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Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical evaluation
of their spectrum and of external-field-induced shifts. We report the results of the calculations of the rate of
laser-induced electric quadrupole transitions between a large set of ro-vibrational states of H+

2 . The hyperfine and
Zeeman structure of the E2 transition spectrum and the effects of the laser polarization are treated in detail. The
treatment is generally applicable to molecules in 2� states. We also present the nuclear spin-electron spin-coupling
constants, computed with a precision ten times higher than previously obtained.
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I. INTRODUCTION

Molecular hydrogen ions (MHIs) are three-body systems
that allow for precise theoretical evaluation of their spectrum
and external effect shifts [1,2]. Properly selected transitions
exhibit weak sensitivity to external fields. This feature makes
them excellent candidates for frequency standards with poten-
tial uncertainties at the 10−17 fractional level [3,4]. Current and
future results from precision spectroscopy of MHIs, combined
with the theoretical prediction of transition frequencies, also
allows determining several fundamental constants of atomic
physics, such as particle mass ratios and the Rydberg constant
[5–7].

The spectroscopy of electric quadrupole transitions in
homonuclear molecules has been the subject of many in-
vestigations, recently in trapped and sympathetically cooled
molecular ions (see, e.g., Ref. [8] and references therein). The
first theoretical study on the electric quadrupole rovibrational
transitions of H+

2 was published by Bates and Poots in 1953
[9] using the two-center approximation for the wave function.
Posen et al. [10] computed the spontaneous emission rates for
all rovibrational transitions in H+

2 , without inclusion of hyper-
fine structure. More accurate calculations were performed by
Pilon and Baye [11]. Karr [12] treated the hyperfine structure of
some E2 transitions for the particular case of stretched states.

Recently we [4] and Karr [12] (see also Ref. [3]) pointed
out that the electric quadrupole spectroscopy of H+

2 sympathet-
ically cooled by beryllium ions has outstanding potential for
achieving ultrahigh precision. In this context, in Ref. [13] an
approach was proposed for quantum-state preparation of H+

2 ,
which involves laser-driven electric quadrupole transitions.

The strengths of hyperfine-resolved quadrupole transitions
for diatomic molecules were recently discussed by Germann
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and Willitsch [14]. Specifically, they considered Hund’s case
bβ in J -representation and derived for this particular case
general expressions for the line strength in zeroth order of
perturbation theory in the spin interactions without taking into
account the dependence on laser polarization.

In this work, we present a complete treatment of the
electric quadrupole transitions of H+

2 , including both the spin
(hyperfine) structure and the effects of magnetic field and laser
polarization. Similar to the extensive work in Ref. [10] we
have considered transitions between higher excited states with
vibration quantum number up to v = 10.

In the following, we derive the explicit expressions for the
interaction of a monochromatic wave with the H+

2 molecule in
an arbitrary quantum state, starting with the basics in Sec. II A.
The hyperfine structure of the levels of H+

2 is introduced in
Sec. II B, followed by the computation of the energies of the
spin states. High accuracy was made possible by an improved
computation of the spin-spin coupling coefficients. A detailed
treatment of the transition strengths of the spin components of a
given rovibrational transition is worked out in Sec. II C. We pay
particular attention to making our results easily comparable
with previous work. Section III is devoted to the discussion of
some examples that are believed to be of relevance for near-
future precision spectroscopic studies.

II. THEORY

A. Interaction with an external electromagnetic field

In the center-of-mass frame, the nonrelativistic Hamiltonian
of H+

2 is

H NR = P2
1

2mp

+ P2
2

2mp

+ P2
e

2me

+ e2

4πε0

(
− 1

r1
− 1

r2
+ 1

r12

)
,
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where R1,2, Re and P1,2, Pe are the position and momentum
operators of the two protons and the electron, respectively;
r1 = Re−R1, r2 = Re−R2, r12 = R1 − R2, and mp and me

are the masses of the proton and the electron, respectively.
The interaction Hamiltonian of a system of particles with

an external electromagnetic field is [15]

Hint = −
∑

α

Zαe

mα

Pα ·A(Rα,t). (2)

In Eq. (2) we have kept only the linear terms in the vector
potential A(R,t); e is the magnitude of the electron charge,
the summation runs over all three constituents of H+

2 (α =
p1,p2,e

−), and Zα is the charge of particle α in units of e. For
a plane wave with general polarization the electromagnetic
vector potential is

A(R,t) = A0e
i(k·R−ωt) + A∗

0e
−i(k·R−ωt)

and corresponds to the electric field

E(R,t) = E0e
i(k·R−ωt) + E∗

0e
−i(k·R−ωt), E0 = iωA0. (3)

A0 is a complex vector satisfying A0 · k = 0. In the long-
wavelength approximation, we expand the exponent e±i(k·Rα )

in Eq. (2) and keep only the terms responsible for the electric
quadrupole transitions:

H
(2)
int = −

∑
α

Zαe

mα

Pα · (iA0e
−iωt (k · Rα) + c.c.). (4)

The above expression can be rewritten as a sum of terms,
each of which is the product of two either symmetric or
antisymmetric tensors. The product of antisymmetric tensors
gives rise to magnetic dipole transitions and is not considered
here. The remaining terms are put in the form [15]

H
(E2)
int = i

h̄

∑
α

Zαe

2ω

∑
ij

T
(2)
ij (t)[RαiRαj ,H

NR]. (5)

Here T
(2)
ij (t) = 1

2 (kiEj (0,t) + kjEi(0,t)) is the symmetric part
of the tensor product of the electric field at the center of mass of
the system, E(0,t), and of the wave vector, k. We also make use
of the dimensionless, time-independent, and complex tensor

T̂
(2)
ij = (k̂i ε̂j + k̂j ε̂i)/2, (6)

where k̂ and ε̂ are unit vectors along k and E0: k = k k̂ =
(ω/c)k̂, E0 = |E0| ε̂. The relation of T

(2)
ij (t) to T̂

(2)
ij reads

T
(2)
ij (t) = k|E0|

(
T̂

(2)
ij e−iωt + T̂

(2)∗
ij eiωt

)
. (7)

B. H+
2 hyperfine structure

The calculations in this work are done in the total angular
momentum representation with the following coupling scheme
of angular momentum operators:

I = I1 + I2, F = I + se, J = L + F. (8)

I1,2 and se are the spin operators of the two protons and electron,
respectively, L is the total orbital momentum, and J is the total
angular momentum.

The H+
2 molecular ion has a simple hyperfine structure.

As a homonuclear molecule with fermionic nuclei, its state

vectors are antisymmetric with respect to the exchange of
the protons. This property gives rise to a restriction on the
total nuclear spin quantum number (−1)I = (−1)L (for the
ground electronic state 1sσg), which therefore becomes an
exact quantum number [16]. The other exact quantum numbers
are J and the z-axis projection Jz. Although F is not conserved,
it can be used as a label of the hyperfine states since the mixing
in F is small (see the table in the Supplemental Material [17]).
The states with odd orbital quantum number L are split into
six hyperfine components, (F,J ) = (1/2,L ± 1/2), (3/2,L ±
1/2), (3/2,L ± 3/2), and for even L into two components,
(F,J ) = (1/2,L ± 1/2). Exceptions are the L = 0 state with a
single component (F,J ) = (1/2,L + 1/2), and L = 1, which
has five components: (F,J ) = (1/2,L ± 1/2), (3/2,L ± 1/2),
(3/2,L + 3/2).

The hyperfine energies Ehfs
(vL)FJ and state vectors are calcu-

lated by diagonalization of the effective state-dependent spin
Hamiltonian H eff , obtained from the Breit-Pauli interaction by
averaging over space variables with the nonrelativistic wave
functions of H+

2 [18,19]:

H eff = bf (I · se) + ce(L · se) + cI (L · I) + d1

(2L−1)(2L+3)

×
(

2

3
L2(I · se) − [(L · I)(L · se) + (L · se)(L · I)]

)
+ d2

(2L−1)(2L+3)

(
1

3
L2I2 − 1

2
(L · I) − (L · I)2

)
.

(9)

The state-dependent coefficients bf , ce, cI , d1, and d2 are cal-
culated numerically. In this paper we use the recently updated
values of bf , in which the contributions of order O(meα

6),
amounting to 10−4 fractionally, have been accounted for. For
the remaining coefficients we use the values calculated in
Ref. [18]. The magnitude of the coefficient bf dominates over
the others, which justifies the choice of angular momentum
coupling given in Eq. (8) rather than Hund’s case (b). H eff

is an operator acting in the space of spin variables and total
orbital angular momentum L, which is spanned by the basis
vectors

|LIFJJz〉 =
∑

ζ1ζ2IzζeFzLz

C
IIz

I1ζ1,I2ζ2
C

FFz

IIz,seζe
C

JJz

FFz,LLz

× |I1ζ1〉|I2ζ2〉|seζe〉|LLz〉. (10)

Here |LLz〉 satisfies (L2 − L(L + 1))|LLz〉 = 0, (Lz −
Lz)|LLz〉 = 0, and similar for the individual particle spin oper-
ators and eigenvectors, and C are Clebsch-Gordan coefficients.
In first-order perturbation theory the hyperfine state vectors,
|(vL)FJJz〉, are expressed as linear combinations of the basis
vectors |LIFJJz〉:

|(vL)FJJz〉 =
∑
F ′

β
(vL)FJ
F ′ |LIF ′JJz〉, (11)

where β
(vL)FJ
F ′ are the components of the eigenvectors of

the matrix of H eff in the basis (10), and the values of
F ′ satisfy the inequalities max(|I − 1/2|,|J − L|) � F ′ �
min(I + 1/2,J + L). In the absence of external fields, the
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TABLE I. Hyperfine structure of the lower rovibrational states of H+
2 with orbital momentum L in the range 0 � L � 4 and vibrational

quantum number v in the range 0 � v � 8. Listed are the updated values (in MHz) of the coefficient bf in the effective spin Hamiltonian H eff

[Eq. (9)], the hyperfine energies Ehfs
(vL)FJ (in MHz), and, for odd L, the mixing angles φ± (in rad). In parentheses are given the quantum numbers

(F, J ).

bf (MHz) Ehfs
(vL)FJ (MHz) Mixing angles Ehfs

(vL)FJ (MHz)

L v ( 3
2 ,L + 3

2 ) ( 3
2 ,L + 1

2 ) ( 1
2 ,L + 1

2 ) ( 3
2 ,L − 1

2 ) ( 1
2 ,L − 1

2 ) ( 3
2 ,L − 3

2 ) φ+ φ− L v ( 1
2 ,L + 1

2 ) ( 1
2 ,L − 1

2 )

1 0 922.9318 474.0763 481.9234 −930.3732 385.3687 −910.6980 −0.01561 −0.03890 2 0 42.1625 −63.2438
1 1 898.7507 461.2282 468.4956 −905.7253 377.9657 −887.1909 −0.01508 −0.03736 2 1 39.5716 −59.3574
1 2 876.3973 449.3273 456.0493 −882.9269 371.2588 −865.4856 −0.01452 −0.03578 2 2 37.0992 −55.6487
1 3 855.7571 438.3119 444.5191 −861.8606 365.2188 −845.4716 −0.01395 −0.03417 2 3 34.7295 −52.0943
1 4 836.7296 428.1272 433.8475 −842.4234 359.8226 −827.0524 −0.01335 −0.03253 2 4 32.4479 −48.6718
1 5 819.2274 418.7256 423.9833 −824.5255 355.0518 −810.1443 −0.01273 −0.03084 2 5 30.2400 −45.3600
1 6 803.1750 410.0651 414.8819 −808.0888 350.8940 −794.6756 −0.01209 −0.02911 4 0 82.5884 −103.2355
1 7 788.5079 402.1094 406.5042 −793.0463 347.3416 −780.5856 −0.01142 −0.02733 4 1 77.4966 −96.8707
1 8 775.1714 394.8271 398.8163 −779.3412 344.3925 −767.8240 −0.01071 −0.02548 4 2 72.6350 −90.7937
3 0 917.5313 507.2270 489.4960 −941.0438 423.6046 −894.6020 341.5241 −0.04213 −0.06186 4 3 67.9728 −84.9660
3 1 893.6964 492.3526 475.5481 −915.6828 413.6522 −871.9908 336.8955 −0.04067 −0.05948 4 4 63.4807 −79.3509
3 2 871.6711 478.5158 462.6063 −892.2046 404.5273 −851.1450 332.8336 −0.03916 −0.05705
3 3 851.3432 465.6422 450.6022 −870.4878 396.1856 −831.9595 329.3264 −0.03761 −0.05456
3 4 832.6144 453.6659 439.4752 −850.4255 388.5894 −814.3434 326.3667 −0.03599 −0.05200
3 5 815.3996 442.5281 429.1720 −831.9247 381.7075 −798.2185 323.9516 −0.03432 −0.04937
3 6 799.6258 432.1751 419.6456 −814.9040 375.5153 −783.5195 322.0852 −0.03257 −0.04664
3 7 785.2282 422.5607 410.8538 −799.2920 369.9910 −770.1888 320.7713 −0.03074 −0.04382
3 8 772.1561 413.6433 402.7612 −785.0303 365.1210 −758.1833 320.0235 −0.02882 −0.04090

energy levels are degenerate in Jz. The nonzero components
β

(vL)FJ
F ′ can be parametrized as follows: for odd L (I =

1), β
(vL)3/2L±3/2
3/2 = 1, β

(vL)FL±1/2
F = cos φ±, F = 1/2,3/2,

β
(vL)1/2L±1/2
3/2 = −β

(vL)3/2L±1/2
1/2 = sin φ±; for even values of L

(I = 0), β
(vL)1/2,L±1/2
1/2 = 1, β

(vL)1/2,L±1/2
3/2 = 0. The energies

Ehfs
(vL)FJ , the mixing angles φ± between spin basis states,

and the coefficients bf are given in Table I for vibrational
and rotational quantum numbers in the ranges 0 � v � 4 and
0 � L � 8. The small values of the mixing angles confirm the
appropriateness of the coupling scheme in Eq. (8) for the classi-
fication of the hyperfine structure of the rovibrational spectrum
of H+

2 and justify the use—in lower-accuracy estimates—of
the zero-order approximation for the hyperfine state vectors,
which reads

φ± ≈ 0, β
(vL)FJ
F ′ ≈ δFF ′ . (12)

C. E2 transition matrix elements and transition rates

Using Eqs. (5) and (7), the E2 transition matrix element be-
tween initial |i〉 = |(vL)FJJz〉 and final |f 〉 = |(v′L′)F ′J ′J ′

z〉
hyperfine states of H+

2 can be put in a form that exhibits the
dependence on time:

〈(v′L′)F ′J ′J ′
z

∣∣H (E2)
int

∣∣(vL)FJJz〉

= i

3

ωNR

ω
〈(v′L′)F ′J ′J ′

z|T (2)(t) · Q(2)|(vL)FJJz〉

= i

3c
ωNR |E0|

(
e−iωt 〈(v′L′)F ′J ′J ′

z|T̂ (2) · Q(2)|(vL)FJJz〉

+ eiωt 〈(v′L′)F ′J ′J ′
z|T̂ (2)∗ · Q(2)|(vL)FJJz〉

)
. (13)

Here ωNR = (ENR
v′L′ − ENR

vL )/h̄, ENR
vL and ENR

v′L′ are the non-
relativistic energies of the initial and final states, Q(2) is the
irreducible tensor of the electric quadrupole moment of H+

2 ,

Qij = 3

2

∑
α

Zαe

(
RiαRjα − 1

3
(Rα)2δij

)
, (14)

and T (2)(t) · Q(2) ≡ ∑
ij T

(2)
ij (t)Q(2)

ij denotes the scalar product
of the tensors. The cyclic components Q(2)

q and T (2)q(t), q =
−2, . . . ,2, are normalized by Q

(2)
0 = Qzz and similarly for

T (2)0 (cf. Refs. [12,20]). In terms of the cyclic components the
scalar product is expressed as T (2) · Q(2) = 3

2

∑
q T (2)q(t)Q(2)

q .
Some authors use alternative normalization conventions (e.g.,
Refs. [21,22]); the current convention was selected to ease
comparison with the numerical results of Refs. [11,12]. In
these notations the Rabi frequency of the |(vL)FJJz〉 →
|(v′L′)F ′J ′J ′

z〉 transition is given by [20]


if = |E0| ωif

3h̄c
|〈(v′L′)F ′J ′J ′

z| T̂ (2) ·Q(2) |(vL)FJJz〉|. (15)

Next, using Eq. (11), for the time-independent matrix elements
of T̂ (2) · Q(2) we have

〈(v′L′)F ′J ′J ′
z|T̂ (2) · Q(2)|(vL)FJJz〉

= 3

2

∑
q

T̂ (2)q
∑
F1,F

′
1

β
(vL)FJ
F1

β
(v′L′)F ′J ′
F ′

1
〈L′IF ′

1J
′J ′

z|Q(2)
1 |LIF1JJz〉.

(16)

Using the Wigner-Eckart theorem the matrix elements of Q(2)

in the basis set (10) are expressed in terms of the nonrelativistic
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reduced matrix elements 〈v′L′‖Q(2)‖vL〉:

〈L′IF ′
1J

′J ′
z|Q(2)

q |LIF1JJz〉
= δF ′

1F1 (−1)J+L+F1
√

2J + 1 C
J ′J ′

z

JJz,2q

×
{

L F1 J

J ′ 2 L′

}
〈v′L′‖Q(2)‖vL〉.

The above expression implies the selection rules �L ≡ L′ −
L = 0, ± 2, |�J | � 2, and J + J ′ � 2; the transitions L =
0 → L′ = 0 are also forbidden.

The probabilityWif (T ) for a particular E2 transition |i〉 →
|f 〉 in the time interval 0 � t � T , ωT � 1, stimulated by the
external electromagnetic field E oscillating with frequency ω,
is [15]

Wif (T )

=
∣∣∣∣ 1

h̄

∫ T

0
dt exp(iωif t) 〈(v′L′)F ′J ′J ′

z|H (E2)
int |(vL)FJJz〉

∣∣∣∣2

≈ 
2
if (F (ω−ωif ; T ) + F (ω+ωif ; T )), (17)

where ωif = (Ef − Ei)/h̄ is the transition angular frequency
with account of the hyperfine, Zeeman, etc., corrections to
ωNR, and the following δ-like function is used: F (a; T ) =
(sin(aT /2)/(a/2))2, limT →∞ F (a; T ) = 2πT δ(a). The rate
Wif of the transition is defined as the probability per unit
time over a sufficiently long time interval: Wif = Wif (T )/T ,
ω T � 1. We put the expression ofWif in a form that accounts
for the characteristics of the laser source and the transition
line profile and distinctly exhibits the hyperfine and Zeeman
structure of the spectrum. To this end we relate the amplitude
E0 of the electric field to the spectral density of the laser energy
flux I(ω): I(ω) = (ε0c/2) (d|E0|2/dω), normalized to the
laser intensityI0 by

∫
dω I(ω) = I0. We also denote by gif (ω)

the transition line spectral profile (determined by Doppler
broadening or other), with normalization

∫
dω gif (ω) = 1.

By combining Eqs. (13)–(17), in the limit of large T , the
expression for Wif is cast in the following factorized form:

Wif = WNR(v′L′; vL)Whfs((v′L′)F ′J ′; (vL)FJ )

×Wpol(J ′
z; Jz). (18)

The first factor, WNR(v′L′; vL), is the rate of stimulated E2
transitions in H+

2 in the nonrelativistic (spinless) approxima-
tion, averaged over the initial and summed over the final
angular momentum projections Jz,J

′
z,

WNR(v′L′; vL) = πω2
if

ε0c3h̄2

1

15(2L + 1)
|〈v′L′||Q(2)||vL〉|2 Ī,

Ī =
∫

dω I(ω)gif (ω). (19)

The factor Whfs((v′L′)F ′J ′; (vL)FJ ) is the relative intensity
of the individual hyperfine components FJ → F ′J ′ of the
transition line (vL) → (v′L′). For simplicity of notation we

omit v, L, v′, and L′ wherever possible:

Whfs((v′L′)F ′J ′; (vL)FJ )

≡ Whfs(F ′J ′; FJ ) = (2L + 1)(2J + 1)(2J ′ + 1)

×
(∑

F1

β
(v′L′)F ′J ′
F1

β
(vL)FJ
F1

(−1)J+F1

{
L F1 J

J ′ 2 L′

})2

.

(20)

It is normalized by the condition∑
F ′J ′

1

nhfs(vL)

∑
FJ

Whfs(F ′J ′; FJ ) = 1, (21)

where nhfs(vL) = 2(2I + 1)(2L + 1) stands for the number
of states |(vL)FJJz〉 of the hyperfine structure of the initial
rovibrational (vL) state. Note that the approximate expression
for Whfs(F ′J ′; FJ ) that stems from the approximation for
the amplitudes β

(vL)FJ
F ′ of zero-order perturbation theory in

Eq. (12),

Whfs(F ′J ′; FJ ) ≈ δFF ′(2L + 1)(2J + 1)(2J ′ + 1)

×
{

L F J

J ′ 2 L′

}2

, (22)

does not describe the “weak” hyperfine components of the
transition lines.

Finally, Wpol(J ′
z,Jz) is the relative intensity of the Zeeman

components of the transition line with different values of the
quantum numbers Jz,J

′
z (the dependence on J and J ′ being

omitted for simplicity of notation):

Wpol(J ′
z; Jz) = 15

2J ′ + 1

(
C

J ′J ′
z

JJz,2q

)2|T̂ (2)q |2, q = J ′
z − Jz. (23)

Wpol(J ′
z; Jz) is expressed in terms of Clebsch-Gordan coeffi-

cients and of the tensor T̂ (2) defined in Eq. (6), and satisfies∑
Jz,J ′

z

Wpol(J ′
z,Jz) = 1. (24)

To avoid any ambiguity, we list the general expressions of T̂ (2)q

in terms of the Cartesian components of k̂ and ε̂:

T̂ (2)±2 =
√

3

8
(k̂x ε̂x − k̂y ε̂y ∓ i(k̂x ε̂y + k̂y ε̂x)),

T̂ (2)±1 =
√

3

8
(∓(k̂x ε̂z + k̂zε̂x) + i(k̂zε̂y + k̂y ε̂z)),

T̂ (2)0 = 1

2
(2k̂zε̂z − k̂x ε̂x − k̂y ε̂y).

The relevance of each of the three factors in Eq. (18) is
discussed below.

III. NUMERICAL RESULTS AND DISCUSSION

A. E2 transition rates in the approximation of spinless particles

The computational challenge in the present paper was
the evaluation of the reduced matrix elements of the elec-
tric quadrupole moment of H+

2 in Eq. (19). The values of
〈v′L′||Q(2)||vL〉 were calculated with the variational wave
functions obtained in the approach of Ref. [23].
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TABLE II. Numerical results for selected E2 transitions in H+
2 in the approximation of spinless particles. Comparison with the values of

Einstein coefficients A, calculated by Pilon and Baye [11], and of the reduced matrix elements 〈v′L′||Q(2)||vL〉 of Karr [12] is made in a few
illustrative cases considered by those authors. The notation a[b] = a × 10b has been used.

i f |〈 v′L′‖Q(2)‖vL〉|/ea2
0 Einstein coefficient Af i (s−1)

|vL〉 → |v′,L′〉 �ENR/hc (cm−1) This work Karr [12] This work Pilon and Baye [11]

|0,0〉 → |0,2〉 174.230 1.644960 0.973137[−11] 0.973137[−11]
|0,0〉 → |1,2〉 2356.155 0.313846 0.160207[−6] 0.160207[−6]
|0,0〉 → |4,2〉 8156.599 0.001048 0.888671[−9]
|0,0〉 → |6,2〉 11436.092 0.000100 0.441771[−10]
|0,1〉 → |1,1〉 2188.035 0.376163 0.3762 0.264911[−6] 0.264911[−6]
|0,1〉 → |2,1〉 4248.965 0.028875 0.02887 0.431045[−7] 0.431045[−7]
|0,1〉 → |3,1〉 6186.996 0.004044 0.004044 0.553479[−8] 0.553479[−8]
|0,1〉 → |4,1〉 8005.682 0.000792 0.770296[−9]
|0,2〉 → |1,2〉 2181.925 0.411812 0.4118 0.185876[−6] 0.185876[−6]
|0,2〉 → |2,2〉 4236.951 0.031686 0.03169 0.307072[−7] 0.307072[−7]
|0,2〉 → |4,2〉 7982.369 0.000874 0.554230[−9]
|0,3〉 → |1,1〉 1899.184 0.529496 0.5295 0.258605[−6] 0.258605[−6]
|0,4〉 → |1,2〉 1780.716 0.667785 0.6678 0.178844[−6] 0.178844[−6]
|0,4〉 → |2,4〉 4195.295 0.041347 0.276482[−7] 0.276482[−7]
|0,4〉 → |3,2〉 5768.052 0.002013 0.002013 0.579405[−9] 0.579407[−9]
|0,6〉 → |5,6〉 9425.184 0.000367 0.864640[−10]
|1,1〉 → |1,3〉 273.621 2.529827 0.157047[−9] 0.157047[−9]
|1,1〉 → |3,3〉 4243.606 0.074474 0.122120[−6] 0.122120[−6]
|2,0〉 → |4,2〉 3901.609 0.080164 0.130139[−6]
|3,2〉 → |6,4〉 5375.331 0.049248 0.135446[−6]
|5,2〉 → |5,4〉 301.389 4.850333 0.728017[−9]
|4,3〉 → |10,5〉 8708.227 0.006665 0.226499[−7]
|9,6〉 → |10,6〉 1087.942 3.085308 0.124992[−6]

Some authors present the rates of transitions in terms of
the Einstein coefficients Af i rather than Wif , related to the
reduced matrix elements by [11]

Af i/t−1
0 = α5

15(2L + 1)

((
ENR

v′L′ − ENR
vL

)/
E0

)5

× (〈v′L′||Q(2)||vL〉/(
ea2

0

))2
, (25)

where a0, t0 = a0/αc, and E0 = 2Ry are the atomic units of
length (i.e., the Bohr radius), time, and energy. The numerical
results, including the nonrelativistic E2 transition frequencies,
the values of the reduced matrix elements and of Einstein
coefficients for all E2 transitions between states with vibra-
tional quantum number 0 � v � 10, |v′ − v| � 6, and total
orbital momentum 0 � L � 6 are given in the table of the
Supplemental Material [17]. The considered transitions belong
to the near- and mid-infrared spectral range; they are to some
extent complementary to the set of states considered in previ-
ous works [11,12] and include higher vibrational excitations.
The results are intended to help select transitions of appropriate
wavelength and intensity and plan future experiments on E2
spectroscopy of H+

2 .
Table II illustrates via a few examples the agreement

between the numerical values of the reduced matrix elements of
the H+

2 electric quadrupole moment calculated in Refs. [11,12]
and in the present work. In the overlapping cases the numerical
results agree within the claimed precision of six digits with
exceptions that should be attributed to the different ways of
rounding.

B. Hyperfine structure of the E2 transition spectrum

The approximation of spinless particles, in which the E2
transition spectral lines are labeled with the quantum numbers
(v,L) and (v′,L′) of the initial and final states of H+

2 , is appli-
cable only if the spectroscopic resolution is �1 GHz or worse.
Under higher resolution, every line will evidence splitting into
a set of hyperfine components spread over an interval of the
order of 1 GHz around the central transition frequency of the
hyperfine manifold ω0 (see Fig. 1). The difference between
ωNR and ω0 is due to the spin-independent relativistic and QED
effects that shift the manifold as a whole. Transitions having
�F ≡ F ′ − F = ±1 are strongly suppressed compared with
transitions with �F = 0; the latter are spread over a much
narrower frequency interval of the order of 100 MHz. In
the assumption of a flat laser spectral profile I(ω) the sum
of the transition rates (also referred to as line intensities)
of all the hyperfine lines equals the nonrelativistic intensity
WNR(v′L′; vL), Eq. (19). The relative intensity of the hyperfine
components is given by the factor Whfs in Eqs. (18) and (20).

Table III lists the energy shift �Ehfs and relative intensity
Whfs(F ′J ′; FJ ) of the strong components of a few E2 tran-
sitions of interest for precision spectroscopy. Note the much
simpler structure of the hyperfine spectrum between levels with
even L.

C. Laser polarization effects

If the Zeeman structure is not resolved, for example, when
the magnetic field strength is small or the Doppler broadening
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FIG. 1. Hyperfine structure of the (0,1) → (1,1) E2 transition
line: relative intensity Whfs(F ′J ′; FJ ) of the individual hyperfine
components (FJ ) → (F ′J ′), calculated using Eq. (20). The “weak”
components with �F = −1 around (ωif − ω0)/2π ∼ −1300 MHz,
as well as those with �F = 1 around 1300 MHz (not shown on the
plot) are suppressed by approximately three orders of magnitude.
The “strong” components with �F = 0 are spread over an interval of
200 MHz width around the center of the hyperfine structure manifold.

is large, the spectrum is independent of the polarization state
of the driving laser field, as expressed by Eq. (24). Very-
high (sub-MHz) resolution spectroscopy of MHI could further
distinguish the individual Zeeman-split components of the E2
transition lines. In that case, the polarization state of the driving
laser field becomes relevant, through the factor Wpol. Each
hyperfine transition line ((vL)FJ ) → ((v′L′)F ′J ′) is split into
a large number of components ((vL)FJJz) → ((v′L′)F ′J ′J ′

z).
The Zeeman structure of one E2 transition line is illustrated

FIG. 2. Zeeman structure of a (v,L = 0) → (v′,L′ = 2) transi-
tion line of H+

2 . In the presence of external magnetic field the (F =
J = 1/2) → (F ′ = 1/2,J ′ = 3/2) hyperfine transition line (circled
in the upper panel) is split into eight Zeeman components (lower
panel) whose intensities, according to Eqs.(18) and (23), depend
strongly on geometry and on the polarization of the laser radiation.
For details, see also Table IV.

TABLE III. Hyperfine shifts �Ehfs = Ehfs
(v′L′)FJ ′ − Ehfs

(vL)FJ , in
MHz, and relative intensities Whfs(FJ ′; FJ ) of the “strong” compo-
nents (F ′ = F ) in the hyperfine spectrum of selected E2 transitions in
H+

2 . The transitions marked in bold have been identified in Refs. [3,4]
as being of particular interest in precision spectroscopy.

F J J ′ �Ehfs (MHz) Whfs(FJ ′; FJ )

(vL) = (00) → (v′L′) = (12)
1/2 1/2 3/2 −59.35740 0.400000
1/2 1/2 5/2 39.57160 0.600000

(vL) = (01) → (v′L′) = (11)
3/2 3/2 1/2 −103.95790 0.011052
3/2 5/2 1/2 −96.11068 0.099861
3/2 3/2 5/2 −20.69538 0.139966
3/2 3/2 3/2 −13.42782 0.071036
3/2 5/2 5/2 −12.84816 0.093333
3/2 1/2 1/2 −7.40299 0.000000
3/2 5/2 3/2 −5.58060 0.139968
1/2 1/2 3/2 4.97277 0.110877
1/2 1/2 1/2 23.50717 0.000000
1/2 3/2 3/2 24.64797 0.111017
1/2 3/2 1/2 43.18237 0.110888
3/2 1/2 5/2 75.85953 0.099849
3/2 1/2 3/2 83.12709 0.011051

(vL) = (02) → (v′L′) = (12)
1/2 5/2 3/2 −101.51990 0.120000
1/2 5/2 5/2 −2.59090 0.480000
1/2 3/2 3/2 3.88635 0.280000
1/2 3/2 5/2 102.81535 0.120000

(vL) = (03) → (v′L′) = (13)
3/2 7/2 3/2 −152.60051 0.005433
3/2 9/2 5/2 −93.57469 0.004237
3/2 5/2 3/2 −86.70920 0.043913
3/2 7/2 5/2 −75.84373 0.057349
3/2 9/2 7/2 −31.67871 0.051879
1/2 5/2 7/2 −21.08081 0.020469
3/2 9/2 9/2 −14.87429 0.181878
3/2 7/2 7/2 −13.94774 0.075715
3/2 5/2 5/2 −9.95241 0.037264
3/2 3/2 3/2 −4.62881 0.045714
3/2 7/2 9/2 2.85668 0.051873
1/2 5/2 5/2 22.61118 0.122044
1/2 7/2 7/2 25.36093 0.169874
3/2 5/2 7/2 51.94357 0.057341
3/2 5/2 9/2 68.74799 0.004235
1/2 7/2 5/2 69.05292 0.020471
3/2 3/2 5/2 72.12798 0.043926
3/2 3/2 7/2 134.02396 0.005433

in Fig. 2, and further details are given in Table IV. The small
number of hyperfine and Zeeman components ofE2 transitions
from or to L = 0 states makes them particularly appropriate
for precision spectroscopy. The linear and quadratic Zeeman
shifts have been calculated precisely [3]. For one pair of
Zeeman components, (J = 1/2,Jz = 1/2 → J ′ = 5/2,J ′

z =
±5/2) (first bold line in Table III), the Zeeman shifts are
smaller than ±0.2 kHz in a 10 μT field.

The relative intensities of the Zeeman components are
described by the factor Wpol(Jz,J

′
z) in Eqs. (18) and (23) and

strongly depend on geometry and the polarization of the inci-
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TABLE IV. Relative intensities Wpol(Jz,J
′
z) of the Zeeman components of the (v,L = 0,F = J = 1/2) → (v′,L′ = 2,F ′ = 1/2,J ′ = 3/2)

hyperfine transition, labeled with the index n = 1, . . . ,8, as in Fig. 2, for linear and circular polarization of the incident light and a set of angles
β between the directions of the laser beam and the magnetic field. The values of Wpol(Jz,J

′
z) were calculated from Eq. (23), using expressions

(26) and (27) for the explicit dependence on the angle β. Note that the relative intensities depend only on the quantum numbers J , Jz, J ′, and
J ′

z , and are independent of v, v′, L, and L′, the transition energy, or the magnitude of the Zeeman shift.

Wpol(Jz,J
′
z)

Linear polarization Left circular polarization

n Jz J ′
z β = 0 π/4 π/3 π/2 0 π/4 π/3 π/2

1 1/2 3/2 0.1250 0.0 0.0312 0.1250 0.0 0.0312 0.0625 0.0625
2 1/2 1/2 0.0 0.3750 0.2813 0.0 0.0 0.1875 0.1406 0.0
3 1/2 −1/2 0.3750 0.0 0.0938 0.3750 0.7500 0.0938 0.0 0.1875
4 1/2 −3/2 0.0 0.1250 0.0938 0.0 0.0 0.3643 0.4218 0.2500
5 −1/2 3/2 0.0 0.1250 0.0938 0.0 0.0 0.0107 0.0469 0.2500
6 −1/2 1/2 0.3750 0.0 0.0938 0.3750 0.0 0.0938 0.1875 0.1875
7 −1/2 −1/2 0.0 0.3750 0.2813 0.0 0.0 0.1875 0.1406 0.0
8 −1/2 −3/2 0.1250 0.0 0.0312 0.1250 0.2500 0.0313 0.0 0.0625

dent electromagnetic radiation. To investigate this dependence
we parametrize the complex unit vector ε̂ = E0/|E0| pointing
along the electric field amplitude E0 in the following way. We
denote by K the laboratory reference frame with z axis along
the external magnetic field B, by K ′ a reference frame with
z axis along k̂, and take the Cartesian coordinates (ε′

x,ε
′
y,ε

′
z)

of ε in K ′ to be (cos θ, sin θ eiϕ,0). Linear polarization of the
incident light is described by ϕ = 0, circular polarization by
ϕ = ±π/2,θ = π/4, and all other combinations correspond
to a general elliptic polarization. Let (α,β,γ ) be the Euler
angles of the rotation that transform K into K ′, and denote
by M(α,β,γ ) the matrix relating the Cartesian coordinates
(ax,ay,az) and (a′

x,a
′
y,a

′
z) of an arbitrary vector a in K and K ′,

respectively: ai = ∑
j Mij (α,β,γ ) a′

j . (To avoid mismatch of
M with M−1, note that, e.g., Mxz = − sin β cos γ .) In this way,
the absolute values of the components of T̂ in the laboratory
frame K , appearing in Eq. (23), are expressed in closed form
in terms of the four angles α, β, θ , and ϕ (the dependence
on γ being canceled). Since the general expressions are rather
lengthy, we restrict ourselves here to the cases of main interest
for the experiment. We have (a) ϕ = 0 for linear polarization,

|T̂ (2)0 |2 = 1
4 sin2 2β cos2(α − θ ),

|T̂ (2)±1|2 = 1
12 (1+sin2(α − θ ) cos 2β+cos2(α − θ ) cos 4β),

|T̂ (2)±2|2 = 1
24 sin2 β (3 + cos 2β − 2 sin2 β cos 2(α − θ )),

(26)

and (b) θ = π/4, ϕ = π/2 for left circular polarization (l.c.p.),

|T̂ (2) 0 |2 = 1
8 sin2 2β,

|T̂ (2) ±1|2 = 1

3

(
sin4 β/2

cos4 β/2

)
(1 ± 2 cos β)2,

|T̂ (2) ±2|2 = 1

3

(
sin4 β/2

cos4 β/2

)
sin2 β. (27)

For right circular polarization (r.c.p.), described by θ =
π/4, ϕ = −π/2, the values of |T̂ (2)q |2 are obtained from
the above expressions with the substitution |T̂ (2)q(r.c.p.)|2 =
|T̂ (2)−q(l.c.p.)|2.

It is worth stressing that Eqs. (18)–(23) are valid for arbitrary
angle β between the magnetic field and the laser propagation
direction.

IV. CONCLUSION

We derived the E2 transition spectrum of H+
2 , including

a systematic consideration of the transition strength and of
the effects of the laser polarization. The matrix elements
of the electric quadrupole transition moment, needed for
the evaluation of the laser-driven transition rates, have been
calculated for a very large number of transitions that cover
a wide range of transition frequencies, using the most ad-
vanced computational methods. The numerical results agree
with the results of Refs. [11,12] wherever comparison is
possible.

The results can be used in planning future experiments
and in interpreting the spectroscopy data. The most basic
application of the results presented here is to estimate the laser
intensity necessary to achieve a desired transition rate.

The treatment we have given is applicable to the situations
when Doppler broadening is present or absent. When it is
present, then the individual hyperfine components and Zeeman
components may not be resolved. Several components will
contribute to the spectroscopic signal even if the laser radiation
is perfectly monochromatic. The formula for the strengths of
the individual components given here allows for producing
a model of the Doppler-broadened line profile which can be
used in fitting the experimental signal. As the spectroscopy of
MHIs will develop into the Doppler-free regime (Lamb-Dicke
regime), the concept of Rabi frequency will become more
relevant. This can also easily be computed with the expressions
given here.
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The presented approach is applicable for any relative size
of the hyperfine coefficients and mixing angles φ. Thus, it
can also be used for molecules in which the coupling between
electron spin and rotation (described by the coefficient ce)
is the strongest, opposite to the case in H+

2 . An important
example which is drawing substantial attention in connection
with spectroscopy in ion traps is N+

2 [8,24]. Our treatment
here is appropriate for the electronic ground state (X 2�+

g ) and
generalizes the treatment of Ref. [13].
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