2 gives what is known as the King plot [20]. If we
assume G1,2 = 0, one can write n2 as a linear function of n1;
i.e., the King plot is linear. To trace the possible nonlinearity,
we must consider at least four isotopes (A,A1,A2,A3) forming
three pairs, giving three points on the plot:

AA1 ≡ a, AA2 ≡ b, AA3 ≡ c . (21)

The first two points can be used to determine the gradient k =
(nb

2 − na
2)/(nb

1 − na
1). Let us state a hypothetical c̃ point, lying

on the same line as a and b:

nc̃
2 = nb

2 + k
(
nc

1 − nb
1

)
. (22)

Then the nonlinearity is defined (see Fig. 1) as

NL ≡ (
nc

2 − nc̃
2

)
μc , (23)

where μc = μAA3 , and the value (23) can be expressed in hertz.
Let us explicitly expand the difference between two modified
frequencies:

nc
2 − nc̃

2 = K2 + F2x
c + G2y

c − K2 − F2x
b − G2y

b

−F2(xb − xa) + G2(yb − ya)

F1(xb − xa) + G1(yb − ya)
[F1(xc − xb) + G1(yc − yb)].

FIG. 1. Schematic illustration of the King plot nonlinearity. Mod-
ified frequencies n1 and n2 are plotted for the three pairs of isotopes
(21). The difference between point c and the hypothetical point c̃ lying
on the same line as a and b leads to the evaluation of nonlinearity of
the plot (23).

Under the assumption of G�y

F�x
	 1 and with qba ≡ yb−ya

xb−xa
,

one can show that

nc
2 − ñc

2 = (xc − xb)(qcb − qba)

(
G2

F2
− G1

F1

)
F2. (24)

Here we see that the nonlinear correction vanishes in two
cases:

(1) qcb = qba ,

(2) G2
F2

= G1
F1

.
The first case considers δ〈r2γ1〉 and δ〈r2γ2〉. These parame-

ters are correlated: Generally speaking, increase of the nuclear
radius R leads to the increase of both δ〈r2γ1〉 and δ〈r2γ2〉. It is
easy to check that if the field shift for all isotopes is completely
defined by the change of the nuclear radius δR from isotope
to isotope, i.e., if δ〈r2γ 〉 = Dγ δR for any δR (as in the linear
approximation in δR), we have qcb = qba .

For example, in the isotope shift (11) the dependence on R

is given by R2γ−1δR and the difference between two isotopes is
proportional to R

2γ−1
A δRAÃ. This, given fixed reference isotope

A, leads to qcb = qba . Therefore, to get a nonzero result we
should go beyond the first order in δR/R. We integrate formula
(11) to effectively include all orders of perturbation theory in
δR/R. Then the field shift of an energy level between isotopes
A and Ã is

�Eκ = 12κ(κ − γ )

2γ (zi + 1)(2|κ| + 1)(2|κ| + 3)[	(2γ + 1)]2

×
(

2Z

aB

)2γ
I 3/2

Ry1/2

(
R

2γ

Ã
− R

2γ

A

)
. (25)

We plot the field shifts of transition frequencies (�Eκ,upper −
�Eκ,lower)AÃ for three pairs of isotopes of five elements: Ca+,
Sr+, Ba+, Yb+, and Hg+. Fitting a line to the first two pairs a

and b, we find the nonlinearity as (nc
2 − ñc

2)μc.
The results are presented in Table IV. In order to find the

radii R for substituting into (25), we first make use of the simple
liquid-drop model where R = r0A

1
3 (method 1 in Table IV).

Then to obtain more realistic estimate, we find the equivalent
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TABLE IV. Estimates for the nonlinearities of King plot [defined in Eq. (23)]. Methods 1 and 2 are based on the mean-field analytic
expression of field isotope shift (25) found from the estimate of wave function density (9) in an uniformly charged spherical nucleus. Method 1
utilizes the liquid-drop approximation for nuclear radius R = r0A

1
3 with r0 = 1.15 fm and method 2 uses experimental data [18,19] for mean

squares of nuclear charge radii 〈r2〉 when finding the equivalent nuclear radius: 〈r2〉 = 3
5 R2. Method 3 accounts for both expression (25) and the

contribution of nuclear polarizability (26), and equivalent nuclear radius R is again based on the experimental data; i.e., it is the most complete
calculation in this table. We have not calculated these corrections and the nuclear polarizability contribution in s-p/d-p transitions in Ca+ since
they are expected to be similar to s-d transitions.

Nonlinearity (Hz)
Ion Z A A1 A2 A3 Pair of transitions Method 1 Method 2 Method 3

Ca+ 20 40 42 44 48 3p64s 2S1/2 → 3p64p 2P1/2 −1.2 × 10−4 3.0 × 10−4

3p63d 2D3/2 → 3p64p 2P1/2

3p64s 2S1/2 → 3p63d 2D3/2 −1.2 × 10−4 3.0 × 10−4 −6.6 × 10−2

3p64s 2S1/2 → 3p63d 2D5/2

Sr+ 38 84 86 88 90 4p65s 2S1/2 → 4p64d 2D3/2 −1.1 × 10−3 1.1 × 10−2 −2.6
4p65s 2S1/2 → 4p64d 2D5/2

Ba+ 56 132 134 136 138 5p66s1 2S1/2 → 5p65d 2D3/2 −3.6 × 10−3 −3.9 × 10−2 7.6
5p66s1 2S1/2 → 5p65d 2D5/2

Yb+ 70 168 170 172 176 4f 146s 2S1/2 → 4f 136s2 2F o
7/2 6.1 × 10−2 −3.1 38

4f 146s 2S1/2 → 4f 145d 2D3/2

4f 146s 2S1/2 → 4f 145d 2D3/2 −6.1 × 10−2 3.1 −18
4f 146s 2S1/2 → 4f 145d 2D5/2

Hg+ 80 196 198 200 204 5d106s 2S1/2 → 5d96s2 2D3/2 5.5 × 10−1 3.1 −14
5d106s 2S1/2 → 5d96s2 2D5/2

R from the experimental values of mean square nuclear charge
radius [18,19] (method 2 in Table IV): R2 = 5

3 〈r2〉.
The expression (25) is, in fact, only the first-order contri-

bution to the field shift in terms of energy. The second order in
the single-electron mean-field approximation can be roughly
estimated as a quadratic term ±(�Eκ )2/I . Because of its
smallness in higher waves (κ �= −1) it has only a negligible
effect on the King plot nonlinearity. But, as will be shown in
Sec. IV C, if we include many-body corrections, this quadratic
term can alter considerably the nonlinearity value in heavy
atoms (the field shift is ∝Z2γ , correspondingly the quadratic
term should be ∝Z4γ ).

B. Nuclear polarizability effect

The nuclear structure effects for simple atoms have been
considered in Ref. [21]. We are interested in such effects
in many-electron atoms. The nuclear polarization potential
produced by the nuclear polarizability αp is a long-range one

(Vα = − 1
2

αpe2

r4 , αp having dimension [l3]); therefore, it can
give a significant contribution to a higher-wave isotope shift
and overall nonlinearity of King plot. The main contribution
to the corresponding energy shift comes from the area near
the nucleus where the nuclear potential is not screened. In
order to estimate the shift, we integrate the radial density
ρκ = f 2

κ + g2
κ using atomic wave functions proportional to the

Coulomb wave functions outside the nucleus (see Appendix B)
with the interaction Hamiltonian Vα:

δEα =
∫ +∞

r0

[
f 2

κ (r) + g2
κ (r)

](−1

2

αpe2

r4

)
r2dr ,

(26)

r0 =
{
R, |κ| = 1 ,

0, |κ| > 1 .

For |κ| > 1, the integral with the Coulomb wave functions
converges at r = 0 and we may calculate it taking the cutoff
parameter r0 = 0. In this case, the general analytic solution
can be presented here as

δEα = −αp

9 + 5κ(κ − 3) + 5Z2α2 + γ 2

256γ [−9 + γ 2(7 − 4γ 2)2]

× 83Z2

a3
B

2

zi + 1

I 3/2

Ry1/2 , (27)

where γ = √
κ2 − Z2α2 and I is the ionization potential of

the electron, aB is the Bohr radius, Ry is the Rydberg constant,
and zi is the ion charge. For |κ| = 1, the integral in Eq. (26)
from 0 would diverge, but a cutoff from the nuclear radius R

would give a reasonable upper estimate of the effect.2 Note
that the s orbital always appears in both transitions which we
compare in the King plot, and therefore the exact magnitude
of this |κ| = 1 term is not important for the estimate of the
nonlinearity.

To obtain the numerical values for the integral with |κ| = 1,
we have used the Bessel function solutions from Appendix B;
however, without loss of the actual numerical accuracy its ade-
quate approximation can be found by substituting expressions
for wave functions expanded at r → 0 (see Appendix C) to the

2Actually, the polarization potential Vα becomes a nonlocal inte-
gration operator [22] starting from larger distances, r < r0 ∼ 10 fm,
where the relativistic kinetic energy of electron ∼h̄c/r0 approaches
E ≈ 20 MeV. Here E is the excitation energy of the nuclear giant
dipole resonance which gives the dominating contribution to the
polarizability. This problem will be discussed in a future publication.
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integral (26):

δEα = −αp

8κ(κ − γ )

3 − 2γ

1

zi + 1

Z

a2
B

× 1

[	(2γ + 1)]2

( aB

2Z

)2−2γ I 3/2

Ry1/2 R2γ−3 . (28)

Although the ceiling estimate presented in Eq. (27) is utilized
in subsequent calculations and is sufficient for the purpose of
this work, an expression can be written specifically for the
s1/2 contributions to nuclear polarizability. The nonrelativistic
expression for the energy shift has been derived in Ref. [23]:

δEα,s = −mec
2α�(0)2αp

[
19

6
+ 5 ln

(
Ē

mec2

)]
, (29)

where Ē is the average nuclear excitation energy. Using the the
nuclear oscillator model, we can estimate the excitation energy
as the distance between the nuclear shells Ē = 40 MeV/A1/3.
�(0)2 is the single valence electron density at the nucleus
which, in the nonrelativistic limit, has the form of

�(0)2 =
Z

(
I

Ry

)3/2

πa3
B(zi + 1)

. (30)

The expression for δEα,s can be modified to include a
relativistic factor that reflects the increase in the relativistic
wave function toward the nucleus. To make a rough estimate
of this factor, we chose the cutoff radius to be the Compton
wavelength of an electron ke = h̄

mec
where the nonrelativistic

approach breaks down:

Rrel =
(

2Zke

aB

)2γ−2

≈
(

1

Zα

)2(1−γ )

. (31)

Incorporating Rrel with the nonrelativistic expression for δEα,s

we can present the expression

δEα,s = −mec
2α

Z

πa3
b(zi + 1)

(
I

Ry

)3/2

αp (32)

[
19

6
+ 5 ln

(
Ē

mec2

)]
Rrel. (33)

The relativistic factor can be written as Rrel ≈ (Zα)−Z2α2

by expanding γ through by small Zα. It follows that Rrel ≈
eln((Zα)−Z2α2

) can be approximated as Rrel ≈ 1 + Z2α2 ln( 1
Zα

).
Hence, it is apparent that the relativistic formulation of the s1/2

contribution to nuclear polarizability differs from Eqs. (29) and
(30) by less then a factor of 2.

An expression for nuclear polarizability αE based on the
giant resonance approach was obtained by Migdal [24,25]:

αp = e2R2A

40 asym
. (34)

We use the empirical value of the nuclear symmetry energy
asym = 23 MeV [26,27].

To the first order, one can treat the change ofαE as consisting
of two independent parts, one resulting from the growth of
nuclear radius �R and another from the change of nucleon

number �A:

�αp = 2e2R

40 asym
A�R + e2R2

40 asym
�A . (35)

The second contribution can be independently evaluated using
the nuclear oscillator model. From the second-order perturba-
tion theory follows that with the addition of one neutron, the
nuclear polarizability changes as

δαp,A+1 = −q2
n

[ 〈n|x|n + 1〉2

En − En+1
+ 〈n|x|n − 1〉2

En − En−1

]
. (36)

Here, qn = eZ/A is the effective charge of a neutron,
originating from the recoil effect.3 Energy levels of a quantum
oscillator are known to be En = h̄ω(n + 1

2 ) and its matrix
elements can be written [28] as

〈n|x|n + 1〉2 = (n + 1)h̄

2Mω
, 〈n|x|n − 1〉2 = nh̄

2Mω
,

with the frequency ω for the case of nuclei and M being the
neutron mass. Assuming r0 = 1.15 fm, one can write

ω = 40 MeV

h̄

r0

R
,

�αp,A = δαp,A+1�A = e2

2Mω2

(
Z

A

)2

�A

= e2h̄2

2M

(
Z

A

)2[
R

r0 × (40 MeV)

]2

�A. (37)

The second term in (35) and expression (37) are close in
value and they both depend on R2. It means that the formula
(34) effectively includes the contribution from adding neutrons
and we can use it alone to estimate the change of nuclear
polarizability between isotopes. We introduce the empirical
coefficient ζ (A) to scale our prediction to the more accurately
evaluated nuclear polarizabilities in Ref. [29]:

ζ (A) = 0.76 + 2.79

A1/3
,

αp = ζ (A)
e2R2A

40 asym
. (38)

This final expression of nuclear polarizability is used to model
the King plot nonlinearity, which grows dramatically compared
to the nonlinearity found only according to the field shift
formula (25), as can be seen in Table IV.

C. Many-body corrections

The results above have been obtained in the mean-field
approximation. However, the isotope shifts in all waves with
|κ| > 1 are dominated by the many-body effects. In the zeroth
approximation, the change of the isotope changes s and p1/2

3The second term with the matrix element 〈n|x|n − 1〉 emerges from
the single-particle consideration. In the many-body language it is the
“blocking” contribution: core neutrons cannot be excited to the state
occupied by the valence neutron.
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electron wave functions which do not vanish at the nucleus.
This produces the correction δV to the electron potential,
which gives the dominating contribution to the isotope shifts of
the orbitals with |κ| > 1; we will refer to this as the mean-field
rearrangement effect. Therefore, in any wave the dominating
term in the isotope shift is proportional to δ〈r2γ1〉AA′ corre-
sponding to |κ| = 1. However, the term with δ〈r2γ2〉AA′ still
appears in the transition frequencies and the logic of the section
above does not change. The many-body corrections only affect
the magnitude of the coefficients Fi and Gi in the isotope shift
[see Eq. (19)].

Consider, for example, King plot for s-d3/2 and s-d5/2

transitions for Ca+, Sr+, Ba+, and Yb+ presented in Table IV.
First, there are higher order terms in the expansion of the
s-wave density near origin, ∼r2γ1+2. They only lead to the
redefinition of the main term δ〈r2γ1〉AA′ and do not produce any
new physical effects. The mean-field rearrangement effect and
other many-body corrections for s orbital are relatively small,
∼10–20%, and give contributions to the coefficient Fi which
are the same for both transitions and therefore insignificant.
The mean-field rearrangement effects for d3/2 and d5/2 are
huge in comparison with the direct contributions, but their
absolute values are smaller than that for s1/2. These mean-
field rearrangement effects produce some corrections to the
coefficients Fi and Gi but do not give a significant contribution
to the nonlinearity of the King plot. This nonlinearity comes
from the direct contribution to the term Giδ〈r2γ2〉AA′ since the
density of d3/2 orbital (κ = 2) near nucleus is several orders of
magnitude larger than the density of d5/2 orbital (κ = −3). We
have already taken this effect into account at the single-particle
mean-field level. The IS correction to the potential δV is
located at larger distances where the densities of d3/2 and d5/2

are approximately the same.
The nonlinear corrections may be significantly larger in

atoms with several valence electrons. The density of energy
levels is much higher in such systems. In this case, the second-
order effects in the field shift perturbation δV in Eq. (2) may
be enhanced by small energy denominators and produce large
nonlinear effects in the King plot [30–34].

We want to provide a rough numerical estimate of the many-
body effects to the nonlinearity of the King plot using a simple
model. We have compared our mean-field approximation for
s and higher waves with the accurate numerical CI+MBPT
calculations used throughout [9,35,36]. Many-body correction
to the s-wave field shift is not very large [35]. For the purpose
of this work, we can omit this term.

However, many-body corrections for higher wave terms
are found to be significant [35]. For the higher waves, δV is
dominated by the corrections to the s-wave functions; therefore
we model the mean-field rearrangement effect by the following
expression:

�ε̃κ = �εκ − �εs,κ

2
, �εs,κ = �εs

(
Iκ

Is

)3/2

. (39)

Here the initial �εs = �Es + δEα,s comprises both mean-
field contribution (25) and the polarizability term (28). The
ratio of ionization potentials comes from the density in the
vicinity of the nucleus which is proportional to I 3/2 [see
Eqs. (B2)–(B4)]. We have tested this semiempirical estimate

by comparing our field shift results with accurate numerical
many-body calculations [9,36]; the coefficient of 1/2 was
necessary to reproduce the numerical results. It must be noted
that this approximation works best for alkali-like ions such as
Ca+ and Sr+ and is less effective in characterizing many-body
effects in Yb+ and Hg+; in these heavier ions we expect an
order of magnitude estimate of many-body effects at best.

Nonlinear corrections to the King plot may also be produced
by the quadratic effects in the field shift, which we further

estimate as ±(�εκ − �εs,κ

2 )
2
/Iκ .4 Therefore, the complete

formulas for the shift of an energy level will look like

� ˜̃εκ = �ε̃κ ± (�ε̃κ )2

Iκ

. (40)

Here Is denotes the ionization potential of an s wave, and Iκ

is that for any other wave. The quadratic effects arising from
the s wave can be similarly written as

� ˜̃εs = �εs ± (�εs)2

Is

. (41)

However, in this s-wave formula, we have omitted the many-
body correction term which does not play an important role
here.

King plot nonlinearity values taking into account many-
body contributions are presented in Table V. As can be
seen, the addition of the first-order corrections (39) does not
considerably affect the nonlinearity. It should be noted that for
the evaluation of many-body effects one must include all effects
which have been included at the mean-field level. For example,
if the field shift term (25) and the nuclear polarizability
contribution (28) have been included at the mean-field level,
they both must be included in the mean-field rearrangement and
quadratic effects. If it contains only the first term, the resulting
first- and second-order many-body effects will generate a large
phantom nonlinearity in the King plot, because the dependence
on the nuclear parameters (radius R and mass number A)
is no longer the same for the single-electron mean-field and
many-body effect.

On the other hand, the quadratic term (40) is responsible for
the radical growth of the King plot nonlinearity in heavy atoms
(especially for f -shell transition in Yb+), while remaining
insignificant in Ca+ and Sr+. Indeed, the field shift is ∝ Z2γ ,
and correspondingly the quadratic term is ∝ Z4γ ; i.e., it very
rapidly increases with the nuclear charge.

V. ESTIMATE OF THE QUADRATIC MASS SHIFT
IN THE KING PLOT NONLINEARITY

For one electron above closed shells, the normal mass shift
may be used as a rough estimate for the total mass shift [35,37]:

�εM = −εmeμAA′ , (42)

� ˜̃εM2 = ± (�εM )2

I
, (43)

4The quadratic effect may be enhanced if there is a close atomic level
with the same angular momenta and parity which may be admixed
by the IS operator. This does not happen in atoms with one electron
above close shells which we consider.
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TABLE V. Estimates for the nonlinearities of King plot [defined in Eq. (23)], taking into account the many-body mean-field rearrangement
corrections, as shown in Eq. (39). Method 4 is based on a sum of the mean-field analytically determined contribution (25) and the first-order
many-body effect (−�εκ/2). Method 5 uses the mean-field term (25), the first-order many-body effect, and the polarizability contribution (26).
The next two columns show the second-order contributions to the nonlinearity with an unknown sign arising from the quadratic terms [e.g.,
Eqs. (41) and (40)]. The first of them shows the quadratic corrections ignoring the nuclear polarizability αp; i.e., it corresponds to method
4. The second of them takes into account the polarizability contribution and thus corresponds to method 5. The very last column details the
nonlinearity due to the quadratic mass shift (QMS) estimated from the normal mass shift contribution as presented in Eq. (43).

Nonlinearity (Hz)
Quadratic term inc. MB

Ion Z A A1 A2 A3 Pair of transitions Method 4 Method 5 Without αp With αp QMS

Ca+ 20 40 42 44 48 3p64s 2S1/2 → 3p63d 2D3/2 3.0 × 10−4 −6.6 × 10−2 ± 2.9 × 10−3 ± 2.7 × 10−3 ± 3.0
3p64s 2S1/2 → 3p63d 2D5/2

Sr+ 38 84 86 88 90 4p65s 2S1/2 → 4p64d 2D3/2 1.1 × 10−2 −2.6 ± 0.23 ± 0.25 ± 9.0
4p65s 2S1/2 → 4p64d 2D5/2

Ba+ 56 132 134 136 138 5p66s1 2S1/2 → 5p65d 2D3/2 −3.9 × 10−2 7.4 ∓ 2.0 ∓ 1.9 ∓ 1.8
5p66s1 2S1/2 → 5p65d 2D5/2

Yb+ 70 168 170 172 176 4f 146s 2S1/2 → 4f 136s2 2F o
7/2 −3.1 39 ± 12260 ± 12130 ± 28

4f 146s 2S1/2 → 4f 145d 2D3/2

4f 146s 2S1/2 → 4f 145d 2D3/2 3.1 −18 ± 392 ± 386 ± 1.1
4f 146s 2S1/2 → 4f 145d 2D5/2

Hg+ 80 196 198 200 204 5d106s 2S1/2 → 5d96s2 2D3/2 3.0 −13 ± 2406 ± 2382 ± 0.38
5d106s 2S1/2 → 5d96s2 2D5/2

where me is the electron mass, ε is the energy of a specific
electronic level, and �ε is the shift in energy of this level. The
nonlinearity of the King plot [see Eq. (23)] arising from the
addition of the quadratic term (43) to the IS is shown in the
last column of Table V. The linear normal mass shift term (42)
does not contribute to the nonlinearity.

VI. NEW PARTICLE

King plot nonlinearity may result from an interaction
between electrons and neutrons mediated by a new boson of
mass mφ [38]. The effective potential associated with such a
particle would be the Yukawa potential:

Vφ(r) = −qnqeN
e−kr

r
,

k = mφc

h̄
, αNP ≡ qnqe

h̄c
, (44)

where N is the neutron number, qn and qe are particle coupling
strengths to the neutrons and electrons respectively, and r is the
distance from the nucleus. We aim at constraining the coupling
constant αNP. Let us estimate the energy shifts in atomic states
that the new particle might cause. When the particle is very
light (k 	 1/aB ) and therefore e−kr ≈ 1, the potential (44)
becomes Coulomb-like:

Vφ(r) = −qnqeN
1

r
. (45)

Making use of the virial theorem, one can express the average
potential energy of the system as double total energy:

〈V 〉 = 2Etot . (46)

Substituting here values for a single outer electron in the
Coulomb field V = Vc = −(zi + 1)e2/r and Etot = −Iκ , one

obtains 〈
1

r

〉
= 2Iκ

(zi + 1)e2
. (47)

Therefore, the energy shift of an electron with a given κ arising
from a new light particle, seen as the change of 〈Vφ〉 between
the isotopes, can be approximately written as

�Eφ,κ = −αNP

α

2Iκ

(zi + 1)
�N. (48)

We replaced qnqe/e
2 = αNP/α, where α = e2/h̄c is fine struc-

ture constant. For mass mφ = 0 many-body effects are not
enhanced, so we do not add them.

On the other hand, the energy shifts resulting from an in-
teraction mediated by heavier particles (Z1/3/aB < k < 1/R,
where R is the nuclear radius and aB/Z1/3 is the Thomas-Fermi
electron screening radius) are found by direct integration of
(44) with the relativistic wave functions for a valence electron
(see Appendix B):

�Eφ,κ = −qnqe�N

∫ ∞

0

[
f 2

κ (r) + g2
κ (r)

]e−kr

r
r2dr . (49)

For larger masses, Z/aB < k < 1/R, it is instructive to present
also the approximate formula for (49) which shows dependence
on the Compton wavelength k = mφc

h̄
and other parameters

explicitly:

�Eφ,κ = −αNP

α

4κ(κ − γ )

(zi + 1)Z

	(2γ )

[	(2γ + 1)]2

(
2Z

kaB

)2γ

× I
3/2
κ

Ry1/2 �N . (50)

The effect of very heavy bosons with k > 1/R is ab-
sorbed into the usual field shift (proportional to R2γ ), as the
range of the interaction is less than the nuclear radius. It is
therefore nearly impossible to see this new physics effect
against the background of nuclear uncertainties. We restrict
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TABLE VI. Values of the ratio αNP
α

of the coupling constant αNP for a new boson with mass mφ to the fine structure constant α. They
correspond to the most significant King plot nonlinearity value that can arise from SM corrections to the IS (see Table V). Individual isotope
shifts consist of the s-wave contribution, which does not give rise to any nonlinearity, and the new particle contributions (48) and (49) for light
(mφ → 0) and heavier particles respectively.

Pair of transitions Nonlinearity (Hz) αNP
α

Ion Z A A1 A2 A3 mφ → 0 mφ = 105 eV mφ = 106 eV mφ = 107 eV

Ca+ 20 40 42 44 48 3p64s 2S1/2 → 3p63d 2D3/2 −3.0 5.6 × 10−12 1.4 × 10−9 −9.9 × 10−9 −7.2 × 10−7

3p64s 2S1/2 → 3p63d 2D5/2

Sr+ 38 84 86 88 90 4p65s 2S1/2 → 4p64d 2D3/2 −11.9 6.7 × 10−13 5.5 × 10−11 −7.4 × 10−10 −3.8 × 10−8

4p65s 2S1/2 → 4p64d 2D5/2

Ba+ 56 132 134 136 138 5p66s1 2S1/2 → 5p65d 2D3/2 11.1 7.7 × 10−13 3.9 × 10−11 −3.4 × 10−8 −3.3 × 10−7

5p66s1 2S1/2 → 5p65d 2D5/2

Yb+ 70 168 170 172 176 4f 146s 2S1/2 → 4f 136s2 2F o
7/2 12190 −2.5 × 10−11 2.4 × 10−9 1.3 × 10−8 3.2 × 10−7

4f 146s 2S1/2 → 4f 145d 2D3/2

4f 146s 2S1/2 → 4f 145d 2D3/2 −406 2.7 × 10−11 2.2 × 10−9 −1.7 × 10−8 −3.9 × 10−7

4f 146s 2S1/2 → 4f 145d 2D5/2

Hg+ 80 196 198 200 204 5d106s 2S1/2 → 5d96s2 2D3/2 −2395 −1.8 × 10−10 6.6 × 10−8 −5.5 × 10−8 −1.0 × 10−6

5d106s 2S1/2 → 5d96s2 2D5/2

our consideration with masses corresponding to k < 1/R, i.e.,
mφ � 30 MeV.

We also take into account the characteristic value of many-
body mean-field rearrangement corrections. We estimate these
many-body effects in a similar manner to the corrections to the
isotope shift seen in (39). The mean-field rearrangement effect
can be modeled as

�Ẽφ,κ = �Eφ,κ − �Eφ,s,κ

2
, �Eφ,s,κ = �Eφ,s

(
Iκ

Is

)3/2

.

(51)

The coefficient 1/2 arises from comparisons of the elec-
tronic part of the integral (49) (omitting �N ) with accurate
numerical many-body calculations of the same quantity per-
formed in Ref. [9]. Many-body effects are taken into account
for higher waves only.

As always, the IS of a transition frequency would be the
difference of the shifts of two levels �Eφ,κ . We examine
the nonlinearity arising from the addition of these terms to
otherwise linear King plot. First, we construct the linear King
plot leaving only the mean field s-wave contribution of the
form (25) in all transitions and then we add the new particle
contribution to this linear King plot. Then we examine the sen-
sitivity of nonlinearity to the coupling constant αNP

α
by equating

the nonlinearity which appears as a result of including a new
particle and the nonlinearity emerging naturally from SM. The
values of αNP

α
that lead to the same nonlinearity as SM correc-

tions in a given pair of transitions are presented in Table VI.

VII. CONCLUSIONS

The analytical formula for the field isotope shift (11) gives
reasonable accuracy of the estimates for the transitions involv-
ing s-wave electron. In superheavy elements, it should also de-
scribe the p1/2-wave field IS which is comparable to the s-wave
shift. For higher waves, the field IS is dominated by the many-
body corrections which are in turn dominated by the mean-field
rearrangement effect. The latter is produced by the IS of the
mean field potential due to IS of the s-electron wave functions.

In the single-particle mean-field approximation, the nonlin-
earity of the King plot is strongly dominated by the nuclear po-
larizability contribution (see Table IV). However, the quadratic
field shift, which very rapidly increases with the nuclear charge
Z and gives the dominating contribution to the nonlinearity
of the King plot in heavy atoms, is not so sensitive to the
nuclear polarizability contribution (see Table V). However, in
medium atoms the quadratic terms are not so large; therefore,
the measurements of the nonlinearity of the King plot may,
in principle, be used to extract the nuclear polarizability
differences between the isotopes.

The contribution of the hypothetical new light boson in-
creases with the nuclear charge Z. However, the quadratic
contribution to the field IS increases with Z much faster. In
light atoms, the nonlinearity is dominated by the quadratic
mass shift. Therefore, it may be easier to extract a competitive
limit on the new particle interaction strength from the measured
nonlinearity of the King plot in medium atom transitions such
as s-d transitions in Sr+ and Yb+; see Table VI.

The field IS may be an order of magnitude smaller in
transitions which do not involve s-wave electrons. This means
that the dominating source of the King plot nonlinearity in
heavy atoms, the quadratic field IS term, may be much smaller.
Such transitions may, in principle, provide better accuracy for
the new low-mass particle. However, these must be transitions
with a small natural width. In all existing optical atomic
clocks such narrow transitions always involve an s electron.
Therefore, to explore such possibility, we should look for
narrow transitions in atoms and ions containing p, d, or f

electrons in the ground open shell or low-energy excitations
from the closed f , d, p shells.
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APPENDIX A: RELATIVISTIC ELECTRON WAVE
FUNCTION INSIDE NUCLEUS

The s and p1/2 approximate wave functions within the
nucleus in a neutral atom are presented in Refs. [16,39]. We
have introduced minor changes to extend the result to ions
with charge zi . Denoting x = r/R, the upper and lower radial
components of the s wave function can be given:

fs = As

[
1 − 3

8
Z2α2x2

(
1 − 4

15
x2

)]
, (A1)

gs = −1

2
AsZαx

×
[

1 − 1

5
x2 − 9

40
Z2α2x2

(
1 − 3

7
x2 + 4

81
x4

)]
, (A2)

where As is a constant defined as

As = 2

(zi + 1)1/2

2
(

aB

2ZR

)1−γ

	(2γ + 1)

(
Z

a3
B

)1/2

×
(

I

Ry

)3/4(
1 − 1

40
Z2α2

)
. (A3)

Here γ = √
κ2 − Z2α2, and I = (zi+1)2

ν2 Ry is the ioniza-
tion energy with effective principal quantum number ν and
Ry = e2

2aB
.

The radial p1/2 wave functions are written in terms of the
radial s wave functions in the following way:

fp = −Ap

As

gs , (A4)

gp = i
Ap

As

fs . (A5)

Here Ap is

Ap = Zα

(zi + 1)1/2

2
(

a
2ZR

)1−γ

	(2γ + 1)

(
Z

a3
B

)1/2

×
(

I

Ry

)3/4(
1 + 9

40
Z2α2

)
. (A6)

APPENDIX B: RELATIVISTIC WAVE FUNCTION FOR A
VALENCE ELECTRON AT r � aB/Z1/3

At short distances r 	 aB/Z1/3, the nuclear Coulomb
potential is not screened and the valence electron energy
may be neglected. The solution of the Dirac equation can be
expressed in terms of Bessel functions; see, e.g., Ref. [16].

fκ = C

r

[
(γ + κ)J2γ (y) − y

2
J2γ−1(y)

]
, (B1)

gκ = C

r
(Zα)J2γ (y), (B2)

y =
√

8Zr

aB

, (B3)

C = κ

|κ|
1√

ZaB (zi + 1)

(
I

Ry

)3/4

. (B4)

Again, we introduced factor (zi + 1) to account for ion wave
functions.

APPENDIX C: RELATIVISTIC WAVE FUNCTION FOR A
VALENCE ELECTRON AT r � aB/Z

The Bessel functions have power asymptotic at r 	 aB/Z.
From power expansions of (B1) and (B2), one obtains the
following expression for the electron wave functions outside
the nucleus [14,16]:

fκ (r) = 1

(zi + 1)1/2

κ

|κ| (κ − γ )

(
Z

a3
B

)1/2

×
(

I

Ry

)3/4 2

	(2γ + 1)

( aB

2Zr

)1−γ

, (C1)

gκ (r) = 1

(zi + 1)1/2

κ

|κ|Zα

(
Z

a3
B

)1/2

×
(

I

Ry

)3/4 2

	(2γ + 1)

( aB

2Zr

)1−γ

. (C2)

APPENDIX D: IONIZATION POTENTIALS FOR ISOTOPE
SHIFT AND KING PLOT CALCULATIONS

The ionization potentials of the 7s electrons for the su-
perheavy elements Z = 98–102 are taken from the NIST
database [40]. Those include experimental values 50 665 and
51 358 cm−1 for Z = 98,99, semiempirical evaluations 52 400
and 53 100 cm−1 (Z = 100,101), and a theoretical calculation
53 740 cm−1 (Z = 102). The ionization potential 59 462 cm−1

of Rf (Z = 104) is roughly estimated as the average of
potentials for Z = 102 and Z = 105 due to the lack of reliable
information.

The energies for 7p electrons in Z = 98,99,102 are derived
from the experimental values of the relevant transitions 27 779,
19 788, and 29 961 cm−1 [41,42] and in (Z = 104) the energy
of the transition 20 347 cm−1 is based on a numerical prediction
[43]. For Fm (Z = 100) and Md (Z = 101), the 7p ionization
potential is taken to be the average of known Es (Z = 99) and
No (Z = 102) potentials, 27 675 cm−1.

For elements Z = 105–112, we use numerical values of 7s

and 7p ionization potentials [44].
Furthermore, the p ground-state ionization energy in Lr

is measured to be 40 005 cm−1 [45]. The upper s state was
found by subtracting the p → s calculated transition fre-
quency of 20 253 cm−1 [43] to give an ionization potential of
19 800 cm−1. Recent atomic structure calculations were used
to find the potentials for the ground p states and excited s states
for Nh and Fl. For the Nhp state, we used 59 770 cm−1 and the s

state ionization potential of 23 729 cm−1 [46]. Similarly, for the
Fl p state we used 68 868 cm−1 [47], a p → s transition energy
of 43 876 cm−1 [46] to give an s-state ionization potential of
24 992 cm−1.

Ionization potentials and transition energies for King
plot nonlinearity estimates were taken from the NIST
database [40].
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