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Multiconfiguration Hartree-Fock (MCHF) and multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations
are performed for the 2p5 2P o, 2p4(3P )3s 4P , 2p4(3P )3s 2P , and 2p4(3P )3p 4So states of 19F I to determine their
hyperfine constants. Several computing strategies are considered to investigate electron correlation and relativistic
effects. High-order correlation contributions are included in MCHF calculations based on single and double
multireference expansions. The largest components of the single reference MCHF wave functions are selected
to define the multireference (MR) sets. In this scheme, relativistic corrections are evaluated in the Breit-Pauli
approximation. A similar strategy is used for the calculation of MCDHF relativistic wave functions and hyperfine
parameters. While correlation and relativistic corrections are found to be rather small for the ground state, we
highlight large relativistic effects on the hyperfine constant A3/2 of 2p4(3P )3p 4So and, to a lesser extent, on A1/2

of 2p4(3P )3s 4P . As expected for such a light system, electron correlation effects dominate over relativity in the
calculation of the hyperfine interaction of all other levels considered. We also revisit the hyperfine constants of
2p3(4S)3s 5So and 2p3(4S)3p 5P in 17O using similar strategies. The results are found to be in excellent agreement
with experiment.
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I. INTRODUCTION

14,15N hyperfine structures have been investigated theo-
retically by Jönsson et al. [1] revealing large discrepancies
between theory and the results of the analysis of Doppler-free
saturated absorption spectra by Jennerich et al. [2]. Carette
et al. [3] reconciled experiment with theory by a new inter-
pretation of the observed signals and demonstrated that the
apparition of crossover signals, if helpful in some cases [4],
can be problematic and even completely misleading in the
hyperfine structure assignments. The same Doppler-free satu-
rated absorption spectroscopy technique was used for oxygen
[5] and fluorine [6]. Since these atoms are close neighbors of
nitrogen in the Periodic Table, it is worthwhile to investigate
if crossover signals did wrongly affect the analysis of their
hyperfine spectra, by comparing experimental and theoretical
hyperfine constant values. Moreover, relativistic corrections
can be larger than expected for theoretical hyperfine constants
values of light elements [7] and it becomes crucial to estimate
their magnitude by adequate computational strategies [8].

For 19F (I = 1/2), the hyperfine coupling constant A3/2

of the ground state 2p5 2P o
3/2 has been determined from the

analysis of the paramagnetic resonance absorption spectrum by
Radford et al. [9]. Using the same technique, Harvey [10] ex-
tended this work by extracting the A1/2 value of the metastable
2P o

1/2 level of the inverted term. At that time, the comparison
of observation with theory was limited due to the poor quality
of the best Hartree-Fock wave functions [10]. Things have
evolved from the theoretical point of view with the pioneer
development of computational methods taking electron corre-
lation into account [11]. Doppler-free spectroscopy of excited
states of atomic fluorine has been carried out for the very first

time by Tate and Aturaliye [6]. Hyperfine structure splittings
and magnetic coupling constants of the upper and lower states
of the 2p4(3P )3s 2PJ –2p4(3P )3p 2Do

J ′ transitions have been
reported in this study, at least one order of magnitude more
precise than values obtained using conventional spectroscopy
[12,13] but, in some cases, significantly different from the
previously reported values. Levy et al. [14] performed hy-
perfine structure measurements via laser-induced fluorescence
and modulated optical depopulation pumping for levels of the
quartet spin system, i.e., for 2p4(3P )3s 4P5/2, 2p4(3P )3p 4Do

5/2,

and 2p4(3P )3p 4Do
7/2. Very recently, Huo et al. [15] deter-

mined the hyperfine constants of some levels within the
2p4(3P )3s, 2p4(3P )3p, and 2p4(3P )3d configurations, using
high-resolution absorption spectroscopy. Ab initio calculations
of hyperfine structures remain scarce for neutral light systems
for which relativistic corrections on the electronic atomic
structures are a priori expected to be smaller than electron
correlation effects. For fluorine however (Z = 9), the rela-
tivistic corrections to the nonrelativistic hyperfine parameters
have been shown to be surprisingly large (around 30%) for the
A values of 2p4(3P )3p 4P o

3/2 and 2p4(3P )3p 4P o
5/2 [7]. These

effects, predicted theoretically, were confirmed by the recent
measurements of Huo et al. [15]. For example, the nonrel-
ativistic value of A(2p4(3P )3p 4P o

3/2) = 1374 MHz, that was
found to increase to 1784 MHz due to relativity, approaches
the experimental value 1824(20) [15]. As an extension of
the theoretical study by Carette et al. [7], who investigated
relativistic effects on the hyperfine structures of the odd
terms 2p4(3P )3p 2Do, 2p4(3P )3p 4Do, and 2p4(3P )3p 4P o, we
consider in the present work the ground term 2p5 2P o and the
excited terms, 2p4(3P )3s 4P , 2p4(3P )3s 2P , and 2p4(3P )3p 4So
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for which experimental magnetic coupling constants have been
determined, unfortunately not for all J levels [6,9,14].

For 17O (I = 5/2), Marin et al. [16] investigated the hyper-
fine structures in the 3s–3p transitions of the triplet and quintet
spin systems, using high-resolution saturation spectroscopy.
The hyperfine structure coupling constants of the four levels
involved in the 2p3(4D)3s 5So

2 –2p3(4D)3p 5P1,2,3 transitions
have been determined by Jennerich and Tate [5], with the
same technique, but claiming a higher precision than [16].
Pioneer nonrelativistic multiconfiguration calculations were
performed by Godefroid et al. [17] for 3s 5So

2 and by Jönsson
and Godefroid [18] for these low-lying levels. Elaborate multi-
configuration methods allowing the simultaneous inclusion of
electron correlation and relativity have been developed during
the past two decades [19]. Their availability gives new impetus
for revisiting the hyperfine structure of these levels to clarify
remaining theory-observation discrepancies in the same line
as fluorine.

The multiconfiguration approaches that we use in both
nonrelativistic and relativistic schemes are fully described
in [19]. The underlying variational formulation of these
two theories differs in detail, but is very similar in con-
cept. We will therefore limit Sec. II to the basic equations
needed to understand the physical content of the hyperfine
parameters.

II. THEORY

A. Hyperfine interaction

The hyperfine interaction in atomic systems is due to the
interaction between the electrons and the electromagnetic
multipole moments of the nucleus. The two lowest multipole
orders of the hyperfine interaction are represented in the
Hamiltonian by the two following contributions:

Hhfs = T (1) · M (1) + T (2) · M (2), (1)

that describe, respectively, the dipole magnetic interaction and
the quadrupole electric interaction. In the purely relativistic
scheme the magnetic electronic tensor operator for an N -
electron system is (in atomic units) given by [20]

T (1) = −√−1 α

N∑
i=1

(αi · l i C (1)(i))r−2
i , (2)

whereas in the nonrelativistic limit, it is written as a sum of
three contributions

T (1) = T (1)
l + T (1)

sd + T (1)
c . (3)

T (1)
l , T (1)

sd , and T (1)
c are the magnetic fields produced at the

site of the nucleus, due to, respectively, the orbital motion of
the electrons (orbital term), the spin precession of electrons
(spin-dipolar term), and the penetration of electrons inside
the nuclear volume (contact term). The electric quadrupole
tensor operator keeps the same form in both nonrelativistic
and relativistic schemes and is written as (in atomic units)

T (2) = −
N∑

i=1

C (2)(i)r−3
i . (4)

The three different contributions to the nonrelativistic hyper-
fine constant AJ are written as [21,22]

Aorb
J = Gμ

μI

I
al

〈 L · J〉
LJ (J + 1)

, (5)

Asd
J = 1

2
Gμ gs

μI

I
asd

3 〈 L · S 〉 〈 L · J 〉−L(L+1) 〈 S · J 〉
SL(2L−1)J (J+1)

,

(6)

Ac
J = 1

6
Gμ gs

μI

I
ac

〈 S · J〉
SJ (J + 1)

, (7)

BJ =−Gq Qbq

6〈 L · J 〉2−3〈 L · J 〉 − 2L(L+1)J (J+1)

L(2L − 1)(J + 1)(2J + 3)
,

(8)

where gs = 2.0023193 is the electronic g factor corrected
for the quantum electrodynamic (QED) effects. The J -
independent parameters al , asd , ac, bq are proportional to
reduced matrix elements of specific operators

al =
√

L

(L + 1)(2L + 1)
〈γLS‖

N∑
i=1

l (1)
i r−3

i ‖γLS〉, (9)

asd =
√

LS(2L − 1)

(L + 1)(2L + 1)(2L + 3)(S + 1)(2S + 1)

×〈γLS‖
N∑

i=1

C (2)
i s

(1)
i r−3

i ‖γLS〉, (10)

ac =
√

S

(S + 1)(2S + 1)
〈γLS‖

N∑
i=1

2s(1)
i δ(ri)r

−2
i ‖γLS〉,

(11)

bq =
√

L(2L−1)

(L+1)(2L+1)(2L+3)
〈γLS‖

N∑
i=1

2C (2)
i r−3

i ‖γLS〉.

(12)

Gμ = 95.41068 and Gq = 234.9647 are the numerical factors
needed to get the A and B constants in MHz when expressing
μI in nuclear magnetons, Q in barns (10−28 m2), and the
hyperfine parameters in atomic units (a−3

0 ).

B. Many-electron wave functions

1. Multiconfiguration Hartree-Fock approach

In the multiconfiguration Hartree-Fock (MCHF) method
the nonrelativistic wave function �, for a state labeled
|αLSMLMSπ〉, is expanded in terms of Nc configuration state
functions (CSF) �, which are eigenfunctions of L2, S2, Lz, Sz,
and the inversion (parity) operator I , namely

�(αLSMLMSπ ) =
Nc∑
k=1

ck �k(αkLSMLMSπ ). (13)

The CSFs are built on a basis of one-electron spin-orbital
functions

φnlmlms
(r,σ ) = Pnl(r)

r
Ylml

(θ,ϕ)χms
(σ ). (14)
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In the MCHF procedure both sets of radial functions {Pni li (r)}
and mixing coefficients {ck}, are optimized to self-consistency
by solving numerically and iteratively the multiconfiguration
Hartree-Fock differential equations for the former and the
configuration-interaction (CI) problem for the latter [23,24].
In a CI calculation, the mixing coefficients are determined by
diagonalizing the Hamiltonian matrix in a CSF basis built on a
set of preoptimized one-electron orbitals. This approach allows
one to investigate in a systematic way the extension of the
configuration space using MCHF orbitals [19].

2. Multiconfiguration Dirac-Hartree-Fock approach

In the multiconfigurational Dirac-Hartree-Fock (MCDHF)
method, the atomic state is described by a wave function,
eigenfunction of J2, Jz, parity π , written as a relativistic CSF
expansion

�(αJMJ π ) =
Nc∑
k=1

ck �k(αkJMJ π ). (15)

The CSFs in this case are symmetry-adapted linear combina-
tions of Slater determinants built on one-electron Dirac orbitals

φnκm(r,σ ) = 1

r

(
Pnκ (r) χκm(θ,ϕ)

iQnκ (r) χ−κm(θ,ϕ)

)
, (16)

where i multiplying the small component radial function Qnκ

is the imaginary unit defined by i2 = −1. The radial functions
{Pniκi

(r)} and {Qniκi
(r)} and the mixing coefficients {ck}

are obtained by solving iteratively, until self-consistency, the
multiconfiguration Dirac-Hartree-Fock differential equations
for the one-electron radial functions and the CI diagonalization
problem for the mixing coefficients. The Dirac-Coulomb
Hamiltonian HDC used to derive the MCDHF equations is
written as

HDC =
N∑

i=1

hD(i) +
N∑

j>i=1

1

rij

, (17)

where hD is the one-electron Dirac operator

hD(i) = c αi · pi + (βi − 1)c2 + V nuc
i . (18)

As in the nonrelativistic approach, a configuration-
interaction calculation can be performed in a given CSF
basis built on preoptimized one-electron Dirac spinors. The
corresponding relativistic calculations are labeled RCI in
the following. For these RCI calculations, one can use the
many-electron Dirac-Coulomb-Breit Hamiltonian in the long-
wavelength approximation

HDCB � HDC + HBreit, (19)

where HBreit is the Breit interaction

HBreit = −
∑

j>i=1

1

2rij

[
αi · αj + (αi · rij)(αj · rij)

r2
ij

]
, (20)

to which further QED corrections such as self-energy and
vacuum polarization can be added [19].

3. Relativistic calculations with MCHF orbitals

a. Breit-Pauli approximation. In the Breit-Pauli (BP) ap-
proximation, relativistic effects are accounted for by adding
to the nonrelativistic Hamiltonian additional terms of order
α2 to approximate HDCB [25]. These relativistic operators are
included in the BP Hamiltonian matrix built in a (LS)J basis
of CSFs where J results from the angular momenta coupling
J = L + S. The atomic state function is then described by a
Breit-Pauli eigenvector

�(αJMJ π ) =
Nc∑
k=1

ck �k(αkLkSkJMJ π ), (21)

allowing LS mixing due to the fine-structure BP terms, i.e., the
spin-orbit, the spin-other orbit, and the spin-spin corrections,
that do not commute with L and S. In this Breit-Pauli CI
approach, the CSFs �k(αkLkSkJMJ π ) are built on nonrel-
ativistic radial one-electron functions preoptimized through
MCHF calculations.

b. The RCI-P approach. In the nonrelativistic limit (c →
∞) known as the Pauli approximation, the small component
of the one-electron Dirac orbital can be estimated from the
large one as

Qnκ (r) � α

2

(
d

dr
+ κ

r

)
Pnκ (r). (22)

A RCI-P calculation consists in using the RCI relativis-
tic configuration-interaction approach described above (see
Sec. II B 2), with wave-function expansions of the kind (15)
built on Dirac spinors (16) and using the Pauli approximation
to estimate the small component radial functions from nonrel-
ativistic MCHF radial orbitals:

Pnκ (r) = P MCHF
nl (r),

Qnκ (r) � α

2

(
d

dr
+ κ

r

)
P MCHF

nl (r). (23)

III. BUILDING THE CSF SPACES

The nonrelativistic MCHF, CI, and MCHF+BP calcula-
tions are performed with the ATSP2K package [24], while the
relativistic MCDHF, RCI(-P) calculations are realized with
GRASP2K [26]. The MCHFMCDHF program converts the
MCHF orbitals into Dirac spinors using the Pauli approxima-
tion for the RCI-P calculations. All these calculations require
the definition of specific building rules to generate the CSF
expansions (13), (15), or (21) from a given orbital active set
(AS). These rules are not arbitrary and respect the desired
symmetries. For all calculations, the wave-function expansions
are obtained with the active space method, where the CSFs
are generated by one or more excitations of electrons to an
active set of orbitals, from a single reference (SR) or from a
set of CSFs defining a multireference (MR) space. The latter
is chosen to capture the dominant correlation excitations in a
zeroth-order picture [19].

Several methods of constructing configuration spaces are
considered in the present work. For a given method, the
orbital active space (AS) is characterized by [nmax] when no
angular limitation applies, and by [nmaxlmax] if some angular
orbital limitation is introduced. In order to highlight the
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TABLE I. List of the six configurations having the largest weight wk (see text) arising from SR-MCHF[10g] calculations on 2p3(4S)3s 5So

and 2p3(4S)3p 5P of O I and 2p5 2P o, 2p4(3P )3s 4P , 2p4(3P )3s 2P , and 2p4(3P )3p 4So of F I.

Oxygen Fluorine
Term Configuration wk Term Configuration wk

1. 2s22p33s 0.9847 1. 2s22p5 0.9810
2. 2s2p33s3d 0.1093 2. 2s22p33p2 0.1026

2p3(4S)3s 5So 3. 2s2p23s3p4s 0.0502 2p5 2P o 3. 2s22p33d2 0.0809
4. 2s22p3s3p2 0.0450 4. 2s2p43s3p 0.0693
5. 2s22p3s3d2 0.0423 5. 2s2p53d 0.0638
6. 2s2p43p 0.0414 6. 2s22p43p 0.0361

1. 2s22p33p 0.9857 1. 2s22p43s 0.9844
2. 2s2p33p3d 0.1102 2. 2s2p43s3d 0.1939
3. 2s2p23s3p4p 0.0537 3. 2s22p23s3p2 0.0685

2p3(4S)3p 5P 4. 2s2p33s3p 0.0467 2p4(3P )3s 4P 4. 2s22p23s3d2 0.0612
5. 2s22p3p3d2 0.0425 5. 2s2p33s3p4s 0.0530
6. 2s22p3p4p2 0.0416 6. 2s22p33s3p 0.0364

1. 2s22p43s 0.9847
2. 2s2p43s3d 0.0860

2p4(3P )3s 2P 3. 2s22p23s3p2 0.0683
4. 2s22p23s3d2 0.0612
5. 2s2p33s3p4s 0.0451
6. 2s22p33s3p 0.0399

1. 2s22p43p 0.9856
2. 2s2p43p3d 0.0863

2p4(3P )3p 4So 3. 2s22p23p4p2 0.0650
4. 2s22p23p3d2 0.0615
5. 2s2p33s3p4p 0.0556
6. 2s22p33p4p 0.0304

electron correlation effects, the hyperfine structure constants
are monitored as functions of the AS.

A. Single-reference method

In a single-reference (SR) calculation, the configuration
space is generated by allowing single (S) and double (D)
excitations from the reference CSF. In the present work, the SR
configurations are 1s22s22p5, 1s22s22p43s, and 1s22s22p43p

for fluorine and 1s22s22p33s and 1s22s22p33p for oxygen. In
the following, the MCHF, BP, RCI, and MCDHF calculations
performed using this single-reference approach are respec-
tively labeled SR-MCHF, SR-BP, SR-RCI, and SR-MCDHF.
For BP calculations, all allowed LS symmetries for a given J

value are included in the CSF expansion (21).

B. Multireference method

In the multireference (MR) approach, a zeroth-order set of
configurations is selected on the basis of the largest cumulative

weight, wk =
√∑

i(c
k
i )2, calculated from the multiconfig-

uration SR-MCHF[10g] eigenvectors. The summation
∑

i

appearing in the definition of wk runs over all CSFs i that
belong to configuration k, with all possible coupling trees.
The six most important configurations obtained by sorting the
corresponding eigenvector’s components according to their
weights wk are reported in Table I for all states considered
in F I and O I. Once this sorting is done, different MRx

subsets containing the x largest configuration component can
be defined, with 2 � x � 6. In the SD-MR computational
strategy, SD excitations from each member of a MR subset
are included, with the restriction that excited CSFs �i will be
kept in the SD-MRx expansion if and only if they interact with
at least one of the CSF of the MRx set, i.e.,

�i ∈ SD-MRx expansion

⇔ ∃ {�k} ∈ MRx, with 〈�k|H |�i〉 
= 0, (24)

where H is the nonrelativistic Hamiltonian of Schrödinger or
the Dirac-Coulomb Hamiltonian HDC of (17).

IV. RESULTS AND DISCUSSION

A. Fluorine

1. 2 p5 2P o
1/2,3/2 and 2 p4(3P)3s 2P1/2,3/2

The hyperfine constants AJ are reported in Table II for
the ground term levels 2p5 2P o

1/2,3/2 and for the excited
states 2p4(3P )3s 2P1/2,3/2. These constants have been esti-
mated using I = 1/2 and the magnetic dipole nuclear mo-
ment value μ(19F) = 2.628868 nuclear magneton (nm) taken
from Stone’s compilation [27]. Starting from the single-
configuration Hartree-Fock (HF) approximation, we per-
formed single and double SR-MCHF calculations by extending
systematically the orbital AS up to [10g]. The multirefer-
ence MCHF calculations (MR4-MCHF) correspond to SD
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TABLE II. Hyperfine structure constants AJ (in MHz) of 2p5 2P o
1/2,3/2 and 2p4(3P )3s 2P1/2,3/2 of 19F I. Nc is the number of CSFs. AS

specifies the orbital active set (see text for the notations).

2p5 2P o 2p4(3P )3s 2P

Method AS Nc A1/2 A3/2 Nc A1/2 A3/2

Nonrelativistic
HF 1 10099.08 2018.06 1 2077.27 3235.20
SR-MCHF [10g] 12912 10271.61 1974.79 36581 1711.21 3096.34

MR4-MCHF [10g] 244639 10194.28 2012.07 274316 1655.93 3098.89
Relativistic

SR-BP [10g] 74902 10361.53 1975.99 271413 1834.22 3030.35
SR-RCI-P [10g] 111720 10344.56 1974.13 291032 1833.41 3028.26
SR-MCDHF [10g] 111720 10350.43 1971.54 291032 1840.42 3026.27

MR4-BP [10g,10g,7g,7g] 826947 10283.74 2012.38 689301 1774.85 3036.90
MR4-MCDHF [10g,5f,5f,5f] 350905 10282.81 2004.67 450703 1792.39 3038.99
MR4-RCI [10g,5g,5g,5g] 615148 10278.47 2005.48 456781 1775.16 3036.62

Other theory
Glass and Hibbert [11] 10210.9 2014.1

Observed
Radford et al. [9] 2009.99(1)
Harvey [10] 10244.21(3)
Tate and Aturaliye [6] 1737.1(4) 3057.9(21)
Huo et al. [15] 1550(200) 3048(10)

excitations from the four first configurations appearing in the
lists of Table I to the same [10g] AS. These expansions become
too large for relativistic calculations. The MR4-BP expansions
were therefore limited to SD excitations to [7g] for the third and
fourth configurations of the list but keeping the [10g] AS for the
first two. This is noted in Table II as MR4-BP[10g,10g,7g,7g],
where [AS1,AS2,AS3,AS4] represent the four active sets used
respectively for the four reference configurations included
in MR4. Using the same notation, the MR4-MCDHF and
MR4-RCI expansions use, respectively, the [10g,5f,5f,5f] and
[10g,5g,5g,5g] active sets, where the MR4-RCI calculation
is a relativistic CI calculation using the MR4-MCDHF radial
orbitals.

As shown in Table II, the MR4-BP values are in satisfac-
tory agreement with observation [9,10] and with the pioneer
theoretical predictions of Glass and Hibbert [11] for the
ground configuration. Some reassuring observations can be
done: the SR-RCI-P and SR-BP values agree well with each
other. The SR-MCDHF and MR4-RCI results are consistent
with, respectively, the SR-BP and MR4-BP values. For the
excited 2p4(3P )3s 2P term, the hyperfine constant values cal-
culated with the three relativistic approaches (MR4-BP, MR4-
MCDHF, and MR4-RCI) are consistent and agree reasonably
well with the experimental value of Tate and Aturaliye [6] and
also with the most recent, but less accurate, values of Huo
et al. [15]. Let �(a,b) = (a − b)/a be the relative difference
between nonzero values a and b. If b is our theoretical result
and a is the experimental value we can consider �(a,b) as
relative uncertainty estimates of our results. We then estimate
the relative uncertainty on the ground-state hyperfine constants
around 0.3% and 2% and 0.7%, respectively, for A1/2 and A3/2

of the excited state.
We report in Table III those �(a,b) values (in %) for

the hyperfine constants estimated with different theoretical

models. The analysis of these relative differences for the
A1/2 and A3/2 of the ground term levels 2p5 2P o

1/2,3/2 of 19F
shows that electron correlation effects reach at maximum
2.2%, as illustrated by columns 2–4 of Table III. The two
last columns reveal that relativistic effects are even smaller,
around �1%. It is worth noting that the off-diagonal hyperfine
constant A3/2,1/2 = 446(10) MHz (not reported in the tables),
determined by Radford et al. [9] from microwave Zeeman
spectroscopy, is in good agreement with our theoretical val-
ues of 455 MHz, 459 MHz, and 468 MHz corresponding
respectively to MR4-MCHF, MR4-BP, and MR4-MCDHF
calculations.

As far as the two levels of 2p4(3P )3s 2P1/2,3/2 are concerned,
one can deduce from columns 2–4 that most of the electron
correlation is captured through the single reference calcula-
tions. These corrections are much larger for A1/2 than for A3/2.
Unlike the ground term, relativistic corrections are quite large
(columns 5 and 6) and cannot be neglected, particularly for
J = 1/2.

2. 2 p4(3P)3s 4P and 2 p4(3P)3 p 4So

According to the present results, both states 2p4(3P )3s 4P

and 2p4(3P )3p 4So have hyperfine structures that appear to be
much more sensitive to electron correlation and relativistic
effects than the levels considered in the previous section. This
is especially true for the 4P1/2 and 4So

3/2 states.
The 2p4(3P )3s 4P hyperfine constants are given in Table IV

while the relative differences between different models are
presented in Table III. It can be seen that HF and SR-MCHF
models lead to very different A1/2 values. Moreover, the
contribution of electron correlation remains large beyond
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TABLE III. Relative differences �(a,b) = (a − b)/a (in %) in the hyperfine constants AJ calculated with approaches a and b. See text for
the explanations of the different notations used for these approaches.

AJ �(SR-MCHF, HF) �(MR4-MCHF, SR-MCHF) �(MR4-MCHF, HF) �(SR-BP, SR-MCHF) �(MR4-BP, MR4-MCHF)

2p5 2P o
1/2,3/2

A1/2 1.68 −0.76 0.93 0.87 0.87
A3/2 −2.19 1.85 −0.30 0.06 0.02

2p4(3P )3s 2P1/2,3/2

A1/2 −21.39 −3.33 −25.44 6.71 6.70
A3/2 −4.49 0.08 −4.40 −2.18 −2.04

2p4(3P )3s 4P1/2,3/2,5/2

A1/2 −192.52 −48.00 −333.34 27.02 35.49
A3/2 24.71 7.31 30,21 6.08 5.43
A5/2 3.99 0.74 4.70 0.01 0

2p4(3P )3p 4So
3/2

A3/2 29.41 146.40 181.58

the SR-MCHF method. It reaches indeed around 48% when
comparing the MR4-MCHF[10g] and SR-MCHF[10g] results.
It would therefore be interesting to go beyond the MR4-MCHF
correlation model in order to investigate the hyperfine con-
stants convergence but the calculations become unmanageable
due to the large dimensions of the configuration spaces. We
therefore adopted another computational strategy to estimate
the effect of enlarging the multireference space from MR4
to MR6 and MR8 for this [10g] orbital active set. We first
performed SR and MRx-MCHF (x = 3,4) calculations for
both [8g] and [10g] active sets to estimate the �A

[10g−8g]
J (α) =

A
[10g]
J (α) − A

[8g]
J (α) differences using the three models (α =

SR-MCHF, MR3-MCHF, and MR4-MCHF). These differ-
ences being very similar (within 0.4 MHz), one added the
average difference

�AJ (10g − 8g) = 1

3

∑
α

�A
[10g−8g]
J (α)

to the MR6-MCHF[8g] and MR8-MCHF[8g] values. These
estimated values are reported with a subscript “est” in Table IV.
We estimated the hyperfine constants corresponding to MR4-

TABLE IV. Hyperfine structure constants AJ (in MHz) of 2p4(3P )3s 4P of 19F I. Nc is the number of CSFs. AS specifies the orbital active
set (see text for the notations).

Method AS Nc A1/2 A3/2 A5/2

Nonrelativistic
HF 1 −908.68 305.90 2503.96
SR-MCHF [8g] 16547 −305.23 412.97 2611.21
SR-MCHF [10g] 31161 −310.64 406.27 2608.12

MR3-MCHF [8g] 123861 −213.26 445.17 2633.06
MR3-MCHF [10g] 236829 −218.76 438.12 2629.65
MR4-MCHF [8g] 135265 −204.31 445.39 2630.99
MR4-MCHF [10g] 260638 −209.69 438.29 2627.49
MR6-MCHF [8g] 295222 −170.46 462.37 2646.14
MR6-MCHF [10g]est −175.89 455.42 2642.81
MR8-MCHF [8g] 331429 −155.53 465.92 2647.36
MR8-MCHF [10g]est −160.96 458.97 2644.03

Relativistic
SR-MCDHF [10g] 366764 −502.70 404.39 2576.51

SR-RCI-P [10g] 716054 −441.08 426.60 2599.17
MR3-RCI-P [10g,10g,6g] 1095434 −356.42 455.36 2618.79

SR-BP [10g] 370941 −425.65 432.22 2608.39
MR3-BP [10g] 594890 −334.46 463.30 2629.26
MR4-BP [10g]est −325.03 463.86 2627.43
MR6-BP [10g]est −291.23 480.99 2642.75
MR8-BP [10g]est −276.30 484.54 2643.97

Observed
Levy et al. [14] 2643 ± 1
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TABLE V. Hyperfine structure constant A3/2 (in MHz) of 2p4(3P )3p 4So of 19F I, with the three Aorb, Asd , and Ac contributions [see
Eqs. (5)–(7) for their definition]. See text for the various notations used for the theoretical methods. Nc is the number of CSFs. AS specifies the
orbital active set.

Method AS Nc Aorb Asd Ac A3/2

Nonrelativistic
HF 1 0 0 0 0
SR-MCHF [10g] 27119 0 0 95.52 95.52

MR3-MCHF [10g] 137533 0 0 135.32 135.32
MR4-MCHF [10g] 211516 0 0 132.68 132.68

Relativistic
(2p43p + 2p5)-MCDHF 9 −358.64
SR-MCDHF [10d7f6g] 226288 −248.64
MR3-RCI [10d7f6g,5g,5g] 1288207 −156.87

SR-RCI-P [10g] 621284 −206.32
SR-RCI-P* [10g] 621284 −211.52

(2p43p + 2p5)-BP 9 −401.12 22.68 0 −378.44
(2p43p + 2p5)-BP (4P o excluded) 8 0.56 −11.21 0 −10.64
SR-BP [10g] 621272 −307.38 6.61 94.93 −205.84
MR3-BP [10g,5g,5g] 816353 −296.86 3.69 132.61 −160.56
MR4-BP [10g,5g,5g,5g] 1011587 −296.19 3.53 130.02 −162.64

BP[10g], MR6-BP[10g], and MR8-BP[10g] in a similar way,
by reporting the BP relativistic corrections obtained with SR-
and MR3-MCHF models on the MRx-MCHF (x = 4, 6, and
8) AJ values.

As can be seen in Table III, the contribution of the relativistic
effects on the constant A1/2 reaches 35% when going from
MR4-MCHF to MR4-BP. The A3/2 constant is also sensi-
tive to electron correlation and, to a lesser degree (6%), to
relativistic corrections. On the contrary, correlation effects
are rather small and relativity is negligible for the constant
A5/2. All these observations are confirmed by SR-MCDHF,
SR-RCI-P, and MR3-RCI-P calculations that also illustrate a
satisfactory consistency between independent SR-RCI-P/SR-
BP and MR3-RCI-P/MR3-BP calculations. Our recommended
values for A1/2, A3/2, and A5/2 are, respectively, −276.30
MHz, 484.54 MHz, and 2643.97 MHz corresponding to the
MR8-BP estimation. To the knowledge of the authors, there
are no experimental values available for the first two constants.
For A5/2, our theoretical value is in excellent agreement with
the hyperfine structure constant deduced from laser-induced
fluorescence and modulated optical depopulation pumping
experiment [14]. The relative uncertainty, previously defined,
for this constant is less than 0.1%.

Table V reports the calculations of the hyperfine constant
A3/2 for the 2p4(3P )3p 4So level in various multiconfigura-
tional approximations. There is no experimental value avail-
able for comparison. The three contributions Aorb, Asd , and
Ac of Eqs. (5), (6), and (7) are strictly zero in the single con-
figuration Hartree-Fock approximation. The J -independent
hyperfine parameters defined by Eqs. (9), (10), and (11)
constitute the basic ingredients of the hyperfine constants. The
first two, al and asd , both contain a

√
L factor that annihilates

the Aorb and Asd contributions for 4So. The third contribution,
due to the contact contribution, may resist for S 
= 0 but cancels
in the single-configuration approximation because there are no
open s shells in the configuration considered. The hyperfine al

andasd parameters remain zero beyond the single configuration
approximation (in the SR-MCHF, MR3-MCHF, and MR4-
MCHF correlation models) and considering that L and S are
good quantum numbers, i.e., omitting any term-mixing due to
relativity. Oppositely, the ac parameter becomes different from
zero when spin-polarization contributions involving 1s,2s →
s ′ single-electron excitations of the core closed shells or
configurations involving open ns subshells are included in the
wave-function expansions [17]. One can read in Table V that
the null value of Ac switches to 95 MHz in the SR-MCHF
model and further increases to 132 MHz when extending the
multireference space (MR4-MCHF).

The second part of Table V illustrates the huge relativistic
effects, as quantified in the last line of Table III. The rel-
ative variation between MR4-BP and MR4-MCHF reaches
indeed �% = 182%. A first relativistic approach based on the
(2p43p + 2p5)(3/2)o MCDHF calculation targeting the fifth
eigenvector of J = (3/2)o symmetry gives a quite large but
negative A3/2 value, in contradiction with the multireference
MCHF results. Electron correlation reduces the absolute value
of the hyperfine constant by more than a factor two but the
MR3-RCI negative value remains significantly large. These
a priori unexpected relativistic effects can be explained by
investigating the content of the hyperfine constant in the
Breit-Pauli approximation. By first performing the Breit-Pauli
(2p43p + 2p5) calculation, including all the J = 3/2 lower
states from 2p43p and 2p5, one realized that a large negative
Aorb contribution appears due to the relativistic mixing with
the 4P o configuration states. This is confirmed by limited BP
calculations excluding this symmetry block, as illustrated in
Table V. The 20 MHz agreement between the (2p43p + 2p5)
BP results and the corresponding Dirac-Hartree-Fock values
of A3/2, for which the three magnetic dipolar interactions
are not separable, is very satisfactory, considering the huge
effect found for this hyperfine constant. Beyond these limited
correlation models, one observes a satisfactory agreement
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TABLE VI. Details of the different contributions (all in MHz) to the hyperfine constant AJ : orbital (Aorb), spin-dipolar (Asd ), and contact
(Ac), as well as their relative variations �Ai/AJ due to the inclusion of relativistic corrections (see text for explanations).

J = 1/2 J = 3/2 J = 5/2
MR4-MCHF MR4-BP �Ai/AJ MR4-MCHF MR4-BP �Ai/AJ MR4-MCHF MR4-BP �Ai/AJ

2p5 2P o Aorb 4905.88 4948.86 0.42% 2452.94 2453.66 0%
Asd 5386.16 5428.31 0.41% −538.62 −538.44 0%
Ac −97.75 −93.43 0.04% 97.75 97.16 0%

AJ 10194.28 10283.74 0.87% 2012.07 2012.38 0%

3s 2P Aorb 5610.41 5611.23 0.05% 2805.20 2802.40 −0.09%
Asd −4067.54 −4032.05 2% 406.75 296.24 −3.64%
Ac 113.06 195.68 4.66% −113.06 −61.74 1.69%

AJ 1655.93 1774.85 6.71% 3098.89 3036.90 −2.04%

3s 4P Aorb −2815.60 −2829.30 4.21% 1126.24 1124.49 −0.46% 1689.36 1691.64 0.09%
Asd 1019.20 975.10 13.57% −1386.11 −1317.02 14.89% 366.91 354.89 −0.46%
Ac 1586.72 1529.13 17.72% 698.16 656.39 −9.00% 571.22 580.90 0.37%

AJ −209.69 −325.03 35.49% 438.29 463.86 5.89% 2627.49 2627.43 0%

3p 4S Aorb 0 −296.19 182.13%
Asd 0 3.52 −2.16%
Ac 132.68 130.02 1.64%

AJ 132.68 −162.64 181.58%

between SR-MCDHF, SR-BP, and SR-RCI-P results for the
single-reference approaches and between MR3-RCI and MR3-
BP values for the multireference calculations. Note that the
[10d7f6g] notation for the orbital active set (AS) used in
SR-MCDHF calculation implies the limitation lmax = 2 for
n � 10, =3 for n � 7, and =4 for n � 6. The QED effects
are estimated being a few MHz by comparing the SR-RCI-P*
results that neglect QED corrections by setting gs = 2 in
Eqs. (6) and (7) with the SR-RCI-P values that include them.

3. Analysis of differential relativistic effects

In order to investigate the differential relativistic effects
on the hyperfine constants for the different J values of a
given term, we report in Table VI, for all states considered,

the three contributions Aorb, Asd , and Ac to the hyperfine
constant as well as their relative variations due to the inclusion
of relativistic corrections in the Breit-Pauli approximation,
defined by

�Ai

AJ

= Ai(MR4-BP) − Ai(MR4-MCHF)

AJ (MR4-BP)
with

i = orb,sd,c.

Whereas relativistic effects are found to be very low on the
ground-state hyperfine structure, for all three kinds of magnetic
dipole hyperfine interactions, they are not negligible for Asd

and Ac of the 2p4(3P )3s 2P1/2,3/2 states. These corrections
having the same signs for A1/2 but different signs for A3/2,
the global effect reaches 7% for J = 1/2 but reduces to

TABLE VII. Hyperfine structure parameter ac (in a.u.) and constant AJ (in MHz) of 2p3(4S)3s 5So
2 in O I. Nc is the number of CSFs. AS

specifies the orbital active set (see text for the notations).

Method AS Nc ac A2

HF 1 −63.62

SR-MCHF [10g] 8701 7.3981 −89.22

MR3-MCHF 38413 7.8812 −95.05
MR4-MCHF 44855 7.8675 −94.88
MR6-MCHF 61278 7.9532 −95.91

MR6 ∪ TQ-CI 661468 8.1128 −97.84

SR-BP [10g] 303286 −89.71

This work −98.33

Other theories
Godefroid et al. [17] −96.70
Jönsson and Godefroid [18] −91.95

Observation
Marin et al. [16] −98.59(43)
Jennerich and Tate [5] −97.93 (10)
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TABLE VIII. Hyperfine structure constants AJ and BJ (in MHz) of 2p3(4S)3p 5P1,2,3 of 17O I. Nc is the number of CSFs. AS specifies the
orbital active set (see text for the notations).

Method AS Nc A1 A2 A3 B1 B2 B3

HF 1 5.40 −3.18 −2.21 −0.0278 0.2785 −0.2785

SR-MCHF [10g] 46826 −15.16 −17.97 −13.60 −0.0439 0.4394 −0.4394

MR3-MCHF [10g] 215838 −27.24 −24.81 −19.09 −0.0447 0.4465 −0.4465
MR4-MCHF [10g] 241908 −27.93 −25.17 −19.38 −0.0447 0.4468 −0.4468
MR6-MCHF [10g] 298454 −26.84 −24.60 −18.92 −0.0442 0.4422 −0.4422

SR-BP [10g] 845623 −13.84 −17.40 −13.04 −0.0441 0.4406 −0.4399
MR3-BP [10g] 1336911 −25.52 −24.01 −18.34 −0.0447 0.4470 −0.4462

Observation:
Jennerich and Tate [5] −25.83 (10) −24.47 (11) −18.70 (5) 0.0(2) 0.9(8) −0.2(5)
Marin et al. [16] −26.39

Other theory:
Jönsson and Godefroid [18] −18.73 −19.88 −15.16

2% for J = 3/2. A more spectacular effect is found for the
spin-dipolar and contact contributions of A1/2 and A3/2 of
the 2p4(3P )3s 4P . The relative variations are, respectively,
of the order of 14% and 18% for A1/2 and 15% and 9% for A3/2.
The two effects are cumulative for A1/2 while they cancel each
other for A3/2, largely reducing the global effect for J = 3/2.
The 2p4(3P )3p 4So state is certainly the most remarkable case.
The relative variation due to relativity exceeds indeed 180%.
As already discussed in the previous section, this effect is
mostly due to 4So-4P

o term mixing that directly affects the
orbital Aorb contribution.

B. 2 p3(4S)3s 5So
2 and 2 p3(4S)3 p 5P1,2,3 of 17O I

We revisited the ab-initio calculation of the hyperfine
constants of two excited terms 2p3(4S)3s 5So and 2p3(4S)3p 5P

of 17O I that were previously evaluated using the nonrelativistic
multiconfigurational Hartree-Fock method [17,18]. Large dis-
crepancies were found with observation [5,16], reaching more
than 20% in some cases. In the present work, we revisit the the-
oretical evaluation of these hyperfine constants, investigating
the relative importance of correlation and relativistic effects,
as for the fluorine states. These constants have been estimated
using I = 5/2, μ = −1.89379 nm, and Q = −0.02579 barn,
taken from Stone’s compilation [27]. This Q(17O) value falls
within the error limits reported in Pyykkö’s compilation [28],
Q = −0.02558(22) barn, and adopted in Stone’s most recent
compilation of nuclear electric quadrupole moments [29].

Table VII presents the magnetic dipole constant A2 for
the state 2p3(4S)3s 5So

2 . In the same table we also report
the ac hyperfine parameter that is the only one making A2

in nonrelativistic calculations, asd and al being strictly zero
because L = 0.

On can deduce from the �(SR-BP, SR-MCHF) relative
differences (�0.5%) that relativistic effects on this hyperfine
constant are quite small. We therefore focused our theoretical
approach on the description of correlation effects. For this, we
performed MRx-MCHF calculations, where x = 3, 4, 6 refer
to the weight analysis presented in Table I. The convergence
of the hyperfine parameter with respect to the MR extension

is around 1%. Higher correlation effects beyond the SD-
MR-MCHF model were included through a configuration-
interaction calculation combining the MR6-MCHF expansion
with a configuration subspace including triple and quadruple
excitations from the main reference 1s22s22p33s up to [6f].
This calculation is labeled MR6 ∪ TQ-CI. The values of ac

and A2 vary by only 2% when going from SR-MCHF to MR6
∪ TQ-CI. We can then consider that convergence is achieved
within a few percent. If we add the difference A2(SR-BP) −
A2(SR-MCHF), representing the relativistic correction, to
the MR6 ∪ TQ-CI value, we obtain A2 = −98.33 MHz.
We consider this latter value as our recommended value, in
very good agreement with experiments [5,16]. The relative
uncertainty is around 0.4%.

The magnetic and quadrupole electric hyperfine constants
of 2p3(4S)3p 5P1,2,3 are reported in Table VIII.

Our results show that the electric quadrupole interaction
is smaller than the magnetic dipolar interaction, as found by
Jennerich and Tate [5]. The relative variations �(SR-BP, SR-
MCHF) for A1, A2, and A3 of 2p3(4S)3p 5P are, respectively,
10%, 3%, and 4%. The effect of relativity on the hyperfine
structures of this term cannot therefore be neglected. From
the evolution of the hyperfine parameters when extending
the MR space, one can conclude that electron correlation is
well described with the MR3-MCHF approach. We therefore
performed the MR3-BP calculation with a configuration space
of 1 336 911 CSFs. The results obtained are in very good
agreement with observation. The relative uncertainties are of
the order of 1% for A1 constant and 2% for A2 and A3.

V. CONCLUSION

We calculated the hyperfine constants of 2p5 2P o,
2p4(3P )3s 2P , 2p4(3P )3s 4P , and 2p4(3P )3p 4So of 19F I and
2p3(4S)3s 5So and 2p3(4S)3p 5P of 17O I using various mul-
ticonfigurational correlation models. Large effects of electron
correlation and relativity are found on the hyperfine structure of
some atomic states of fluorine and oxygen. This is particularly
the case of A3/2 [2p4(3P )3p 4So], A1/2 [2p4(3P )3p 4P ] of F I,
and A1 [2p3(4S)3p 5P ] of O I. For all states, the inclu-
sion of higher-order correlation effects through the use of
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multireference spaces was found to be necessary. In the case
where relativistic effects are important, the three relativistic
approaches BP, RCI-P, and MCDHF are consistent with each
other. The excellent agreement between theory and available
experimental values from Doppler-free saturated absorption
spectra indicates that the analysis of the latter is correctly done
with no problems to interpret the crossover signals.

The analysis of the different contributions to the magnetic
dipole interaction in the Breit-Pauli approximation remains a
very useful tool to unravel their variations with correlation and
relativity. Light atomic systems of the second period remain
interesting probes for benchmarking the theoretical models.
In this respect we hope that the present work will stimulate
further experimental measurements, in particular involving
the 2p4(3P )3p 4So

3/2 and 2p4(3P )3s 4P1/2,3/2 of 19F I. The
hyperfine structures of different atomic transitions will
be measured in 17,18,19F by collinear laser spectroscopy,
with the ultimate goal of determining the charge radii of

exotic fluorine isotopes [30]. In that framework, the present
calculations are valuable to guide the planned experiments of
exotic fluorine isotopes.
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