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Influence of the chemical potential on the Casimir-Polder interaction between an atom and gapped
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We present a formalism based on first principles of quantum electrodynamics at nonzero temperature which
permits us to calculate the Casimir-Polder interaction between an atom and a graphene sheet with arbitrary
mass gap and chemical potential, including graphene-coated substrates. The free energy and force of the
Casimir-Polder interaction are expressed via the polarization tensor of graphene in (2 + 1)-dimensional space-time
in the framework of the Dirac model. The obtained expressions are used to investigate the influence of the
chemical potential of graphene on the Casimir-Polder interaction. Computations are performed for an atom of
metastable helium interacting with either a freestanding graphene sheet or a graphene-coated substrate made
of amorphous silica. It is shown that the impacts of the nonzero chemical potential and the mass gap on the
Casimir-Polder interaction are in opposite directions, by increasing and decreasing the magnitudes of the free
energy and force, respectively. It turns out, however, that the temperature-dependent part of the Casimir-Polder
interaction is decreased by a nonzero chemical potential, whereas the mass gap increases it compared to the case
of undoped, gapless graphene. The physical explanation for these effects is provided. Numerical computations
of the Casimir-Polder interaction are performed at various temperatures and atom-graphene separations.
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I. INTRODUCTION

Since the advent of graphene, which is a two-dimensional
sheet of carbon atoms packed in a hexagonal lattice, it has
found widespread application in both fundamental and applied
physics [1,2]. One of the subjects of much recent attention is
the interaction of graphene with the zero-point and thermal
fluctuations of the electromagnetic field giving rise to van der
Waals (Casimir) and Casimir-Polder forces [3,4]. These forces
act between two graphene sheets and between an atom and
a graphene sheet (or graphene-coated substrate), respectively.
Given that the optical properties of graphene can be modified
by doping, it may be possible to tune both the van der
Waals (Casimir) and the Casimir-Polder interactions. The van
der Waals and Casimir interactions between two graphene
sheets, a graphene sheet and a three-dimensional-material
plate, and graphene-coated substrates have been investigated
in the framework of the Dirac model. This model assumes
that at low energies the graphene quasiparticles obey a linear
dispersion relation but move at the Fermi velocity vF ≈ c/300
rather than at the speed of light [1,2,5]. A lot of calculations
have been performed using the density-density correlation
functions, the Kubo formalism, and some special models for
the dielectric permittivity (conductivity) of graphene [6–19].
The same methods have been used to calculate the Casimir-
Polder force between different atoms and a graphene sheet
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under various conditions [20–25]. Specifically, in Ref. [25]
the Casimir-Polder interaction between an atom and a sub-
strate coated with a charge layer was considered. This layer,
characterized by a nonlocal dielectric response, can be used as
a simplified model of a graphene sheet.

In the framework of the Lifshitz theory of dispersion forces
[4,26], the Casimir and Casimir-Polder interactions can be
expressed in terms of the reflection coefficients for electro-
magnetic fluctuations. Within the Dirac model, the reflection
coefficients of graphene are expressed via a polarization tensor
in (2 + 1)-dimensional space-time [27,28]. This model allows
for both zero and nonzero quasiparticle mass m. The latter may
arise due to electron-electron interactions, impurities, and the
presence of a substrate. The polarization tensor from Refs.
[27] and [28] has been used to calculate the Casimir force in
many physical systems incorporating graphene sheets for any
mass gap � = 2mc2 and at any temperature [27–32], but it is
restricted to the case of undoped graphene (chemical potential
μ = 0). The computational results were found [33,34] to be in
very good agreement with the experimental data of the work
on measuring the gradient of the Casimir force between an Au-
coated sphere and a graphene-coated substrate [35]. The same
polarization tensor was applied to investigate the Casimir-
Polder interaction of different atoms with gapped graphene
[36–39] and with graphene-coated plates made of different
materials [40]. The classical limit of the Casimir-Polder inter-
action with graphene systems has also been considered [41].

The polarization tensor of graphene from Ref. [28] is
restricted to the purely imaginary Matsubara frequencies.
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Another representation, which provides the analytic contin-
uation to the entire complex frequency plane, was derived in
Ref. [42]. This representation has been used to investigate the
thermal Casimir force in graphene systems [43–46], the electri-
cal conductivity of both gapless and gapped graphene [47,48],
and the reflectivity properties of graphene and graphene-coated
substrates [42,49–51].

Real graphene samples are always doped and can be char-
acterized by a nonzero chemical potential μ [5]. Because of
this, it is desirable to describe the Casimir and Casimir-Polder
forces in graphene systems accounting for both parameters, �
and μ. In Ref. [52] the polarization tensor of graphene found
in Ref. [42] was generalized for the case of doped graphene
with a nonzero chemical potential. According to Ref. [52],
the thermal Casimir force between the doped but gapless
graphene sheet and an ideal-metal plane can be enhanced
up to 60% in comparison to that in the case of undoped
graphene. A detailed investigation of the thermal Casimir force
in graphene systems with nonzero mass gap and chemical
potential demonstrated that these parameters act in opposite
directions by decreasing and increasing the force magnitude,
respectively [53]. However, the role of the chemical potential in
the Casimir-Polder interaction between an atom and a graphene
sheet or a graphene-coated substrate remained unexplored.

In this paper, we investigate the Casimir-Polder interac-
tion between an atom and a graphene sheet or a graphene-
coated substrate in thermal equilibrium with the environment.
Graphene is described in the framework of the Dirac model by
the polarization tensor, taking into account the mass gap and
chemical potential at any temperature. In doing so, we consider
not too small atom-graphene separations in order to remain in
the application region of the Dirac model, where the dispersion
relation for graphene quasiparticles remains linear (this holds
at energies below 1–2 eV [5,28,54]). The material of a substrate
is described by a local isotropic dielectric function.

We present the expressions for the Casimir-Polder free
energy and force based on first principles of quantum elec-
trodynamics at nonzero temperature. The expressions are used
to compute the Casimir-Polder interaction between an atom
of metastable helium He∗ and a graphene sheet characterized
by various values of the mass gap and chemical potential.
This atom has a relatively large polarizability and has been
used in quantum reflection experiments that are sensitive to
the atom-surface interaction [55,56]. Similar computations are
performed for an atom of He∗ interacting with a graphene-
coated SiO2 substrate. All computations are made at room
temperature and at liquid nitrogen temperature. It is shown that
with increasing mass gap or chemical potential the magnitudes
of both the Casimir-Polder free energy and the Casimir-Polder
force decrease or increase, respectively. Thus, the impacts
of both parameters on the Casimir-Polder interaction are in
opposite directions and partially compensate each other. This
result is important from the experimental point of view. From
the theoretical viewpoint, the temperature dependence of the
Casimir-Polder force has attracted much interest, but it usually
manifests at a relatively large distance. For graphene, the
situation is more favorable because the thermal regime is
reached at shorter distances (well below 1 μm). We find that
a larger chemical potential suppresses the role of thermal
correction at all separations. By contrast, for a larger mass gap

the thermal effect is larger. For a graphene-coated substrate, the
Casimir-Polder interaction is stronger than for a bare substrate,
in particular, if the latter is dielectric but possesses physical
properties similar to those of a freestanding graphene sheet.

The paper is organized as follows. In Sec. II, the exact
formalism is presented including the analytic expressions
for the Casimir-Polder free energy and force in terms of
the polarization tensor of graphene with nonzero � and μ.
Section III reports the results of numerical computations of
the Casimir-Polder free energy and force between an atom of
He∗ and a freestanding graphene sheet. In Sec. IV, similar
results for an atom of He∗ interacting with a graphene-coated
SiO2 substrate are presented. Section V includes a discussion
and our conclusions.

II. EXACT FORMALISM IN THE FRAMEWORK
OF THE DIRAC MODEL

We consider an atom characterized by the frequency-
dependent isotropic electric dipole polarizability α(ω) at a
distance a from a graphene sheet deposited on a thick material
substrate (semispace) described by the frequency-dependent
dielectric permittivity ε(ω). Graphene is characterized by
the mass-gap parameter � = 2mc2, where m is the mass
of quasiparticles, and chemical potential μ. The considered
system is assumed to be at thermal equilibrium with the
environment at temperature T . The Casimir-Polder free energy
of an atom interacting with a graphene-coated substrate is given
by the Lifshitz formula [4,26], which we present in terms of
the dimensionless variables

F(a,T ) = −kBT

∞∑
l=0

′
α(iζlωc) tr G(a,iζlωc),

tr G(a,iζlωc) = 1

8a3

∫ ∞

ζl

dye−y
{
2y2RTM(iζl,y)

− ζ 2
l [RTM(iζl,y) + RTE(iζl,y)]

}
. (1)

Here, kB is the Boltzmann constant, the prime on the sum-
mation sign indicates that the term with l = 0 is divided
by 2, and the dimensionless Matsubara frequencies are ζl =
ξl/ωc, where ξl = 2πkBT l/h̄ with l = 0, 1, 2, . . . are the
dimensional Matsubara frequencies and ωc = c/(2a). The
electromagnetic Green tensor G (the free-space contribution to
G is subtracted) describes how the field emitted by the atomic
dipole is reflected by the surface, as encoded in the reflection
amplitudes RTM and RTE for two independent polarizations,
transverse magnetic (TM) and transverse electric (TE). Note
that the dimensionless integration variable y is connected with
the magnitude of the projection of the wave vector on the plane
of graphene, k⊥, by y = 2aql , where q2

l = k2
⊥ + ξ 2

l /c2.
The remaining undefined quantities in Eq. (1) are the re-

flection coefficients. They are expressed through the dielectric
permittivity of a substrate material εl ≡ ε(iξl) = ε(iζlωc) and
the dimensionless polarization tensor of graphene 	̃βγ , with
β, γ = 0, 1, 2 connected with the dimensional tensor 	βγ by

	̃βγ,l ≡ 	̃βγ (iζl,y) = 2a

h̄
	βγ (iξl,k⊥). (2)
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As the two independent components of 	βγ , it is customary
to choose 	00 and tr	, where tr	 = 	

β

β is the trace of the
polarization tensor. For our purposes, however, it is more con-
venient to consider, instead of tr	, the following combination:

	l = k2
⊥tr	l − q2

l 	00,l . (3)

In terms of the dimensionless quantities, Eq. (3) reduces to

	̃l = (2a)3

h̄
	l = (

y2 − ζ 2
l

)
tr	̃l − y2	̃00,l . (4)

The polarization tensor is directly connected with the
nonlocal dielectric permittivities along the graphene surface
(the longitudinal one) and perpendicular to it (the transverse
one) [32]:

εlong(iξl,k⊥) = 1 + 1

2h̄k⊥
	00(iξl,k⊥),

εtr(iξl,k⊥) = 1 + c2

2h̄k⊥ξ 2
l

	(iξl,k⊥). (5)

Taking into account the importance of the reflection coeffi-
cients in this formalism, we present them first in terms of

dimensional variables [33,53],

RTM(iξl,k⊥) =
εlql − kl + qlkl	00,l

h̄k2
⊥

εlql + kl + qlkl	00,l

h̄k2
⊥

,

RTE(iξl,k⊥) =
ql − kl − 	l

h̄k2
⊥

ql + kl + 	l

h̄k2
⊥

, (6)

where kl =
√

k2
⊥ + εlξ

2
l /c2.

For the case of an atom interacting with a freestanding
graphene sheet, we put εl = 1 and Eq. (6) simplifies to [28,57]

RTM(iξl,k⊥) = ql	00,l

ql	00,l + 2h̄k2
⊥

,

RTE(iξl,k⊥) = − 	l

	l + 2h̄k2
⊥ql

. (7)

If there is no graphene coating, 	00,l = 	l = 0, and Eq. (6)
returns us to the standard (Fresnel) reflection coefficients. In
terms of dimensionless variables introduced above, Eq. (6)
takes the form

RTM(iζl,y) =
εly

(
y2 − ζ 2

l

) +
√

y2 + (εl − 1)ζ 2
l

[
y	̃00,l − (

y2 − ζ 2
l

)]
εly

(
y2 − ζ 2

l

) +
√

y2 + (εl − 1)ζ 2
l

[
y	̃00,l + (

y2 − ζ 2
l

)] , RTE(iζl,y) =
(
y2 − ζ 2

l

)[
y −

√
y2 + (εl − 1)ζ 2

l

]−	̃l(
y2 − ζ 2

l

)[
y +

√
y2 + (εl − 1)ζ 2

l

]+	̃l

,

(8)

and Eq. (7) can be written as

RTM(iζl,y) = y	̃00,l

y	̃00,l + 2
(
y2 − ζ 2

l

) , RTE(iζl,y) = − 	̃l

	̃l + 2y
(
y2 − ζ 2

l

) . (9)

The explicit expressions for 	̃00,l and 	̃l for graphene with nonzero chemical potential were found in Ref. [52] and used in
Ref. [53] to investigate the joint action of � and μ on the thermal Casimir force. By using the dimensionless variables y and ζl ,
we represent the respective equations from Ref. [53] in a simpler form. At first it is convenient to write the quantities 	̃00,l and
	̃l as sums of two contributions,

	̃00,l(y,T ,m,μ) = 	̃
(0)
00,l(y,m) + 	̃

(1)
00,l(y,T ,m,μ), 	̃l(y,T ,m,μ) = 	̃

(0)
l (y,m) + 	̃

(1)
l (y,T ,m,μ), (10)

where the first terms on the right-hand side refer to undoped graphene with μ = 0 at zero temperature, whereas the second ones
account for the thermal effect and for the dependence on μ. Note that 	̃

(1)
00,l and 	̃

(1)
l may remain different from 0 even in the

limiting case T → 0 and, thus, must not be understood as thermal corrections. The explicit form for 	̃
(0)
00,l and 	̃

(0)
l is [27,28,53]

	̃
(0)
00,l(y,m) = α

y2 − ζ 2
l

pl

�(Dl), 	̃
(0)
l (y,m) = α

(
y2 − ζ 2

l

)
pl �(Dl), (11)

where α = e2/(h̄c) is the fine-structure constant, Dl = 4mca/(h̄pl),

�(x) = 2

[
x + (1 − x2) arctan

1

x

]
, pl ≡ pl(y) =

√
ṽ2

F y2 + (
1 − ṽ2

F

)
ζ 2
l , (12)

and the dimensionless Fermi velocity is ṽF = vF /c ≈ 1/300.
The explicit expressions for the second terms on the right-hand side of Eq. (10) were derived in Ref. [52] (see also Ref. [53]

for an equivalent representation). Using the dimensionless variables, they can be written as

	̃
(1)
00,l(y,T ,m,μ) = 4αpl

ṽ2
F

∫ ∞

Dl

duwl(u,y,T ,μ)

{
1 − Re

pl − plu
2 + 2iζlu[

p2
l − p2

l u
2 + ṽ2

F

(
y2 − ζ 2

l

)
D2

l + 2iζlplu
]1/2

}
,

	̃
(1)
l (y,T ,m,μ) = −4αpl

ṽ2
F

∫ ∞

Dl

duwl(u,y,T ,μ)

{
ζ 2
l − plRe

ζ 2
l − p2

l u
2 + ṽ2

F

(
y2 − ζ 2

l

)
D2

l + 2iζlplu[
p2

l − p2
l u

2 + ṽ2
F

(
y2 − ζ 2

l

)
D2

l + 2iζlplu
]1/2

}
. (13)
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Here, we have used the notation

wl(u,y,T ,μ) = 1

e
Blu+ μ

kB T + 1
+ 1

e
Blu− μ

kB T + 1
, Bl ≡ Bl(y,T ) = h̄c

4akBT
pl(y), (14)

where pl is defined in Eq. (12).
As shown in Eq. (13), the expressions for 	̃

(1)
00,l and 	̃

(1)
l with l � 1 are much more complicated than with l = 0, and it is

convenient to deal with them separately. Using Eqs. (10), (11), and (13), we first present the total quantities 	̃00,l and 	̃l at l = 0,

	̃00,0(y,T ,m,μ) = αy

ṽF

�(D0) + 16α

ṽ2
F

akBT

h̄c
ln

[(
e

μ

kB T + e
− mc2

kB T
)(

e
− μ

kB T + e
− mc2

kB T
)]

− 4αy

ṽF

∫ √
1+D2

0

D0

duw0(u,y,T ,μ)
1 − u2(

1 − u2 + D2
0

)1/2 ,

	̃0(y,T ,m,μ) = αṽF y3�(D0) + 4αṽF y3
∫ √

1+D2
0

D0

duw0(u,y,T ,μ)
−u2 + D2

0(
1 − u2 + D2

0

)1/2 , (15)

where

D0 = 2a�

h̄vF y
, B0 = h̄

4a

vF y

kBT
. (16)

For l � 1 one can use approximate expressions for 	̃
(1)
00,l and 	̃

(1)
l much simpler than those presented in Eq. (13) with no loss

of accuracy. It was shown that for all l � 1 under the condition ζ1 
 ṽF [which is equivalent to kBT 
 h̄vF /(4πa)], Eqs. (10),
(11), and (13) lead to [43,53]

	̃00,l(y,T ,m,μ) ≈ α
(
y2 − ζ 2

l

)
ζl

[
�

(
4mca

h̄ζl

)
+ Ỹl(y,T ,m,μ)

]
, 	̃l(y,T ,m,μ) ≈ αζl

(
y2 − ζ 2

l

)[
�

(
4mca

h̄ζl

)
+ Ỹl(y,T ,m,μ)

]
,

(17)

where

Ỹl(y,T ,m,μ) = 2
∫ ∞

4mca
h̄ζl

duwl(u,y,T ,μ)
u2 + (

4mca
h̄ζl

)2

u2 + 1
. (18)

Note that for a = 50 nm at T = 300 K the first dimen-
sionless Matsubara frequency ζ1 is larger than ṽF by a factor
of 25 (and more for larger separations). Because of this, the
use of the approximate expression, (17), leads to a practically
exact Casimir-Polder free energy and force (the relative error
is less than 0.02% [43]) if the zero-frequency contributions
to them are calculated using the exact Eq. (15). Computations
show that even at liquid nitrogen temperature (T = 77.2 K) for
a > 50 nm (ζ1/ṽF > 6.4) the use of Eq. (17) for l � 1 allows
the computation of the Casimir-Polder interaction accurate to
a fraction of a percent.

As an illustration, in Fig. 1 we present the 00 component of
the polarization tensor, 	00(iξ,k⊥) [Fig. 1(a)], and the quantity
	(iξ,k⊥) [Fig. 1(b)], defined in Eq. (3), as functions of ξ/ξ1,
where ξ varies along the imaginary frequency axis and ξ � ξ1.
Computations are performed using Eqs. (2), (4), (15), and
(17) for a gapless graphene (m = 0) at k⊥ = 10ξ1/c at room
temperature T = 300 K (solid lines) and at liquid nitrogen
temperature T = 77 K (dashed lines). The lines of each kind
from bottom to top are plotted for the chemical potential
μ = 0, 0.2, and 0.5 eV, respectively (see the discussion of
typical values taken by the chemical potential of graphene
samples in Sec. III). At zero Matsubara frequency 	00 takes the
values 0.507, 11.0, and 27.5 μeV s/m (T = 77 K) and 1.97,
11.0, and 27.5 μeV s/m (T = 300 K) for μ = 0, 0.2, and

0.5 eV, respectively. The quantity 	 at zero Matsubara
frequency takes the values 0.021, 0, and 0 eV s/m3 (T = 77 K)
and 1.25, 0.0022, and 0 eV s/m3 (T = 300 K) for μ = 0,
0.2, and 0.5 eV, respectively. As shown in Fig. 1, the quantity
	00 decreases and the quantity 	 increases monotonously
with an increase in ξ . In all cases the magnitudes of both 	00

and 	 are larger for higher temperatures and larger chemical
potentials. From Figs. 1(a) and 1(b) one can conclude that
the impact of μ on the values of 	00 and 	 decreases with
increasing frequency.

As a result, the Casimir-Polder free energy of an atom
interacting with a freestanding graphene sheet or graphene-
coated substrate can be computed by Eqs. (1) and (8) or (9)
where the polarization tensor is given in Eqs. (10), (11) and
(13), or (15) and (17). To calculate the respective Casimir-
Polder force, one should use the Lifshitz formula [4]

F (a,T )

= −kBT

8a4

∞∑
l=0

′
α(iζlωc)

∫ ∞

ζl

ydye−y

× {
2y2RTM(iζl,y) − ζ 2

l [RTM(iζl,y) + RTE(iζl,y)]
}

(19)

in place of Eq. (1).

III. INTERACTION WITH A FREESTANDING DOPED
GRAPHENE SHEET

Here, we calculate the Casimir-Polder free energy and
force for an atom of metastable helium (He∗) interacting
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FIG. 1. (a) The 00 component of the polarization tensor 	00 and
(b) the combination of its components 	 are shown at T = 300 K
(solid lines) and at T = 77 K (dashed lines) for k⊥ = 10ξ1/c as
functions of ξ/ξ1 along the imaginary frequency axis for ξ � ξ1.
The lines of each kind, from bottom to top, are plotted for a gapless
graphene with μ = 0, 0.2, and 0.5 eV, respectively. Here and in all
other figures, we take for the Fermi velocity the value vF = c/300.

with a freestanding graphene sheet. All computations are
performed by using Eqs. (1) and (19) where the reflection
coefficients are given by Eq. (9) and the polarization tensor
by Eqs. (15) and (17), and we vary the mass-gap parameter
and the chemical potential. These computations require data
for the He∗ polarizability α(iξ ) as a function of the imaginary
frequency. Below we use the highly accurate polarizability
from Refs. [58] and [59], which has a relative error of order
10−6. It is shown in Fig. 2 by the solid line as a function of the

frequency, normalized to its static value α(0) = 46.7727 Å
3

[60]. Note that the dynamic polarizability is often represented
using the single-oscillator model [59–62]

α(iξ ) = α(0)

1 + ξ 2

ω2
0

, (20)

where for He∗ one has ω0 = 1.793 × 1015 rad/s [60]. In Fig. 2,
the latter is shown by the dashed line, and it is seen that
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FIG. 2. The highly accurate and single-oscillator dynamic atomic
polarizabilities of He∗ normalized to their static value are shown as
functions of the imaginary frequency by the solid and dashed lines,
respectively. Inset: The region of high frequencies on an enlarged
scale.

the major deviations between the highly accurate and the
single-oscillator data for the dynamic polarizability occur in
the region of high frequencies (see inset, at an enlarged scale).
This corresponds to atom-graphene separations of order 10 nm
or shorter.

In Fig. 3(a) we present the computational results for the
magnitude of the Casimir-Polder free energy as functions of
the separation. For ease of representing the data, we multiply
them by the third power of separation between an atom of He∗

and a graphene sheet. The computations are done for a gapless
graphene (� = 0) at room temperature T = 300 K (solid lines)
and at liquid nitrogen temperature T = 77 K (dashed lines).
We use a value for the Fermi velocity of vF ≈ c/300. For the
three solid (and three dashed) lines considered from bottom to
top the chemical potential of graphene μ is equal to 0, 0.2, and
0.5 eV, respectively.

Note that the chemical potential can be expressed via the
doping concentration n [63],

μ = h̄vF

√
πn. (21)

In Ref. [35], n was estimated as ≈1.2 × 1010 cm−2 for nearly
undoped graphene under high-vacuum conditions. This leads
to a chemical potential that does not exceed a value of μ ≈
0.02 eV. The values of μ = 0.2 and 0.5 eV occur at doping
concentrations n ≈ 3 × 1012 and 2 × 1013 cm−2.

As shown in Fig. 3(a), the magnitude of the Casimir-Polder
free energy quickly decreases with increasing atom-graphene
separation. In so doing at all considered separations and
temperatures the magnitude of the free energy is larger for
graphene with a larger chemical potential. This result is in
agreement with the result obtained in Ref. [52] for the Casimir
interaction of a graphene sheet with an ideal-metal plane. In
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FIG. 3. (a) The magnitudes of the Casimir-Polder free energy
multiplied by the third power of the separation between an atom of
He∗ and a gapless graphene are shown as functions of the separation
at T = 300 K (solid lines) and T = 77 K (dashed lines). The lines
of each kind, from bottom to top, are plotted for graphene with
μ = 0, 0.2, and 0.5 eV, respectively. (b) The relative changes in the
Casimir-Polder free energy due to nonzero chemical potential are
shown as functions of the separation by the solid and dashed lines
at T = 300 K and T = 77 K, respectively. The lines of each kind,
from bottom to top, are for graphene with μ = 0.1, 0.2, and 0.5 eV,
respectively.

Fig. 3(a) it is also shown that the distance between the pair of
bottom solid and dashed lines is much larger than that between
the pair of top ones. This means that the thermal contribution
to the Casimir-Polder interaction decreases with increasing
chemical potential. Note also that it becomes significant at
much shorter distances compared to the Casimir-Polder inter-
action with a bulk substrate.

In Fig. 3(b) we especially consider the relative change in the
Casimir-Polder free energy which occurs when the chemical
potential of a graphene sheet becomes unequal to 0:

δμF(a,T ) = F(a,T ,μ) − F(a,T ,0)

F(a,T ,0)
. (22)

The quantity δμF(a,T ), as a function of the separation, is
plotted in Fig. 3(b) at T = 300 K (solid lines) and T = 77 K
(dashed lines). The solid (and dashed) lines considered
from bottom to top correspond to μ = 0.1, 0.2, and 0.5 eV,
respectively. In Fig. 3(b) it is shown that at a lower temperature
(T = 77 K) the relative differences in the Casimir-Polder free
energy are much larger than at T = 300 K. It is also shown
that at T = 77 K all the dashed lines reach the maximum value
at some separation, whereas at T = 300 K only the top solid
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FIG. 4. (a) The magnitudes of the Casimir-Polder force multiplied
by the fourth power of the separation between an atom of He∗ and
a gapless graphene are shown as functions of the separation at T =
300 K (solid lines) and T = 77 K (dashed lines). The lines of each
kind, from bottom to top, are plotted for graphene with μ = 0, 0.2, and
0.5 eV, respectively. (b) The relative changes in the Casimir-Polder
force due to nonzero chemical potential are shown as functions of
the separation by the solid and dashed lines at T = 300 K and T =
77 K, respectively. The lines of each kind, from bottom to top, are for
graphene with μ = 0.1, 0.2, and 0.5 eV, respectively.

line reaches the maximum value in the considered separation
region from 50 nm to 1 μm.

Similar results for the Casimir-Polder force computed using
Eq. (19) are presented in Fig. 4 using the same parameters
and the same notation for all lines. As shown in Fig. 4(a), the
magnitude of the Casimir-Polder force decreases even more
quickly than the free energy with increasing separation. At each
separation it is larger for a larger chemical potential. As it holds
for the free energy, the thermal effect in the Casimir-Polder
force is larger for graphene with a lower chemical potential.

In Fig. 4(b) the relative change in the Casimir-Polder force
due to nonzero chemical potential, defined in the same way
as in Eq. (22), is plotted as a function of the separation at
T = 300 K (solid lines) and T = 77 K (dashed lines) for
μ = 0.1, 0.2, and 0.5 eV, respectively, when the lines are
considered from bottom to top. It is seen that, again, the relative
impact of nonzero μ on the Casimir-Polder force is greater at
lower temperatures. The maximum values of δμF are reached
at larger separations than for δμF .

Now we consider the Casimir free energy between an atom
of He∗ and a graphene sheet with different values of the
mass gap � = 2mc2 as a function of the chemical potential
μ. In fact for a perfect (pristine) graphene the Dirac-type
electronic quasiparticles are massless, so that m = 0, � = 0.
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FIG. 5. (a) The magnitudes of the Casimir-Polder free energy
multiplied by the third power of the separation between an atom of
He∗ and a gapped graphene are shown at T = 300 K (solid lines) and
T = 77 K (dashed lines) as functions of the chemical potential for
(a) a = 100 nm and (b) a = 500 nm. The lines of each kind, from
bottom to top, are plotted for graphene with � = 0.2, 0.1, and 0 eV,
respectively.

For real graphene samples, however, the account of inter-
electron interactions, structural defects, and the presence of a
substrate may lead to some nonzero mass gap estimated as � �
0.2 eV [5,64–66].

In Fig. 5 we plot the magnitude of the Casimir-Polder free
energy between an atom of He∗ and a gapped graphene sheet at
T = 300 K and T = 77 K as a function of the chemical poten-
tial μ at a = 100 nm [Fig. 5(a)] and a = 500 nm [Fig. 5(b)]. At
both temperatures, the mass gap is � = 0.2, 0.1, and 0 eV, from
bottom to top. As shown in Figs. 5(a) and 5(b), at all values
of μ and T an increase in the mass gap results in a decrease
in the magnitude of the Casimir-Polder free energy. As for the
thermal effect, it becomes larger for graphene sheets with a
larger mass gap. In Figs. 5(a) and 5(b) it can be seen that the
dependence of a3|F | on μ exhibits some kinds of steps which
are better seen in the case of the lower temperature (dashed

lines). This is because with decreasing T the contribution of the
first fraction in the first line on the right-hand side of Eq. (14)
becomes negligibly small, whereas the major part of the
contribution of the second fraction appears under the condition

Blu − μ

kBT
< 0. (23)

Taking into account the definition of Bl in Eq. (14) and the
fact that the integration in Eq. (13) is over the interval u � Dl ,
we find from Eq. (23) that with decreasing temperature
the major contribution to 	̃

(1)
00,l and 	̃

(1)
l appears under the

condition 2mc2 = � < 2μ. If this condition is not satisfied,
with decreasing temperature the free energy becomes almost
independent of μ [53]. The latter explains the characteristic
flat regions of the dashed lines in the vicinity of zero μ. As for
the second steps at nonzero μ, which are clearly shown by the
dashed lines in Fig. 5(b), they are explained by an interplay
between the condition � < 2μ, whose influence is only
partial at nonzero temperature, and the role of thermal effects
determined by the effective temperature Teff = h̄vF /(2akB).
This takes the value Teff ≈ 38 K at a ≈ 100 nm.

Figure 6 demonstrates similar computational results for the
magnitude of the Casimir-Polder force multiplied by the fourth
power of the separation between an atom of He∗ and a gapped
graphene sheet. All the notations are the same as in Fig. 5. In
Figs. 6(a) and 6(b), plotted at a = 100 and 500 nm, respec-
tively, it is shown that with increasing mass gap the magnitude
of the Casimir-Polder force at some fixed temperature and
chemical potential becomes smaller. The thermal effect in the
Casimir-Polder force becomes larger for larger mass-gap pa-
rameters. The step structure clearly shown by the dashed lines
plotted at T = 77 K is explained by the same factors as for the
Casimir-Polder free energy. It is interesting that at a = 100 nm,
μ > 0.04 eV, the Casimir-Polder force calculated at T = 77 K
for graphene with � = 0 becomes larger in magnitude than
that at T = 300 K for graphene with � = 0.2 eV [see the top
dashed and bottom solid lines in Fig. 6(a)]. This means that the
effect of the chemical potential on the Casimir-Polder force can
exceed the thermal effect. In a similar way, at a = 100 nm, μ >

0.16 eV, the Casimir-Polder force calculated at T = 77 K for
graphene with � = 0.1 eV reaches and remains equal to that at
T = 300 K for graphene with� = 0.2 eV [compare the bottom
solid and the next-to-the-bottom dashed lines in Fig. 6(a)].

To conclude this section we note that the thermal depen-
dence of the Casimir-Polder free energy and force consists
of two contributions. The first originates from the summation
over the Matsubara frequencies in the Lifshitz formulas, (1)
and (19), when the polarization tensor at zero temperature
is used in computations. The second is from an explicit
temperature dependence of the full polarization tensor defined
at nonzero temperature. In Ref. [36] it was shown that for
a gapped graphene with zero chemical potential the explicit
temperature dependence of the polarization tensor contributes
to the thermal Casimir-Polder interaction significantly. Thus,
this contribution is equal to 23% of the total Casimir-Polder
free energy for a gapless graphene at a = 1 μm, T = 300 K,
and it increases quickly with increasing mass gap, reaching
more than 80% of the free energy [36]. A similar situation holds
for graphene with nonzero chemical potential satisfying the
condition 2μ < �. Under this condition the chemical potential
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FIG. 6. (a) The magnitudes of the Casimir-Polder force multiplied
by the fourth power of the separation between an atom of He∗ and
a gapped graphene are shown at T = 300 K (solid lines) and T =
77 K (dashed lines) as functions of the chemical potential for (a) a =
100 nm and (b) a = 500 nm. The lines of each kind, from bottom to
top, are plotted for graphene with � = 0.2, 0.1, and 0 eV, respectively.

does not influence the value of the polarization tensor at zero
temperature [53], so that

	̃00,l(y,0,m,μ) = 	̃
(0)
00,l(y,m),

	̃l(y,0,m,μ) = 	̃
(0)
l (y,m) (24)

for μ < mc2. In this regime, the quantities 	̃
(1)
00,l and 	̃

(1)
l in

Eq. (10) vanish when T → 0 and, thus, coincide with the
thermal corrections. If, however, the condition 2μ > � is
satisfied, the polarization tensor becomes μ dependent even
at zero temperature:

	̃00,l(y,0,m,μ) = 	̃
(0)
00,l(y,m) + 	̃

(1)
00,l(y,0,m,μ),

	̃l(y,0,m,μ) = 	̃
(0)
l (y,m) + 	̃

(1)
l (y,0,m,μ). (25)

The second terms on the right-hand side of Eq. (25) in-
crease the polarization tensor at T = 0 significantly. As a
result, the explicit temperature dependence of the polarization

tensor plays a weaker role and the Casimir-Polder free energy
and force become temperature dependent, mainly because of
the Matsubara summation. Thus, for� = 0 andμ = 0.1 eV the
explicit dependence of the polarization tensor on T contributes
only 0.24% and 0.12% to the total Casimir-Polder free energy
at a = 100 nm and 1 μm, respectively. If μ = 0.2 eV, this
contribution is equal to 0.24% and 0.06% at the same respective
separations. One can conclude that with respect to the relative
roles of two thermal contributions to the Casimir-Polder free
energy, the mass gap and chemical potential again exert their
influences in opposite directions.

In the next section we consider how the above results for
the Casimir-Polder free energy and force are modified when
the graphene sheet is deposited on a material substrate.

IV. INTERACTION WITH A SUBSTRATE COATED
WITH DOPED GRAPHENE

Here, we consider the Casimir-Polder interaction of a He∗

atom with a graphene sheet deposited on an amorphous silica
(SiO2) substrate. This material is often used for the deposition
of graphene [35,67]. Computations of the Casimir-Polder free
energy and force using Eqs. (1) and (19) with the reflection
coefficients, (8), require the values of the dielectric permit-
tivity of SiO2, εl , at the imaginary Matsubara frequencies. A
sufficiently exact approximation for εSiO2 along the imaginary
frequency axis is given by the two-oscillator model [68,69]

εSiO2 (iξ ) = 1 + CUVω2
UV

ξ 2 + ω2
UV

+ CIRω2
IR

ξ 2 + ω2
IR

, (26)

with “oscillator strengths” CUV = 1.098 and CIR = 1.703
and “resonance frequencies” ωUV = 2.033 × 1016 rad/s and
ωIR = 1.88 × 1014 rad/s.

We begin by considering the change in the Casimir-Polder
free energy when the SiO2 plate is coated with a graphene
sheet. For this purpose we calculate the dimensionless ratio

δgFSiO2 (a,T ) = F g

SiO2
(a,T ) − FSiO2 (a,T )

FSiO2 (a,T )
, (27)

where F g

SiO2
and FSiO2 are the free energies of an atom

interacting with the graphene-coated and uncoated SiO2 plates,
respectively. The quantity FSiO2 is calculated using the same
Lifshitz formula, (1), as for F g

SiO2
, but in the reflection coeffi-

cients, (8), one should put 	̃00,l = 	̃l = 0 and obtain

R
SiO2
TM (iζl,y) =

εly −
√

y2 + (εl − 1)ζ 2
l

εly +
√

y2 + (εl − 1)ζ 2
l

,

R
SiO2
TE (iζl,y) =

y −
√

y2 + (εl − 1)ζ 2
l

y +
√

y2 + (εl − 1)ζ 2
l

. (28)

First, we focus on gapless (� = 0) graphene and vary the
chemical potential.

In Fig. 7(a), the computational results for the relative change
δgFSiO2 due to the presence of graphene are shown as functions
of the separation by the solid and dashed lines at T = 300 and
77 K, respectively. Both the solid and the dashed lines, from
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FIG. 7. The relative changes in the Casimir-Polder free energy
for an atom of He∗ interacting with a gapless graphene deposited
on a SiO2 substrate due to (a) the presence of graphene (solid
and dashed lines, from bottom to top, are for μ = 0, 0.1, 0.2, and
0.5 eV, respectively) and (b) the nonzero chemical potential (solid and
dashed lines, from bottom to top, are for μ = 0.1, 0.2, and 0.5 eV,
respectively) are shown as functions of the separation. Solid lines are
computed at T = 300 K; dashed lines, at T = 77 K.

bottom to top, correspond to the chemical potential, equal to
0, 0.1, 0.2, and 0.5 eV, respectively. As shown in Fig. 7(a),
the Casimir-Polder free energy increases in magnitude when
the silica substrate is coated with graphene. For each value
of μ the quantity δgFSiO2 reaches a minimum value at rather
short separations and then increases with increasing a rather
quickly (at T = 300 K) or slowly (at T = 77 K). For larger μ

the relative change δgFSiO2 takes larger values at all separations.
In Fig. 7(b) the computational results for the relative change

δμF [Eq. (22)] in the Casimir-Polder free energy, which occurs
when μ becomes unequal to 0, are plotted for the case of
gapless graphene deposited on a SiO2 substrate. Note that
in the definition of this quantity, (22), F on the right-hand
side should be replaced with Fg

SiO2
, and δμF with δμFSiO2 .

The computational results for δμFSiO2 are shown in Fig. 7(b)
by the solid lines at T = 300 K and by the dashed lines at
T = 77 K as functions of the separation. The lines of both
kinds, from bottom to top, correspond to μ = 0.1, 0.2, and
0.5 eV, respectively. Note that with decreasing temperature
(dashed lines) the relative change in the Casimir-Polder free
energy due to nonzero μ for graphene deposited on a substrate
becomes almost independent of the separation. This is different
from the case of a freestanding graphene sheet [see Fig. 3(b)].

Next we consider the dependence of the Casimir free energy
on both the chemical potential and the mass-gap parameter
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FIG. 8. The magnitudes of the Casimir-Polder free energy mul-
tiplied by the third power of the separation a = 0.5 μm between
an atom of He∗ and a graphene-coated SiO2 substrate are shown at
T = 300 K (solid lines) and at T = 77 K (dashed lines) as functions
of (a) the chemical potential and (b) the mass-gap parameter. The
lines of each kind, from bottom to top, are plotted for graphene with
(a) � = 0.2, 0.1, and 0 eV and (b) μ = 0.01, 0.2, and 0.5 eV,
respectively.

of the graphene coating. In Fig. 8 the magnitudes of the free
energy of an atom of He∗ interacting with a graphene-coated
SiO2 substrate multiplied by the third power of the separation
a = 0.5 μm are plotted by the solid and dashed lines at
T = 300 K and T = 77 K, respectively, as functions of the
chemical potential μ [Fig. 8(a)] and the mass-gap parameter
� [Fig. 8(b)]. The lines of each type, from bottom to top,
correspond to � = 0.2, 0.1, and 0 eV [Fig. 8(a)] and μ = 0,
0.1, 0.2, and 0.5 eV [Fig. 8(b)].

As shown in Fig. 8(a), with increasing � the magnitude
of the Casimir-Polder free energy decreases, and this effect is
more pronounced at lower temperatures. This is in agreement
with the case of a freestanding graphene sheet. The comparison
of Fig. 8(a) with Fig. 5(b) plotted for a freestanding graphene
at the same distance from an atom, a = 0.5 μm, shows that for
a graphene-coated substrate we have a strong increase in the
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magnitude of the free energy. This is explained by the role of
the SiO2 substrate. At the same time, the fine structure of the
lines (including the steps typical for the dashed lines discussed
in Sec. III) is caused by the presence of the graphene coating.

From Fig. 8(b) one concludes that the impact of the chemical
potential on the Casimir-Polder free energy is just the opposite,
compared to the impact of �. Specifically, with increasing
μ the magnitude of the free energy |Fg

SiO2
| increases and the

thermal correction becomes smaller. With increasing mass-
gap parameter, |Fg

SiO2
| decreases slowly when the chemical

potential is relatively large (μ = 0.5 or 0.2 eV) and more
rapidly for μ = 0.1 eV or for undoped graphene.

Similar computations have been performed for the
Casimir-Polder force between an atom of He∗ and a
graphene-coated SiO2 substrate. Using the same notations
as in Fig. 8, the computational results for the magnitude of
the Casimir-Polder force multiplied by the fourth power of
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FIG. 9. The magnitudes of the Casimir-Polder force multiplied
by the fourth power of the separation a = 0.5 μm between an atom
of He∗ and a graphene-coated SiO2 substrate are shown at T = 300 K
(solid lines) and at T = 77 K (dashed lines) as functions of (a) the
chemical potential and (b) the mass-gap parameter. The lines of each
kind, from bottom to top, are plotted for graphene with (a) � = 0.2,
0.1, and 0 eV and (b) μ = 0.01, 0.2, and 0.5 eV, respectively.

the separation a = 0.5 μm are shown as functions of the
chemical potential μ in Fig. 9(a) and as functions of the
mass-gap parameter in Fig. 9(b). As shown in Figs. 9(a) and
9(b), qualitatively the character of the quantity a4|F g

SiO2
| is

the same as a3|F g

SiO2
|. Specifically, the increase in μ and

� impacts |F g

SiO2
| in opposite directions, by increasing and

decreasing it, respectively. Comparison of Fig. 9(a) with
Fig. 6(b) again demonstrates that the main contribution to the
force magnitude is made by the substrate, whereas the fine
structure of the force lines is caused by the graphene coating.
We also note that the lines for the Casimir-Polder force at 77
and 300 K cross [compare the top dashed line with the bottom
solid line in Fig. 9(b)]. This illustrates the wide tuning range
that becomes available by changing the chemical potential.

V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the Casimir-Polder
interaction between an atom and a freestanding graphene
sheet characterized by some chemical potential and mass-gap
parameter. The interaction of an atom with a graphene-coated
substrate was also considered. For this purpose, we used the ex-
act formalism of the polarization tensor in (2 + 1)-dimensional
space-time, developed in the framework of the Dirac model.
This approach permits a detailed analysis of the impact of a
nonzero chemical potential of gapped graphene on the Casimir-
Polder free energy and force at arbitrary temperature and at not
too short separations between an atom and a graphene sheet
or a graphene-coated substrate. Keeping in mind that during
the last few years the Casimir-Polder interaction has found
numerous and diverse applications (see, e.g., Refs. [55], [56],
and [70–78]), the elaboration of the corresponding theoretical
formalism for graphene, started in Refs. [20–25] and [36–41],
should be considered rather promising.

The developed theory was applied to compute the Casimir-
Polder free energy and force between an atom of metastable
helium He∗ and graphene sheets with various chemical poten-
tial μ and mass-gap parameter � values. These computations
have been made possible by the use of Eq. (9) combined with
Eqs. (15) and (17), accounting for the mass gap and chemical
potential. It was shown that with increasing μ the magnitudes
of both the Casimir-Polder free energy and the Casimir-Polder
force increase. By contrast, with increasing � the magnitudes
of both the free energy and the force decrease. Thus, the
impacts of nonzero μ and � on the Casimir-Polder interaction
in real graphene samples partially compensate each other. It
was also shown that for graphene with larger μ the thermal
effect in the Casimir-Polder interaction is smaller, whereas for
graphene with larger mass gaps � the thermal effect is larger.

The obtained results can be understood qualitatively on sim-
ple physical grounds. The point is that increasing μ increases
the size of the Fermi surface, thus increasing the density of
charge carriers and the electrical conductivity of graphene.
It is then quite natural that the reflection amplitudes and the
Casimir-Polder force increase in magnitude. By contrast, an
increase in the mass gap decreases the mobility of charge
carriers, which, in turn, decreases the conductivity and, thus,
the force magnitude. We have also found that with decreasing
temperature the functional dependences of both the Casimir-
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Polder free energy and the Casimir-Polder force possess some
kind of step structure depending on the relationship between
the � and the 2μ values.

Similar computations of the Casimir-Polder free energy and
force have been performed for an atom of He∗ interacting
with a graphene sheet deposited on a SiO2 substrate. These
computations have been made possible by the use of Eq. (8)
combined with Eqs. (15) and (17). Qualitatively the same
results as for a freestanding graphene sheet were obtained,
the only difference being that the magnitudes of both the
Casimir-Polder free energy and the Casimir-Polder force are
much larger due to the role of the substrate. Specifically, it was
shown that the nonzero chemical potential and mass gap act
on the Casimir-Polder interaction in opposite directions and
partially compensate each other.

The obtained results allow reliable calculation of the
Casimir-Polder interaction between any atom and real

graphene sheets, both freestanding and deposited on substrates
made of different materials. These results demonstrate the
possibility of tuning the Casimir-Polder interaction over a
relatively wide range by changing the doping concentration
in graphene. This may be useful for future experiments
probing the interaction of atoms with graphene and other
two-dimensional nanostructures.
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