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The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently
been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and
we introduce codes of this type here. These codes have yet to be compared using the same error model; we provide
such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss
channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication
rates of the combined encoding-error-recovery channel by calculating the channel’s hashing bound for each code.
Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates.
Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other
codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases
monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence
of the cat-binomial-GKP order of performance occurring at small loss rates, we analytically evaluate the quantum
error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement
fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial
codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multiqubit
permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce
check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of
spin-coherent states, extending our characterization to qudit binomial codes and yielding a multiqudit code.
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I. INTRODUCTION AND PROBLEM SETUP

Continuous-variable (CV) systems [1–4] continue to gain
applications in quantum information processing and commu-
nication. The fundamental “moving part” of discrete-variable
(DV) systems is one physical qubit, and one has to have a
multitude of such qubits to construct a reliable logical qubit.
By contrast, one may cleverly utilize the infinite-dimensional
space of an oscillator or mode—the fundamental “moving
part” of CV systems—in order to realize a comparably reliable
logical qubit out of fewer moving parts. While many current
linear-optical CV encodings use two modes per qubit in a
“dual-rail” scheme [5,6] and CV logical qubits may consist of
several modes in the long term, here we focus on a single mode
since its theoretical limitations are not yet well understood and
since it is useful for communication.

There have been several error-correcting CV encoding
schemes proposed to date, formulated in terms of superpo-
sitions of either position and momentum eigenstates [7–12],
coherent states [13–17], or Fock states [18–24] (see also other
hybrid CV-DV schemes [25,26]). Besides the rich variety of
quantum codes, there are two prevailing CV noise models:
classical (i.e., Gaussian or displacement) noise and pure loss
(more generally, thermal noise) [2]. Classical noise is modeled
by a distribution of phase-space displacements while pure loss
contracts phase space to the vacuum and is best understood
in terms of losses. Because of the differing physical pictures

and mathematical formalisms of these noise models, codes
designed to protect against one may or may not protect against
the other. However, it is often difficult to rigorously prove
protection from noise against which a code was not designed
to protect. It is also difficult to study CV codes using the
conventional stabilizer formalism because the noise model
operators are not as well behaved. This paper closes these gaps
by applying tools from qubit-based quantum error correction
to CV codes which were not analyzed in this manner before.

A. Codes and error model

The code classes we consider are

code ∈ {cat,bin,num,gkps,gkp}. (1.1)

The logical states for the first code class—the cat codes
(5.1)—consist of superpositions of coherent states which are
evenly distributed around a circle in phase space [13,15,27].
The second class of codes, the recently developed binomial
(bin) codes (6.1), are designed to protect exactly against
errors consisting of powers of raising or lowering operators
up to some maximum order [23]. Here we show that bin
codes are spin-coherent states embedded in an oscillator. We
also include numerically (num) optimized codes (some from
Ref. [23] and the rest developed here) that were obtained
by minimizing the photon number of the code states subject
to the constraints of protecting exactly against the first few
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FIG. 1. Wigner function plots for maximally mixed logical states 1
2 Pcode for code being cat (5.1), bin (6.1), num (Appendix B), gkps

(7.7b), and gkp (7.8), evaluated for given values of the respective parameters of the codes. On the axes, Q = 1
2 〈â + â†〉 and I = i

2 〈â† − â〉;
color scales are not the same for all plots.

powers of the lowering operator. The last class consists of GKP
codes [9] which are the +1 eigenspace of two commuting
phase-space displacement operators; since the code space is
invariant under both displacements, the code space makes a
lattice in phase space. The gkps (7.8) class, with s standing
for square, corresponds to a square lattice. The gkp (B4) class
consists of GKP codes built out of both the square and other
nonrectangular lattices as well as codes whose lattice is shifted
by half a lattice spacing from the origin, thus subsuming the
gkps class. The gkps codes are presented separately in order
to quantify any advantages of other lattices.

A single-mode qubit CV code is a two-dimensional sub-
space of the bosonic Hilbert space picked to be able to protect
quantum information against errors.1 It is unambiguously
represented by the corresponding orthogonal projection onto
the subspace,

Pcode = |0code〉〈0code| + |1code〉〈1code|, (1.2)

wherecode is picked from Eq. (1.1) and |μcode〉 (forμ ∈ {0,1})
is any orthonormal basis for the code subspace. The maximally
mixed state 1

2Pcode thus provides a concise basis-independent
fingerprint for each code; we plot the Wigner function of this
state in Fig. 1.

We deal exclusively with codes representing a single qubit
and are guided by the following question: Which code best
protects against the pure-loss channel?

We are interested in the pure-loss channel because it is a
model for broadband-line and free-space communication [3]
and it is the most common incoherent error process in optical
and microwave cavities [23]. The second most common error is
cavity dephasing, which is caused by fluctuations in the cavity
frequency. Optical cavities have to be actively stabilized to fix
the frequency, but the effects of such fluctuations are small
relative to effects of energy loss, particularly in microwave
cavities. There are also other coherent error processes, such
as a Kerr nonlinearity [29], which we briefly consider in
Sec. VIII A.

The pure-loss bosonic channel (also known as bosonic
amplitude damping or, more simply, as the lossy channel
[2]) is Markovian: N = exp(χD) with superoperator D(·) =

1While there is a more general definition for multiqubit subsystem
codes [28], we stick with the simpler definition since to our knowledge
there are no single-mode CV subsystem codes.

â · â† − 1
2 {n̂,·}, where a(a†) is the lowering (raising) operator

for the bosonic mode and n̂ ≡ â†â. The dimensionless damping
parameter equals χ = κt for microwave or optical cavities
(with excitation loss rate κ and time interval t) or χ = l/ latt for
optical fibers (with fiber length l and attenuation length latt). It
is convenient to use the dimensionless loss rate

γ ≡ 1 − e−χ (1.3)

to quantify the severity of the error channel, denoted as
N ≡ Nγ from now on. This channel can be expressed via
unraveling [18,30–32] or Lie-algebraic [33] techniques in
the Kraus representation, Nγ (·) = ∑∞

�=0 E� · E
†
� , with Kraus

operators

E� ≡
(

γ

1 − γ

)�/2
â�

√
�!

(1 − γ )n̂/2. (1.4)

To leading order in γ , expansions of the first two Kraus
operators suffice:

E0 = I − 1
2γ n̂ and E1 = √

γ â. (1.5)

This channel can also be derived by introducing an environ-
ment mode b̂, coupling our oscillator with the vacuum state of
this mode via a beam-splitter interaction

â →
√

1 − γ â + √
γ b̂ (1.6)

and tracing out the b̂ mode [3,34]. The K-mode channel N⊗K
γ

reduces to the multiqubit amplitude damping channel when
restricted to the first two Fock states of each mode and reduces
to the erasure channel when restricted to the single-excitation
subspace.

Notice that this channel does not contain the identity as
a Kraus operator for γ 
= 0. This is due to the backaction
or damping term (1 − γ )n̂/2 in Eq. (1.4), which reduces the
probabilities of being in Fock states |n > 0〉 such that the only
state remaining in the γ → 1 limit is the vacuum Fock state
|n = 0〉. Thus, when no losses are recorded (i.e., if E�>0 has
not yet acted on the state), there is still a redistribution of
probability caused by E0. Colloquially for γ > 0, if one has
not lost any photons, then one likely did not have many photons
to begin with.
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B. Channel fidelity and recovery optimization

The combined quantum channel we consider consists of
an encoding step Scode, action of the pure-loss channel Nγ , a
recovery channel R, and a perfect decoding step S−1

code. The
encoding step maps the quantum information from the qubit
source space A [35] into the code subspace of the bosonic
Hilbert space; this step is represented byScode. More precisely,
Scode(ρ) = SρS−1, where S = |0code〉〈0A| + |1code〉〈1A|, ρ is
a qubit density matrix in A, and |0A/1A〉 is a basis for A. There-
fore, SS−1 = Pcode and, if {|0code〉,|1code〉} are orthonormal,
S−1S = IA, the identity on A. The combined channel

E ≡ S−1
code ◦ R ◦ Nγ ◦ Scode (1.7)

thus maps density matrices in A back to A. In contrast, R ◦ Nγ

is a map from the bosonic space to the code subspace. The form
of E depends on the code, the loss rate γ , and the recovery R.
The channel can be written in the Kraus representation, E(·) =∑

k Ak · A
†
k , or in the matrix or Liouville representation—as a

4 × 4 matrix with elements

Ekl = 1
2 Tr{σkE(σ�)}, (1.8)

using the three Pauli matrices σ1,2,3 and identity IA ≡ σ0 (e.g.,
Ref. [36], Sec. 2.2). Composition “◦” in Eq. (1.7) is equivalent
to matrix multiplication in the matrix representation, so we
omit the symbol.

None of the codes we consider protect against all errors
in Nγ , so we have to consider approximate quantum error
correction [37,38]. We compare the codes using the channel
fidelity FE [39]—a specific case of entanglement fidelity [40]
that is motivated as follows. Let the source qubit A be in a
maximally entangled state with ancillary qubit B, i.e., |Ψ 〉 =
(|0A0B〉 + |1A1B〉)/√2. Qubit B is left alone (i.e., acted on by
the identity superoperator I) while the source qubit is acted on
by the channel E in Eq. (1.7). The channel fidelity FE is simply
the overlap between the initial state |Ψ 〉 and the final state

ρE ≡ E ⊗ I(|Ψ 〉〈Ψ |) (1.9)

(which we define to be the Choi matrix2 of E):

FE ≡ 〈Ψ |ρE |Ψ 〉. (1.10)

Remembering that TrB{|Ψ 〉〈Ψ |} is the maximally mixed state
1
2IA of qubit A, a few simple manipulations yield

FE = 1

4

4∑
k=1

|Tr{Ak}|2 = 1

4
TR{E}, (1.11)

where TR is the trace in the matrix representation (1.8).
Besides clearly being an intrinsic property of E that is

invariant under unitary rotations, several other properties of
FE make the quantity both meaningful and practically useful.
We first mention the property that is crucial for our task,
listing the remaining properties in Appendix A. It turns out
that the recovery R which gives the optimal FE is computable

2Note thatI ⊗ E(|Ψ 〉〈Ψ |) is used for the Choi matrix in [41,42]. Our
convention [35,43] yields ρE = ∑

k |Ak〉〉〈〈Ak| for vectorized Kraus
operators |Ak〉〉 of E , but unfortunately makes Alice and Bob switch
places.

via a semidefinite program [44] (see also Refs. [39,45]). This
allows us to quickly obtain the highest possible FE using a
laptop (given reasonable n̄code) and without having to design
a recovery for each code. This procedure was applied to the
multiqubit context by Fletcher, Shor, and Win [43] (see also
Ref. [35] and references therein), and our benchmarking is in
some sense a counterpart to that work in the oscillator context.
From now on and unless otherwise noted, we let the recovery
piece R of E (1.7) be one which gives the highest FE , given a
member of the code family and a loss rate γ .

C. Outline of this paper

In Sec. II, we state our main numerical code comparison
results and summarize the supporting analytical calculations.
In Sec. III, we numerically analyze communication rates of our
codes by calculating the hashing bound of E . In Sec. IV, we
review the quantum error-correction conditions. In Secs. V, VI,
and VII, we calculate these conditions for the cat, bin, and
gkp codes, respectively. In Sec. VI C, we characterize single-
qubit bin codes in terms of spin-coherent states and relate
them to two-mode binomial codes and multiqubit permutation-
invariant codes. In Sec. VIII, we analyze code performance
after a Kerr interaction is added to the pure loss channel and
briefly study the effect of tracking the photon number parity.
We summarize our results and discuss future directions in
Sec. IX.

II. TAKE-HOME MESSAGES

Here we summarize the results related to code perfor-
mance, but start off by mentioning two caveats to our primary
numerical comparison. Results relating the structure of bin
codes to spin-coherent states and other multiqubit codes are
summarized in Sec. IX B.

Caveat 1 is that the encoding, recovery, and decoding are
all to be perfect, meaning that there are no other errors besides
Nγ incurred by the state. Therefore, the results of this section
should be interpreted as theoretical bounds on code capabilities
and not as practical suggestions on the best experimental
design. Moreover, optimal recovery procedures are not created
equal in the eyes of current technologies: cat code error
correction has already been performed [29] while gkp states
have yet to be realized. We briefly investigate one additional
imperfection in Sec. VIII by including a nonlinearity. There,
we also address the consequences of being able to perfectly
track the photon number parity.

Caveat 2 has to do with how we quantify the “size” of the
codes. Namely, we organize the codes by mean occupation
number

n̄code ≡ Tr{Pcoden̂}/2. (2.1)

While n̄code is proportional to the average energy required
to construct a code state, it does not describe the spread or
variance in Fock space, σ 2

code ≡ 1
2 Tr{Pcoden̂2} − n̄2

code. While
cat andbin codes follow approximately Poisson and binomial
distributions in Fock space, respectively, we will show that gkp
codes are geometrically (i.e., thermally) distributed and thus
have much larger “tails” in Fock space at higher n̄. Therefore,
for the same n̄code, gkp codes utilize much more of the Fock
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FIG. 2. Channel fidelity FE (1.11) given an optimal recovery
operation and optimized over all instances of each code given an
occupation number constraint n̄code � 2 (a), 5 (b), or 10 (c). The dotted
diagonal line, drawn for reference, is the optimal FE for single-rail
encoding [6] (whose logical states are the Fock states |0〉,|1〉). While
gkp codes perform worse than the other codes for sufficiently small γ
(see insets), they outperform all other codes as γ is increased despite
not being designed to protect against the pure-loss channel. We were
not able to obtain significantly better num codes with n̄num > 5 due to
a large set of parameters to be optimized over, so red curves in panels
(b) and (c) are identical. Parameters for all of the codes used are in
Table IV.

space than cat and bin and are therefore “larger” (in the same
sense that multiqubit codes constructed out of ten physical
qubits are larger than those constructed out of five). A simple
energy parameter does not quantify such a notion of size.

A. Numerical comparison

The procedure we use to determine the channel fidelities
shown in Fig. 2 is as follows: Recall that each code family (1.1)
contains multiple instances of codes. For example, a member

of the bin code family is parameterized by the number of
dephasing and loss errors it can correct (N and S, respectively;
more details are in Sec. IV). For each loss rate γ in Eq. (1.3), we
calculate the optimal FE for all instances of each code family
subject to the energy constraint that n̄code � 2,5,10 [shown
in Figs. 2(a), 2(b) and 2(c), respectively]. Then, we pick the
highest FE out of all members of the code family and plot
it in the figure. We repeat for other values of γ � 0.5—the
point at which the one-way channel capacity of Nγ becomes
zero (see Sec. III for details). As a result of this simultaneous
optimization over each code family and over the recovery
for a given member of the family, the code which gives the
highest FE may change with γ and curves in Fig. 2 may display
discontinuous derivatives.

Let us first focus on the n̄code � 2 case in Fig. 2(a) and
examine the infidelity (1 − FE ) shown in the log-plot inset. For
γ � 0.025, specific members ofnum,bin, andcat perform the
best (in that order), showing similar scaling with γ . All three of
these codes were designed to deal with errors {I,â}, the dom-
inant terms in E�=0,1 at small γ (1.5). The num and bin codes
show quadratic scaling versus small γ : In a polynomial fit up to
order two for γ � 0.025, c0 + c1γ + c2γ

2, num and bin codes
have negligible coefficients c0, c1 ≈ 10−4, and a c2 of 1.3/1.8,
respectively. The cat codes have negligible c0, c1 ≈ 10−3, and
c2 ≈ 2.2. Following these codes, gkps and gkp perform the
worst for small γ , underperforming the other codes as γ → 0.
This should be expected since these codes were designed to
protect against small displacements and not loss events. It is
also reasonable that gkp should slightly outperform gkps due
to the idea that nonsquare lattices allow for tighter packing
than square lattices [9]. The main unexpected behavior for
n̄code � 2 occurs for γ � 0.025. There, we see that gkps and
gkp actually outperform the rest of the codes (this will be
discussed later).

We remark here that, for each γ , the amplitude α of the
coherent states making up cat codes [see Fig. 1(a)] for the
optimal cat code is at a fine-tuned “sweet spot” α
(γ ) which
balances the backaction due to the difference in the mean
occupation number of the logical states (significant for small α
but zero at α → ∞) against the probability that a photon will
be lost (zero at α → 0). We discuss this effect more in Sec. V,
noting that it has also been studied elsewhere [23,46].

Continuing to n̄code � 5 in Fig. 2(b), we see substantial
increases in performance for all codes. We list notable infideli-
ties for selected γ and n̄code � 5 in Table I(b). For example,
for the relatively lossy channel having γ = 0.0952, there exist
codes in all five families which have a channel fidelity higher
than 99.4%. Moreover, all such codes have only five photons
in them on average, so they could be within reach even with
noisy intermediate-scale quantum (NISQ) technologies [47].
At small γ [inset of Fig. 2(b)], we again see polynomial scaling
for the cat, bin, and num codes, which are able to deal with
loss errors {I,â,â2}. We also once again see gkp outperform
the other codes for γ � 0.05 and underperform as γ → 0.
The cat and bin code performances are almost identical, with
the exception of small γ , where bin performs slightly better.
Expounding on this behavior in Sec. VI A, we show that bin
allows for better error suppression than cat in certain ranges of
n̄. One num code performs the best for all γ � 0.4—the code
with n̄num = 4.15 (see Appendix B).
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TABLE I. Channel infidelity 1 − FE from Figs. 2(a)–2(c) at selected loss rates γ (with γ rounded to the nearest hundredth).

(a) 1 − FE (n̄ � 2)
γ cat bin num gkps gkp

0.01 4.2 × 10−4 2.9 × 10−4 2.0 × 10−4 6.0 × 10−4 2.5 × 10−4

0.05 5.3 × 10−3 4.3 × 10−3 3.1 × 10−3 3.4 × 10−3 1.9 × 10−3

0.10 1.8 × 10−2 1.6 × 10−2 1.2 × 10−2 1.0 × 10−2 7.1 × 10−3

0.20 6.2 × 10−2 6.6 × 10−2 5.3 × 10−2 4.5 × 10−2 3.9 × 10−2

0.31 1.3 × 10−1 1.5 × 10−1 1.2 × 10−1 1.2 × 10−1 1.1 × 10−1

(b) 1 − FE (n̄ � 5)

γ cat bin num gkps gkp

0.01 4.4 × 10−5 2.8 × 10−5 3.7 × 10−7 1.4 × 10−6 3.2 × 10−7

0.05 1.1 × 10−3 1.1 × 10−3 8.8 × 10−5 6.3 × 10−5 2.2 × 10−5

0.10 4.9 × 10−3 5.4 × 10−3 1.2 × 10−3 7.6 × 10−4 3.9 × 10−4

0.20 3.4 × 10−2 3.6 × 10−2 2.1 × 10−2 1.5 × 10−2 1.2 × 10−2

0.31 1.1 × 10−1 1.1 × 10−1 9.2 × 10−2 8.2 × 10−2 7.7 × 10−2

(c) 1 − FE (n̄ � 10)

γ cat bin gkps gkp

0.01 1.7 × 10−5 3.7 × 10−7 3.0 × 10−10 1.0 × 10−11

0.05 6.3 × 10−4 1.5 × 10−4 8.2 × 10−7 1.5 × 10−7

0.10 4.9 × 10−3 1.7 × 10−3 7.9 × 10−5 2.9 × 10−5

0.20 3.4 × 10−2 3.1 × 10−2 6.5 × 10−3 4.6 × 10−3

0.31 1.1 × 10−1 1.1 × 10−1 6.3 × 10−2 5.9 × 10−2

Let us now consider the case n̄code � 10 in Fig. 2(c).
While these codes may be difficult to create and correct
experimentally in the near future, it is nevertheless interesting
to see whether doubling the occupation number constraint
allows for any improvements of the code. The most noticeable
difference between n̄code � 10 and n̄code � 5 is that gkp pulls
away from the other codes for all values of γ sampled. While it
is believable that the other codes will still scale more favorably
for sufficiently small γ , this occurs only at γ < 0.01. For larger
γ , gkp codes demonstrate FE � 0.99 even at γ = 0.2 (see
Table I). Looking at Table IV, the best codes in those families
for most γ are those which also have n̄gkp ≈ 10. In other words,
gkp performs better with increasing n̄. A similar monotonic
increase in performance occurs for subsets bin(N,S ≈ ξN )
of binomial codes (with ξ dependent on γ ) when the n̄bin
constraints are relaxed (see Sec. VI B). We explain the bin
increase in performance in Secs. VI A–VI B, revealing that
they have a larger set of approximately correctable errors than
previously thought. This behavior is not seen in cat codes,
which do not perform much better than those in Fig. 2(b) and
work best at some finite n̄. This idea that increasing n̄ does
not lead to better cat code performance has been observed
before in different contexts [46,48,49]. By contrast, the ideal
gkp codes have infinite n̄, so it seems reasonable that increasing
n̄ should improve performance. These results support the
conjecture that the ordering of the codes with respect to FE
is gkp > bin > cat when there is no energy constraint.

The numerical results show that codes designed to work well
at small γ do not perform well for large γ , and vice versa. More
specifically, extensions of the ideas used to correct dominant
errors at small γ do not necessarily lead to good codes at larger
γ . For instance, the cat and bin codes protect exactly from
the first few loss errors by making sure there is adequate Fock
state spacingS between the states. As an example, an S = 2
cat/bin code uses superpositions of Fock states |0〉,|6〉, . . .

for |0code〉 and |3〉,|9〉, . . . for |1code〉. This guarantees that loss
events E�=1,2, which lower each Fock state by either 1 or 2, do
not cause the logical states to overlap with each other. Both cat
and bin allow one to increase S arbitrarily, while gkp codes
have S ∈ {0,1}, depending on whether their lattice is shifted
from the origin or not. Figure 5 shows that, for sufficiently
large γ and n̄code, correcting a few errors exactly with spacing
(done by cat and bin) is not as helpful as suppressing all errors
approximately (done by gkp).

B. Analytical results

To summarize, the family of gkp codes outperforms all of
the other codes for most γ , with the exception of small γ

(which gets even smaller as the energy constraint is loosened).
We see similar behavior analyzing the optimal codes from
an information-theoretic perspective in Sec. III. Since all of
the other codes were specifically designed to protect against
loss errors and gkp codes were designed to protect against
displacement errors, gkp have apparently outperformed all of
the other codes “at their own game” (albeit a game whose rules
were set by caveats 1 and 2). To understand this effect, we have
undertaken extensive analytical calculations to determine the
quantum error-correction conditions for the pure-loss channel
for gkp codes [see Eq. (7.18)] as well as how 1 − FE scales
with γ . As noted in the previous subsection, while other
codes protect against errors (to some order in γ ) exactly, gkp
protect against all errors approximately. In other words, other
codes protect against the first few errors exactly, but have low
fidelity when there is a large probability of an unprotected
error occurring. By contrast, gkp codes do not protect against
most errors exactly, but the contributions from all errors to the
infidelity is small.

In order to bound the scaling of FE (gkp) and since there
is no analytic expression for the optimal R, we calculate a
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lower bound on the channel fidelity F AGKP
E using a recovery

RAGKP (7.22) which consists of phase-insensitive amplifica-
tion, followed by conventional gkp recovery consisting of
displacement measurements and corrections. The recovery is
based on the idea that, after fine-tuning some of the channel
parameters,

pure loss + amplification = Gaussian noise,

where Gaussian noise corresponds to uniform diffusion in
phase space and its channel has displacements for its Kraus
operators ([2], Sec. 2.3; see also Ref. [50]). In other words,
amplification (with gain 1

1−γ
) exactly compensates the con-

tractive effect of pure loss (with loss rate γ ) while at the same
time adding noise that, in this context, reduces to Gaussian
noise (with variance γ

1−γ
). This idea has been considered in

the context of communication schemes [51,52]; we apply it
to bosonic error correction by noting that Gaussian noise is
exactly the type of noise that gkp was designed for. That
way, we can use earlier tools [9,53] developed to quantify
gkp performance against such noise. We consider single-
mode behavior here, noting that, in the multimode case, gkp
codes can be used to communicate efficiently across more
general Gaussian channels [54]. Note that the related idea of
“amplication + pure loss = Gaussian noise” has been recently
applied to determine bounds on quantum capacities of more
general Gaussian channels [54–56].

The probability of failure of RAGKP gives a lower bound on
F AGKP
E , which in turn bounds FE (gkp) (see Sec. VII B). The

bound contains an essential singularity at γ = 0,

FE (gkp) > 1 − exp

(
− π

4c

1 − γ

γ

)
, (2.2)

where c is a constant determined by the lattice used to construct
the code. This exponential suppression of infidelity explains
the nontrivial scaling of gkp codes at small γ and accounts
for their breakaway performance at higher γ . Because of the
nonanalyticity, having different lattices becomes important for
γ  1, where gkp outperforms gkps by an order of magnitude
[see Table I(c)].

III. THE HASHING BOUND OF E

Since channel fidelity provides a measure for entanglement
preservation, it is also of interest to examine these results from
an information-theoretic perspective. The question we aim to
answer in this section is the following: What is the achievable
communication rate of E?

As with the FE , this question also presupposes caveats 1 and
2 from Sec. II. In other words, we assume recovery operations
R can be done perfectly and organize the codes by mean
occupation number n̄code, ignoring their “size” in terms of the
number of Fock states necessary to express the logical states.

The quantum communication rate of E = S−1
codeRNγScode

(1.7) is ultimately limited by its most destructive link—the
pure-loss channel Nγ (1.4). Given an energy constraint of
maximum n̄, the quantum capacity of Nγ is given by ([57],
Theorem 8; see also Ref. [58], Eq. (12), and Ref. [59])

Qn̄ = max {0,g((1 − γ )n̄) − g(γ n̄)}, (3.1)

where g(n̄) = (n̄ + 1) log2 (n̄ + 1) − n̄ log2 n̄ is the von Neu-
mann entropy of a thermal state with n̄. Note that in the limit of
n̄ → ∞, this capacity approaches the unconstrained quantum
capacity3

Q∞ = max

{
0, log2

(
1 − γ

γ

)}
. (3.2)

We see how close the codes giving the best FE (see Fig. 2)
come to Qn̄ for n̄ � 2,5,10 by calculating a lower bound on
the capacity of E for each γ and each code listed in Table IV.
The lower bound we use is known as the hashing bound DE of
E [62]—the (reverse2 [63]) coherent quantum information of
E’s Choi matrix ρE (1.9), where |Ψ 〉 = (|0A0B〉 + |1A1B〉)/√2
is a maximally entangled state of A and B in an arbitrary basis:

DE ≡ H (TrB{ρE }) − H (ρE ), (3.3)

where H (ρ) = −Tr{ρ log2 ρ}. This one-shot (i.e., with one
application of the channel) coherent information of ρE provides
an achievable rate of quantum communication and entangle-
ment distillation, assuming many copies of E are available
([63–65]; see also Corrolary 21.2.1 and Theorem 23.9.1 in
Ref. [62]). Therefore, DE does not supply an achievable rate
of any one oscillator code, but instead gives an achievable rate
of concatenation schemes of the oscillator code with other
(outer) codes with the restriction that R is used as the recovery
for the (inner) oscillator code.

The first term in DE can be simplified to yield an expression
only in terms of E ,

DE = H
({

1
2 ± 1

2

√
1
2 ||E(IA)||2 − 1

}) − H (ρE ), (3.4)

where H ({x}) = −∑
x x log2 x for a set of variables {x},

||O||2 ≡ Tr{O†O} is the Frobenius norm of an operator O,
and IA is the qubit identity. Derivation of the first term was
done by determining the reduced qubit density matrix TrB{ρE }
in terms E’s matrix representation (1.8) and then diagonalizing
to yield the two eigenvalues in the term’s argument. Note that
this term is maximized when E is unital [E(IA) = IA]. The
second term—the von Neumann entropy of the Choi matrix
ρE—increases with the minimal number of Kraus operators
needed to express E and is zero when E is a unitary channel.

Incidentally, the analytical formula for DE provides an
easily calculable lower bound on the quantum capacity QE
of any qubit channel E . It turns out that DE is quite close to
QE for a family of two Kraus operator qubit channels ([66],
Eq. (5)) which includes the dephasing and amplitude damping
channel: We have checked numerically that the difference
QE − DE < 0.005.

A. Hashing bound for codes giving optimal FE

In Fig. 3, we plot the hashing bound DE for all of the codes
which produce the optimal channel fidelity FE in Fig. 2 for the
three energy constraints n̄code � 2,5,10. In other words, this
plot is not an optimization of DE over all codes, but merely

3Equation (3.2) was proven in Ref. [60], which built on Ref. [61]
(see also Remark 17 in Ref. [58]). A standalone derivation is, e.g., in
Sec. III of Ref. [54].
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FIG. 3. Hashing bound DE (3.3) of the codes which optimize
FE for a given γ and given constraints n̄code � 2 (a), 5 (b), or
10 (c). The boundary of the gray region is Qn̄=2,5,10 (3.1), the
capacity of Nγ given the energy constraint of n̄. The gray line is
the unconstrained capacity Qn̄→∞ (3.2). The thin dotted diagonal line
is DE for the single-rail encoding, which has the highest DE at large
γ . Recall that cat and bin codes include the single-rail encoding
[i.e., this encoding is also cat(α = S = 0) and bin(N = S = 0)],
so bin and cat eventually jump to match the dotted line. We also
show DE for the four-qubit leung code (3.5) versus qubit amplitude
damping (i.e., the pure-loss channel restricted to the first two Fock
states of four modes). There are no num codes with n̄num � 5, so red
curves in panels (b) and (c) are identical.

a plot of DE for the codes which give optimal FE . Recall that
DE is a lower bound on the entanglement that is theoretically
distillable from using unlimited instances of E and one-way
classical communication from B to A. By contrast, FE is an
overlap which gauges how well entanglement was transmitted
over just one instance of E . While FE bounds one of the terms
in DE [see Eq. (A3)] and the two yield a similar order of

performance of the codes, there is no guarantee that codes
giving the optimal value of FE should also give optimal values
for DE . In other words, even if FE (one) > FE (two) given two
codes one and two, there could still exist an entanglement
distillation scheme which extracts more entanglement from
the unlimited instances of E from code two. This is true for
our codes at large γ . Let us for example consider n̄ � 10. At
around γ ≈ 0.37, all of the codes begin to have a lower DE than
the single-rail {|0〉,|1〉} Fock state encoding [thin black line in
Fig. 3(c)]. By contrast, the point at which the codes begin
to have a lower FE than the single-rail encoding is γ ≈ 0.42
[see Fig. 2(c)]. The cat and bin codes include this encoding
[i.e., single rail is also cat(α = S = 0) and bin(N = S = 0)
], so we can say for certain that the cat and bin codes which
optimize FE are not those which optimize DE at 0.37 � γ �
0.42.

Forγ � 0.3, we once again see similar behavior of the codes
(relative to each other) as with FE . For n̄code � 10, gkp codes
break from the pack and bridge the gap with Qn̄ most rapidly.
For example, at the high loss rateγ = 0.3,DE [gkp(n̄ � 10)] ≈
0.63 bits is about twice that of the naive Fock state code.
Moreover, DE [gkp(n̄)] approaches roughly 1

2Qn̄ for large γ . In
addition, bin codes exhibit better performance with increasing
n̄ in the γ � 0.2 range. This begs the question of how close
DE for gkp and bin comes to Qn̄ when one encodes more than
a qubit’s worth of information and when one utilizes two- or
higher mode generalizations of the codes. Such a question is
outside the scope of this work, but is being investigated for a
subsequent publication.

Since the pure-loss bosonic channel reduces to qubit am-
plitude damping when restricted to the Fock states |0〉 and |1〉,
one interesting question to ask is whether the n̄code photons,
which so far are concentrated in one mode, will produce a
better rate when distributed over the first two Fock states of
multiple modes. While comparing single-mode codes to the
various discrete-variable codes specialized to protect against
qubit amplitude damping (e.g., Refs. [37,67–76]) is outside
the scope of this work, we do provide a reference DE for one
specialized code—the four-qubit leung code [37]—that is the
smallest known discrete-variable code to protect against one
amplitude damping error.4 Each of the four physical qubits in
the leung code,

|±leung〉 = 1
2 (|00〉 ± |11〉)⊗2, (3.5)

correspond to the first two Fock states of four oscillators. We
can then apply N⊗4

γ (which reduces to amplitude damping
within the |0〉,|1〉 Fock state subspace), optimize FE to yield E ,
and calculate DE via the same procedure as with the rest of the
codes. A simple calculation yields a total occupation number of
n̄leung = 2 photons, which in this case are distributed over the
first two Fock states of four modes. The leung code performs
similar to the cat, bin, and num (n̄ � 2) codes from Fig. 3(a),
but is outperformed by the gkp(n̄ � 2) codes for γ � 0.35.
This suggests that, at least for intermediate γ and all else being
equal, it is better to encode two photons in a single-mode gkp

4Interestingly, this code can also protect against one erasure [77]
and be used as an error-detecting code for other errors [78].
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state than to spread them out over four modes. The leung code
is outperformed at almost all γ by all codes considered with
n̄code � 5, but this is not a fair comparison since those codes
use more photons.

IV. PRIMER: THE QEC MATRIX

In order to analyze errors for the codes, we consider the
quantum error-correction (QEC) conditions [79,80] (see also
Ref. [81], Theorem 10.1). The errors we consider are the Kraus
operators E� (1.4), where � denotes the number of photons lost
after application of the error. Calculating the effect of the error
E

†
�E�′ on the code space yields a 2 × 2 matrix ε��′ ,

PcodeE
†
�E�′Pcode = εcode��′ ∈ Mat2×2. (4.1)

We write εcode��′ as a superposition of Pcode and matrices

Zcode = |0code〉〈0code| − |1code〉〈1code|, (4.2a)

Xcode = |0code〉〈1code| + |1code〉〈0code|, (4.2b)

Ycode = |1code〉〈0code| − |0code〉〈1code|. (4.2c)

We define our matrix basis as such because both Pcode

and E� are real for our codes, so the QEC matrix εcode is
real, symmetric, and 2N dimensional (with N → ∞ being the
dimension of the oscillator). Expanding each 2 × 2 subblock
yields

εcode��′ = ccode��′ Pcode + xcode
��′ Xcode + ycode

��′ Ycode + zcode��′ Zcode,

(4.3)

with coefficients denoted by

[c,x,y,z]code��′ = 1
2 Tr{[P,X,Y,Z]codeE

†
�E�′ }. (4.4)

For E� to be perfectly correctable, one must satisfy the QEC
condition

εcode��′ = ccode��′ Pcode (4.5)

(equivalently, 〈μcode|E†
�E�′ |νcode〉 = ccode��′ δμν for μ,ν ∈

{0,1}). In words, a correctable error must act as the identity
within the code subspace (equivalently, the effect of the
error must be the same on both code states). Therefore,
the coefficient ccode��′ represents the correctable part of εcode��′
while {xcode

��′ ,ycode
��′ ,zcode��′ } represent various uncorrectable

parts corresponding to bit, phase, and joint bit-phase flips,
respectively. Since not all errors E� can be corrected, we
proceed to analyze the magnitude of the uncorrectable
parts—the 2N -dimensional matrix εcode − ccode—with
εcode��′ , ccode��′ being 2 × 2 submatrices of εcode, ccode,
respectively.

The QEC matrix block εcode��′ can also be interpreted ([81],
Fig. 10.5) as a matrix of overlaps between the two error
subspaces spanned by {E�|μcode〉}1

μ=0 and {E�′ |μcode〉}1
μ=0,

i.e., the range of E�Pcode and E�′Pcode. We call these subspaces
E�Pcode and E�′Pcode for short. When no loss events are
occurring, the code state undergoes the backaction-induced
evolution corresponding to the subspace E0Pcode. As � loss
events occur, one’s ability to detect them hinges on the
orthogonality between E0Pcode and E�Pcode, the latter being
the space to which a state has gone after losing � photons.

The εcode0� and εcode�0 parts of the QEC matrix thus corre-
spond to the ability to distinguish between � losses and no
losses, making their satisfaction similar to the satisfaction of
the error-detection conditions δcode� = PcodeE�Pcode ∝ Pcode

[82]. While the backaction in E0 makes εcode0� 
= δcode� , the two
converge to each other as γ → 0. Since bin and cat codes
satisfy both εcode0� ,δcode� ∝ Pcode exactly up to some � � S,
uncorrectable parts in the QEC matrix blocks εcode0� quantify
how well �-photon losses can be detected for those codes.

Uncorrectable parts {xcode
�� ,ycode

�� ,zcode�� } for “diagonal” er-
rors E

†
�E� represent distortion of the quantum information

within the subspace E�Pcode and limit how well one is able
to correct the error E� after detection. Since our code space
can become distorted even when there are no loss events, we
have to also consider backaction-induced distortion captured
by εcode00 . The loss event probability distribution is governed
by ccode�� and depends on both γ and n̄code. For a fixed γ and
sufficiently large n̄code, we will see that ccode�� for cat (gkps)
is a Poisson (geometric) distribution having mean γ n̄code. In
such cases, we can interpret γ n̄code as the average number of
photons lost, and only when γ n̄code  1 can we say that E0 is
the most likely error for a code.

V. CAT CODES

cat code logical states are coherent states projected onto
subspaces of occupation number modulo 2(S + 1):

|μcat〉 = �(S+1)μ|α〉√
N

(S+1)μ
α

, (5.1)

with α real (for simplicity), μ ∈ {0,1}, and normalization

N (S+1)μ
α = 〈α|�(S+1)μ|α〉. (5.2)

The projections {�0,�S+1} used to define the code states
belong to the family (for r ∈ {0,1, · · · ,2S + 1})5

�r =
∞∑

n=0

|2n(S + 1) + r〉〈2n(S + 1) + r|. (5.3)

In the large α limit, i.e., when

2α sin

(
π

S + 1

)
� 1, (5.4)

cat-code states become equal superpositions of coherent
states {|αei π

S+1 k〉}2(S+1)−1
k=0 distributed equidistantly on a circle of

radius α in phase space. In that limit, the seemingly bothersome
normalization factors approach the same constant, while when
α � S, they become distinct in order to account for the various
overlaps between the coherent states. Expressing the normal-
ization factor in terms of such overlaps ([83], Eq. (3.22)), we

5One can also consider shifted cat and bin codes by picking
subspaces of Fock states n = s and n = S + 1 + s modulo 2(S + 1)
for shift parameter s ∈ {0,1, . . . ,S}. Sampling some of the “sweet
spots” for shifted cat codes [46] did not alter the qualitative behavior
of cat relative to the other codes.
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have

N (S+1)μ
α = 1

2(S + 1)

2S+1∑
s=0

(−1)μs〈α|αei π
S+1 s〉. (5.5)

Since the cat codes which produce the optimal FE have α � S,
we have to consider the factors N (S+1)μ

α at intermediate α in
order to explain Fig. 2.

Because of properties of coherent states and for α 
= 0, cat
logical states satisfy

(â/α)2(S+1)|μcat〉 = |μcat〉, (5.6)

and cat(S) [and bin(S), as we shall see] can detect exactly S

photon loss events using the check operator

Ccat = Cbin = exp

(
i

2πn̂

S + 1

)
. (5.7)

Its square root, exp(i πn̂
S+1 ), makes for a logical Z-operator

within cat and bin code subspaces. We call this a check
operator (and not a stabilizer) since it has other eigenvalues
which are not modulus one and is not part of a set of commuting
such operators which is used to construct the code states.

The S = 0 cat code was proposed in Ref. [13] for coherent-
state quantum computation [84–87]. This code cannot detect
loss events since losing a photon causes a logical bit flip,
but it of course can be concatenated with, e.g., a bit-flip
code [85]. The cat(S = 1,2) codes were studied first in
Refs. [15,27], followed by investigations into cat(S � 2) and
qudit extensions [46,88,89]. There are several theoretical and
experimental schemes for cat state preparation [90]. Schemes
designed to protect against loss errors [29] (for S = 1) and
backaction errors [91] (for S = 0), respectively, were realized
using microwave cavities coupled to superconducting qubits.

A. A simple example

As an example of the utility of cat codes, consider the
simplest nontrivial code family cat(S = 1) whose logical
states are∣∣μS=1

cat

〉 = |α〉 + |−α〉 + (−1)μ(|iα〉 + |−iα〉)
4
√

2[cosh α2 + (−1)μ cos α2]
. (5.8)

In the Fock basis, the above |0cat〉 is a superposition of
Fock states |0〉,|4〉,|8〉, . . . while |1cat〉 is supported by
|2〉,|6〉,|10〉, . . . . Therefore, there are exactly S = 1 Fock
states separating the Fock states supporting |0cat〉 from those
supporting |1cat〉, so we call S the spacing between logical
states. Because of this spacing, εcat01 = 0—one loss event
is always detectable. However, such an event is not always
correctable since εcat11 contains uncorrectable parts at generic
values of α.

In general, εcat�� 
= c��Pcat because of the backaction term
(1 − γ )n̂/2 in E�. We will see that uncorrectable parts in εcat��

are well suppressed as α → ∞, but in that limit the code
consists of large-amplitude coherent states and there is a high
chance of losing more than one photon (i.e., uncorrectable
parts in εcat02 become very large). Therefore, for more general
codes with a given spacing S and loss rate γ , there is an
optimal or “sweet spot” value α = α
(γ ) that balances the
backaction with the loss errors. This is exactly what we see

FIG. 4. Channel fidelity FE (γ = 0.095) (1.11) vs mean occupa-
tion number n̄ (2.1) for cat and bin at spacing (a) S = 3 and (b)
S = 4. Note that cat(S) depends continuously on n̄ and bin exists
only at discrete values. For a given S, cat codes perform best at
specific n̄, corresponding to “sweet-spot” values of α = α
. However,
due to the oscillatory nature of the errors in cat(S � 3), the codes
also develop troughs in FE . On the other hand, bin(S) performs
similar to cat(S) at small and large n̄ but does not suffer from
troughs at intermediate n̄. (c) Plots of cat and bin for S ∈ {1,2,3,4,5}
along with gkps, which turns out to outperform both cat and bin

and increase monotonically with n̄. Similar trends are observed for
smaller γ .

in Figs. 4(a) and 4(c), where FE is plotted versus n̄cat for
various cat(S) and at a fixed γ . We can see that FE [cat(S)]
is maximized at certain n̄cat [which in turn corresponds to a
certain α
(γ )] and decays with sufficiently large α. Note that
there can be multiple α
 for a given S. By contrast, gkps code
fidelities increase monotonically with n̄gkps.

We now show how the sweet spot can be analytically
determined for cat(S = 1) and in the limit γ → 0, discussing
general γ in the next subsection. Recalling the form of the
Kraus operators (1.5) for small γ , to suppress distortion due
to backaction, one has to make sure that both code states have
the same occupation number:

δn̄cat = 1
2 Tr{Zcatn̂} = 0. (5.9)

While δn̂cat → 0 as α → ∞, there are certain fine-tuned α at
which the occupation numbers of the two logical states also
coincide due to the oscillatory nature of the normalization
factors Nα (5.5). Solving the above equation using |μS=1

cat 〉 (5.8)
yields the transcendental equation

tan α2 = − tanh α2, (5.10)

whose solution is α
(γ → 0) ≈ 1.538 (corresponding to
n̄code ≈ 2.324). Thus, in the small γ limit and at this fine-tuned
α
, a single loss event is both detectable and correctable. This
was about the value used in a recent cat-code error-correction
experiment [29].
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B. QEC matrix for cat codes

Let us briefly elaborate on the discussion regarding sweet
spots using the QEC matrix for cat codes for finite (but
still small) γ . Because of the spacing of the codes, QEC
matrix subblocks ε��′ (4.1) contain uncorrectable parts only
for certain values of �,�′. Let us first study the distortion
due to errors εcat�� , which we can easily calculate [46,92] by
using the representation (5.1) of the cat states, observing that
�râ = â�r+1, and using Eq. (D1a):

εcat�� = (γα2)�e−γα2

�!

⎛⎝N−�

α
√

1−γ

N0
α

0

0
NS+1−�

α
√

1−γ

NS+1
α

⎞⎠, (5.11)

where Nα
√

1−γ are damped versions of the normalization
factors in Eq. (5.5). Expansion yields the correctable part (4.4),

ccat�� ≡ 1

2

(γα2)�e−γα2

�!

(
N−�

α
√

1−γ

N0
α

+
NS+1−�

α
√

1−γ

NS+1
α

)
, (5.12)

and only one uncorrectable part (4.4),

zcat�� ≡ 1

2

(γα2)�e−γα2

�!

(
N−�

α
√

1−γ

N0
α

−
NS+1−�

α
√

1−γ

NS+1
α

)
. (5.13)

The correctable part represents the probability of losing � pho-
tons. This distribution is Poisson in the large-α limit, in which
the ratios of normalization factors inside the parentheses both
go to one exponentially with −(1 − γ )α2. The uncorrectable
part zcat�� represents the inability to correct against � loss events.
It is suppressed as α → ∞, but is also zero at certain “sweet
spots” α
, which we discuss using another example.

Consider cat(S = 2) for γ � 0.0124 and n̄cat � 5. This
is a case when γ n̄  1 and so we only have to consider
distortion due to backaction εcat00 . We see from Table IV that
the cat code which achieves the highest FE out of all cat
codes with n̄ � 5 is cat(α = 1.739,S = 2). This is exactly
the sweet spot at which the distortion zcat00 is approximately
zero: α
(γ = 0.005) ≈ 1.739. More generally, α
(γ ) at which
zcat00 ≈ 0 decreases as γ → 0 to the value α
(γ = 0) ≈ 1.737.
[The reason that cat(α = 1.739) and not cat(α = 1.737) is
the optimal code at γ < 0.005 is because the resolution in our
sampling of α is not sufficient to resolve the difference.] As
mentioned in our discussion of cat(S = 1) in the previous
subsection, in the limit γ → 0, zcat00 becomes proportional to

δn̄cat = 1

2
Tr{Zcatn̂} = α2

2

(
N−1

α

N0
α

− NS
α

NS+1
α

)
. (5.14)

This δn̄cat tells us how well we are able to correct against
distortion due to no loss events, the dominant error when
γ n̄cat  1. It is zero at exactly the “sweet spot” α
(γ = 0),
and we can similarly relate α
 to δn̄cat for cat at other values
of S. Having only covered cat(S = 2), we refer the reader to
Ref. [46] for such calculations.

We have seen that at α < S, backaction-induced errors
are not suppressed because α is not sufficiently large [see
Eq. (5.4)]. So why are cat codes with high values of α not
optimal? This is because for α ≈ S, the fraction γ n̄cat ≈ γα2

of photons lost yields a large probability of losing S + 1
photons, an uncorrectable error. More technically, recall that

due to spacing S, the effect of � � S loss events is zero,
εcat0� = 0. However, the first uncorrectable loss at � = S + 1
produces an error that scales unfavorably with α, prohibiting
α from getting too large. A calculation yields

εcat0,S+1 = (γα2)
S+1

2 e−γα2√
(S + 1)!N0

αNS+1
α

(
0 N0

α
√

1−γ

NS+1
α
√

1−γ
0

)
. (5.15)

Once again, the ratios of normalization factors go to one
as α → ∞. In that limit, this error becomes proportional
to a pure bit flip, εcat0,S+1 ∼ xcat

0,S+1Xcat (where we use the
mathematician’s definition of “∼”), with

xcat
0,S+1 ∼

√
ccat00 ccatS+1,S+1 (5.16)

independently of γ . In other words, given even a very small γ ,
the above equation is still satisfied for a sufficiently large α. We
claim that this is the worst possible scaling, making such errors
completely undetectable (and therefore uncorrectable). Recall
that since the QEC matrix (4.1) is positive semidefinite (ε �
0), in the absence of other errors for a given �,�′, all bit-flip
errors are bounded by x��′ � √

c��c�′�′ . Ideally, we would like
to have no error (x��′ = 0), and in the worst case the inequality
is saturated (x��′ = √

c��c�′�′). In Eq. (5.16), we see that the
inequality is saturated as α → ∞. Because the code states are
eigenstates of â2(S+1), the behavior upon 0 to 2(S + 1) − 1
losses repeats itself after 2(S + 1) losses. More generally, a
bit flip error of similar intensity occurs at any � − �′ = S + 1
modulo 2(S + 1). Thus, as α → ∞, the QEC matrix ε develops
sparse but large bit-flip error entries at each such �,�′, implying
a large probability of undetectable errors. Therefore, cat codes
should work best for values of α at which the probability of
losing � = S + 1 photons is small.

The reader should by now see that, for a given γ and S, a
cat code performs optimally at specific α
(γ ). But how does
one determine the optimal S? We do not claim to answer this
question fully, only noting that (A) the optimal S depends on
γ and (B) our energy constraints limit the selection of α
 to
choose from, which in turn limit the selection of S. For an
example of (A), notice in Fig. 4(c) that n̄cat(α
,S = 1) < 2
while n̄cat(α
,S > 1) > 2, so the highest spacing achievable
with a sweet spot is S = 1. Similarly for (B), for n̄cat � 5, there
are three available α
, one for each S = 1,2,3. At γ = 0.095,
the FE is highest for S = 3 [as shown in Fig. 4(c)] while at
smaller γ , S = 2 is optimal (see Table IV). In summary, cat
codes cannot perform well at sufficiently large α and instead
are optimal for specific values of α
 � S.

VI. BINOMIAL CODES

In terms of Fock states, the logical states (defined here in
the Xbin basis [23]) are

|μbin〉 = 1√
2N+1

N+1∑
m=0

(−1)μm

√(
N + 1

m

)
|(S + 1)m〉. (6.1)

Their mean occupation number (2.1) is

n̄bin = 1
2 (N + 1)(S + 1). (6.2)

The non-negative integer N governs the order in γ to which
dephasing errors {n̂n}Nn=0 can be corrected exactly and is similar
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to α in cat codes. The spacing S is the same as that of cat
codes since bin(S) and cat(S) are spanned by the same Fock
states.5 Therefore, the ability for bin(S) to perfectly detect
� � S loss events using the check operator (5.7) is identical to
that of cat(S): εbin0� = PbinE

†
0E�Pbin = 0 in the language of

the QEC matrix (4.1). The difference lies in the other parameter
N , the discrete analog of α for cat. Recall that for cat(S), the
limit α → ∞ exponentially suppresses all uncorrectable parts
in εcat�� for all �. Similarly, in bin(S), tuning N allows one
to suppress distortion due to loss events up to a given order
O(γ N ). Therefore, it should be no surprise that for a fixed S,

bin(N → ∞,S) ∼ cat(α → ∞,S). (6.3)

While the two codes coincide in this limit, the advantage of
bin codes is that, unlike cat, the suppression of distortion in
εbin�� occurs without oscillations. While the oscillatory nature
of the normalization factors in ε

cat(S)
�� (5.11) allows for peaks

as well as troughs in FE versus n̄ [shown in Figs. 4(a)–4(c)],
there are no such oscillations in ε

bin(S)
�� . Note that this difference

only shows up at S � 3 since only then are there significant
oscillations in FE (cat). While cat and bin perform about
the same at smaller S, there is an intermediate n̄ regime for
larger S at which cat underperforms (due to being at a trough
between two sweet spots α
) while bin continues to improve.
For example, observe the difference between cat and bin at
S = 3 in Fig. 4(a): FE (bin) ≈ FE (cat) for all n̄ � 15 except
at n̄ ≈ 6.

In Sec. VI A, we delve into the performance of bin codes
from Figs. 2 and 4. In Sec. VI B, we comment on their
performance with no energy constraints. Switching gears in
Sec. VI C, we study their structure. We show that qubit
bin codes are spin-coherent states embedded into the {|(S +
1)m〉}N+1

m=0 subspace of the oscillator. In an alternative character-
ization in Appendix C, we link bin codes to discrete-variable
bit-flip codes. These formulations extend to other sets of codes,
summarized in Fig. 7(a), and allow one to construct bin check
operators for dephasing errors. In Sec. VI D, we introduce a
scheme to detect and correct errors in bin using the check
operators from before.

A. QEC matrix for binomial codes

Let us fix S and compare bin(S) to cat(S). A bin(N,S)
code protects against loss errors â��S (due to spacing S)
and dephasing errors n̂n�N (due to the nature of the bino-
mial distribution). Since loss operators E� (1.4) consist of
superpositions of the two errors, we can readily read off the
leading order in γ for which there are uncorrectable parts
in εbin0� —O(γ S+1)—and distortion matrices εbin�� —O(γ N+1).
However, that is not the whole story.

We know that bothbin andcat suppress all distortion errors
z�� with increasing n̄. The backaction distortion zbin�� does not
oscillate with n̄ (as opposed to zcat�� oscillation with α) and
yields a quicker suppression of errors than zcat�� . We use the
basis of positive and negative superpositions |±bin〉 of the bin
states (6.1) to calculate it,

Pbin = |+bin〉〈+bin| + |−bin〉〈−bin|, (6.4)

in order to have the backaction-induced errors be along the z

axis and match zcat�� . Note that this amounts to the Zbin basis

of the original paper [23]. The respective probabilities of no
loss and backaction distortion can be concisely expressed,

cbin�� = γ �

�!

d�

dx�

(
1 + xS+1

2

)N+1
∣∣∣∣∣
x=1−γ

, (6.5a)

zbin�� = γ �

�!

d�

dx�

(
1 − xS+1

2

)N+1
∣∣∣∣∣
x=1−γ

. (6.5b)

For � = 0, the above should be compared to ccat00 (5.12) and
zcat00 (5.13). Clearly, zbin00 does not oscillate versus N . While
the above is still difficult to analyze analytically for � > 0,
we see numerically that there are no oscillations in n̄ of the
fidelity of bin(S), leading to certain regimes of n̄ at which
bin outperforms cat for a given γ . Heuristically, as n̄ → ∞,
z
bin(S)
�� → 0 order by order in γ while z

cat(S)
�� → 0 as a damped

oscillating function with damping coefficient (1 − γ )α2. The
latter limit turns out to be less controlled, leading to detrimental
oscillations in F

cat(S)
E . For example, we plot the uncorrectable

parts of εcat��′ and εbin��′ for γ = 0.095, n̄code ≈ 6, and S = 3 in
Figs. 5(a) and 5(b), respectively. While the uncorrectable parts
xbin

0� ,xcat
0� are comparable in magnitude, one can see that zbin�� is

visibly less than zcat�� . However, this effect is most prominent
only when E0 is the only dominant error (γ n̄code  1) and
when cat oscillations begin to have a detrimental effect (S � 3
and n̄code � 5). Inside those regimes, we can see that bin
breaks away from cat [see Figs. 4(a)–4(c) and insets in
Figs. 2(b) and 2(c)], while outside of those regions, the two
codes perform quite similarly.

Another advantage of bin codes manifests itself at large
n̄bin. Studying xbin

0,� and ybin
0,� is quite difficult, so we explain

the advantage by studying subspaces that are mapped to under
errors. For cat codes, the undetectable error âS+1 maps the
code exactly to the code subspace, âS+1Pcat ∝ Pcat. For bin
codes, the mapping is to a subspace that has a component
orthogonal to the code space. Quantum information in this
component (which may only be one dimensional) can then
be mapped back to the code space, yielding an extra layer of
approximate error correction. The same is true for � > S + 1
as long as N is sufficiently high. We consider two examples of
this effect, one known and one new.

Let us consider the action of the undetectable error â2 on
bin(N = 1,S = 1) and cat(α � 1,S = 1) (α is large only for
simplicity; its value is irrelevant to the key point). The logical
states |+bin〉 ∝ |0〉 + |4〉 and |−bin〉 = |2〉 are mapped to states
|2〉 and |0〉, respectively. We see that the latter error state,
â2|−bin〉 ∝ |0〉, overlaps with |0〉 − |4〉, a state orthogonal to
the code space. One can thus add an extra Kraus operator
to the recovery that maps any quantum information in this
extra error subspace back to the code space. This cannot be
done for cat, where the logical states |+cat〉 ∝ |α〉 + |−α〉
and |−cat〉 ∝ |iα〉 + |−iα〉 are mapped to ±|±cat〉 under â2

(recall that â|α〉 = α|α〉), yielding a completely uncorrectable
phase flip. For bin(N = 1,S = 1), this extra one-dimensional
subspace is used to correct from the leading-order backaction
error [23]. However, there are enough such extra subspaces for
sufficiently high N to correct for both backaction (up to γ N )
and some loss errors â��S+1.
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FIG. 5. Uncorrectable parts of the QEC matrices, εcode − ccode (see Sec. IV), for code being (a) cat (5.1), (b) bin (6.1), (c) gkps (7.8),
and (d) gkp (B4) with parameters such that n̄code ≈ 6 for all codes and given γ = 0.095. Recall that εcode is a block matrix consisting of 2 × 2
matrices εcode

��′ that quantify the overlap between error subspaces E�Pcode and E�′Pcode. These 2 × 2 matrices are delineated by dotted lines.
The four entries in εcode

��′ are presented as colored squares; note that εcode
��′ has no imaginary part (all E�Pcode are real). From Fig. 4(c), we

see that FE (cat) < FE (bin) < FE (gkps) at n̄code ≈ 6, and the above QEC plots nicely corroborate that order of performance. Since cat and
bin have spacing S = 3, there are no off-diagonal errors for � � 3 (inside the red square). However, both codes suffer from distortion on the
diagonal portions of εcode

��′ , with bin suffering noticeably less at this particular γ . On the other hand, gkps (square lattice) and gkp (shifted
hexagonal lattice) barely suffer from any noticeable errors. Since gkps codes have spacing S = 1 due to a symmetry of their underlying lattice,
ε��′ does not contain off-diagonal errors for � � 1 (more generally, for � − �′ odd). Shifted gkp codes do not have that symmetry, but perform
comparably.

Now consider bin(N = 4,S = 1). Recall that a bin(N =
4) protects from backaction up to γ 4, so our calculations
are only to that order. While the code exactly detects only
one loss E1, it turns out there is an extra subspace allowing
for approximate correction of E2 and even E3. The two-
dimensional code subspace Span{|±bin〉} is supported on the
six-dimensional Fock subspace

F0 = Span{|0〉,|2〉,|4〉,|6〉,|8〉,|10〉}. (6.6)

Another two-dimensional subspace is reserved for correct-
ing backaction E0. This leaves an extra two dimensions
Span{Q0E2|±bin〉} ⊂ Hno-loss for approximately correcting
the loss error E2, where the projection Q0 removes any overlap
with the code space and the subspace used for correcting
backaction. Indeed, one can add an extra isometry mapping
such error states

Q0E2|+bin〉 ∝
√

2η2|2〉 − (1 + η2)|6〉 +
√

10|10〉, (6.7a)

Q0E2|−bin〉 ∝
√

10η2|0〉 − (1 + η2)|4〉 +
√

2|8〉, (6.7b)

back into the code space (η ≡ 1 − γ ).
Similarly, this code can also approximately correct the next

error E3. The relevant Fock subspace is now

F1 = Span{|1〉,|3〉,|5〉,|7〉,|9〉}. (6.8)

The two-dimensional subspace Span{E1|±bin〉} is devoted
to correcting E1, leaving three extra dimensions. Two of
those dimensions are then used to correct against E3. Letting
Q1 be the projection on the remaining three-dimensional
subspace F1/Span{E1|±bin〉}, one can construct a mapping
from the extra error subspace Span{Q1E3|±bin〉} back to the
code space.

B. Removing energy constraints

We have numerically investigated n̄bin � 10 in order to
see whether a certain direction in the N,S parameter space
produces increasing FE with increasing n̄bin (6.2). While it is
unlikely that FE → 1 as n̄ → ∞ for any single-mode code, we
have numerical evidence showing that F

bin(N)
E for certain S =

ξN monotonically increases to some value F
bin(∞)
E < 1, with

ξ � 1 dependent on γ . For example, as shown in Fig. 6, the
limit S ≈ 2N → ∞ does seem to be giving us monotonically
increasing FE ; we have verified this monotonic increase for
N � 14 and S � 36 at γ = 0.1 but it could very well be that
the curves eventually decrease for sufficiently high N,S.

FIG. 6. Log10 plot of 1 − FE (γ = 0.095) (1.11) vs (a) cat code
parameters S and α and (b) bin code parameters S and N (cf. Fig. 1
in Ref. [23]). For a given S, cat achieves the best performance
(purple) at multiple S-dependent sweet spots α
. While FE (α
) for
cat(S) does not increase with increasing S for the values we have
sampled, performance of bin(N,S ≈ 2N ) clearly does (cyan). There
is thus reason to believe that bin outperforms cat when no energy
constraints are imposed.
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The performance improvement of bin codes at large n̄bin
can be attributed to the advantage of having extra error
subspaces, discussed in the latter portion of Sec. VI A. To
quantify this advantage, one can cook up a recovery procedure
consisting of two sets of isometries. The first-level set of
recovery isometries maps the correctable (� ∈ {0,1 . . . ,S})
error-subspace code states E�|±bin〉 back to the code space.
This part is similar to the cat code recovery scheme from
Ref. [46] and to the bin scheme in Sec. VI D. The second-
level set consists of isometries mapping extra error subspaces
Q�E�+S+1|±bin〉 back into the code space, where Q� project
out the first-level error subspaces Span{E�|±bin〉} (and, in the
case of � = 0, the code space as well). Of course, such a
multilevel recovery can be extended to three and more levels.
When implemented, the two-level recovery yields a similar
scaling with N,S as the optimal recovery in Fig. 6(b) for the
N,S we were able to sample. Nevertheless, it does not explain
why S increases faster than N for the best codes in that figure.
While we have shown that increasing both S and N allows
bin to correct (at least) approximately for more loss events,
the intricate choice of which parameter to increase faster to
give the optimal fidelity remains an interesting open question.

C. Relation to spin-coherent states

We characterize all single-mode binomial codes, two-mode
binomial codes (closely related to noon codes [22]), and
multiqubit permutation invariant codes [73] using irreducible
representations (irreps) of the Lie algebra su(2). Interestingly,
bin(S = 0) were of interest to the quantum optical community
due to their sub-Poissonian distribution [93] (see also Ref. [94],
Ch. 5), and the connection to su(2) was noticed first back then
[95,96].

Consider a spin-J consisting of 2J + 1 levels and define
the standard spin operators

Jz ≡
2J∑

m=0

(m − J )|J,m − J 〉〈J,m − J |, (6.9)

and similarly Jx and Jy ([97], Ch. 7). We can then define its
rotated version Jr (θ,φ) = Rθ,φJzR

†
θ,φ , where Rθ,φ is a rotation

by azimuthal angle θ ∈ [0,π ] and polar angle φ ∈ [0,2π ) in the
spherical coordinate system parameterizing the spin’s Bloch
sphere. For each {θ,φ}, Jr (θ,φ) has eigenstates |θ,φ〉J with
eigenvalue J . These are called the su(2) or spin-coherent states
[98] (see also Ref. [99]):

|θ,φ〉J =
2J∑

m=0

(
eiφ tan θ

2

)m(
1 + tan2 θ

2

)J

√(
2J

m

)
|J,m − J 〉. (6.10)

For each J ∈ {0, 1
2 ,1, . . . }, {Jx,Jy,Jz} form an irrep of the

su(2) algebra, satisfying the well-known angular momentum
commutation relations. The labeling by J exhaustively char-
acterizes the irreps of su(2), so every spin-coherent state
corresponds to some irrep J . We go through several codes
and show how they all correspond to the spin-coherent states

∣∣∣π
2

,πμ
〉
J

= 1

2J

2J∑
m=0

(−1)μm

√(
2J

m

)
|J,m − J 〉, (6.11)

(a) code basis

bin Fock states |(S + 1)m〉
perm M -qubit Dicke states |DM≥2J(S+1)

(S+1)m 〉
bin2 Fock states (S + 1)(2J m), (S + 1)m| − 〉

FIG. 7. (a) Table listing the basis elements used to express
binomial (bin) (6.1), permutation-invariant (perm) (6.14), and two-
mode binomial codes (bin2) (6.16) (with m ∈ {0,1, . . . ,2J }). The
coefficients next to these basis states are those of spin-coherent states
| π

2 ,πμ〉J (6.10) of a spin J . (b) Plots of overlaps |J 〈θ,φ|ψ〉|2 vs
θ,φ given a spin state |ψ〉. The first (second, third) column shows
normalized states {(Jz)p| π

2 ,πμ〉J=4}1
μ=0 for p ∈ {0,2,4}. These plots

show that powers of the “error” Jz cause | π

2 ,0〉J and | π

2 ,1〉J to
approach each other in the Bloch sphere and eventually overlap at the
two poles. The dashed arcs connecting θ = ± π

2J
p serve as a guide to

the eye. Since Jz is mapped to n̂ − J under the Holstein-Primakoff
transformation, this provides an interpretation of dephasing errors for
bin codes, which are correctable as long as p < J = 1

2 (N + 1). Here,
N = 7 and one can see from the third column that (Jz)4| π

2 ,0〉J and
(Jz)4| π

2 ,1〉J overlap.

whose basis elements |J,m − J 〉 are mapped either to Fock
states of an oscillator(s) or a multiqubit system, summarized
in Fig. 7(a). Moreover,

Jx

J

∣∣∣π
2

,πμ
〉
J

= (−1)μ
∣∣∣π

2
,πμ

〉
J
, (6.12)

providing us with a logical Z-operator Jx/J and a check
operator (Jx/J )2 for all of the codes. In addition, since spin-
coherent states resolve the identity operator of the spin, they
offer a way to visualize the location of various states before
and after certain errors on a generalized Bloch sphere of the
spin. Shown in Fig. 7(b), |π

2 ,πμ〉J correspond to spin-coherent
states at the antipodal points ( π

2 ,0) and ( π
2 ,π ).

1. Binomial codes

Setting 2J = N + 1, the coefficients of |π
2 ,πμ〉J (6.11)

match those of the bin states (6.1). If we additionally map
the spin states |J,m − J 〉 into Fock states |m〉, then∣∣∣∣π2 ,πμ

〉
J= N+1

2

→ |μbin(N,S=0)〉. (6.13)

The operator Jz (6.9) is then mapped to n̂ − J , revealing
the well-known Holstein-Primakoff mapping of a spin into
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a boson. For larger spacing S > 0, we map |J,m − J 〉 into
Fock states |(S + 1)m〉. Therefore, we have shown that bin
codes correspond to single-mode irreps of su(2) produced by
the Holstein-Primakoff mapping.

For bin codes, the check operator (Jx/J )2 is related to the
protection from dephasing errors (characterized by N ), and its
nondestructive measurement can be used to detect such errors
(see Sec. VI D). Moreover, the Bloch sphere picture offers a
nice interpretation of why a bin(N,S) code protects against
k � N dephasing errors. Since Jz = n̂ − J in this irrep, the
action of a dephasing error n̂k is directly related to application
of Jz and the code states are eigenstates of Jx at antipodal parts
of the Bloch sphere. Thus, one action of Jz raises (lowers)
the expectation value of Jx for the logical zero (one) state,
moving them closer together from their antipodal positions
at the equator [Fig. 7(b)]. The states only begin to overlap
when a high enough power (Jz)k>N has been applied, which
corresponds to an unprotected dephasing error n̂k>N in the
bosonic representation.

2. Permutation-invariant codes

These codes (denoted here as perm) were introduced by
Ouyang [73] (see also Ref. [100]) to tackle single-qubit
amplitude damping. Given M qubits and parameters {J,S},
the logical states are

|μperm〉 = 1

2J

2J∑
m=0

(−1)μm

√(
2J

m

)∣∣DM
(S+1)m

〉
, (6.14)

where the Dicke state |DN
(S+1)m〉 is the fully symmetrized M-

qubit state with (S + 1)m qubits in state |1〉 and the remaining
qubits in |0〉. Therefore, we need to have M � 2J (S + 1)
in order to accommodate all of the required Dicke states.
If 2J = 3S + 1 and M = 3S2 + 5S, these codes can protect
against qubit amplitude damping errors of weight S [73]. In
this context, the spacing S (between excitations of the Dicke
states) quantifies a distance of the codes. We can already see the
resemblance to spin-coherent states, but here the irrep is more
complicated. For simplicity, let us set S = 0 and M = 2J ; the
S > 0 case is a straightforward extension whose basis elements
are shown in Fig. 7(a). For such cases, |μperm〉 are spin-coherent
states of the largest irrep of su(2) arising from tensoring M

spin-1/2 particles, with J = M/2 playing the role of a collective
spin.

3. Two-mode binomial codes

There is another well-known su(2)-related construct—the
Jordan-Schwinger mapping of a spin into two bosons. Letting
â1,â2 be the lowering operators of the two bosons and X,Y,Z

be the Pauli matrices, we have

J[x,y,z] = 1

2

1∑
j,k=0

â
†
j [X,Y,Z]jkâk. (6.15)

For example, Jz = 1
2 (â†

1â1 − â
†
2â2). The state space associated

with each irrep of this type corresponds to the subspace of
fixed total occupation number, i.e., all two-mode Fock states
|n1,n2〉 such that n1 + n2 = 2J for an irrep of spin J . One
can thus see that the total spin is proportional to the “identity”
component on the subspace, J = 1

2 (â†
1â1 + â

†
2â2). Any code

within a subspace of fixed J thus consists of eigenstates of the
joint backaction (1 − γ )(â†

1 â1+â
†
2 â2)/2 in the two-mode pure-loss

error operators (1.4) (assuming identical γ ’s for both modes).
Codes having this structure were first considered in Ref. [18].

Spin-coherent states of these irreps correspond to a class
of two-mode binomial codes (bin2). Mapping the basis
|J,m − J 〉 from Eq. (6.11) to Fock states |(S + 1)(2J −
m),(S + 1)m〉 yields the bin2 code states

|μbin2〉 = 1

2J

2J∑
m=0

(−1)μm

√(
2J

m

)
|2J − (S + 1)m,(S + 1)m〉.

(6.16)

As with bin, we can parametrize bin2 in terms of spacing S

and a dephasing error parameter N . Then, J = 1
2 (N + 1)(S +

1) in order to fit all of the required two-mode Fock states. Note
that bin2(S = 0) can be obtained by acting on the Fock state
|S + 1,0〉 with a 50:50 beam splitter [22] and were considered
before in the context of three-mode squeezing [101].

4. Further generalizations

We have covered four bases in which to embed a spin—
the spin’s own basis {|J,m − J 〉}2J

m=0, Fock states {|m〉}2J
m=0,

Dicke states {|DM
m 〉}2J

m=0, and two-mode Fock states {|2J −
m,m〉}2J

m=0. There are other relations between these bases and
further code extensions. First, we can go in reverse of what was
discussed above and embed any bosonic code into a multiqubit
Hilbert space by mapping Fock states to Dicke states. While
this produces perm codes when the bosonic code is bin, it
produces previously unexplored codes when the bosonic code
is, e.g., cat or gkp (although such states require J → ∞
due their infinite-dimensional support). Second, Dicke states
{|DM

m 〉}2J
m=0 converge to Fock states in the limit of fixed J but

large M � 2J [98]. This famous limit is equivalent to the south
pole of the Bloch sphere flattening out into ordinary bosonic
phase space in the limit that the Bloch sphere is infinitely large.
In this limit,

perm(M → ∞,J,S) → bin(N = 2J − 1,S). (6.17)

Third, the bin2 states can be tensored 2J times to construct
logical states for the 4J -mode noon code [22], |μnoon〉 =
|μbin2〉⊗2J . The same procedure can of course be applied
to bin codes. Offering an interesting alternative to spacing,
noon codes instead concatenate bin2 with a 2J -block bit-flip
code to correct for up to 2J − 1 loss errors. Fourth, qubit
(qudit) bin codes can themselves be thought of as bit-flip codes
when expressed in a basis of multiqubit (multiqudit) states (see
Appendix C).

D. Error-correction procedure for binomial codes

The existence of approximate error recovery maps for the
various codes does not explicitly suggest by what means these
recovery maps can be implemented nor whether fault-tolerant
error recovery is possible for these codes. For qubit stabilizer
codes, the theory of fault-tolerant error correction has been
developed. For gkp, methods of fault-tolerant quantum error
correction [9] are possible which simply generalize the tech-
niques of qudit (d-dimensional) stabilizer codes to d → ∞.

032346-14



PERFORMANCE AND STRUCTURE OF SINGLE-MODE … PHYSICAL REVIEW A 97, 032346 (2018)

In this section, we investigate for the binomial qubit codes
what measurements of commuting check operators could
give sufficient error information to undo a set of errors.
The recovery procedure we give is not necessarily the opti-
mal one obtained by optimization in Sec. II. The binomial
code family bin(N,S) can correct against errors in the error
set E = {I,â, . . . ,âL,â†, . . . ,(â†)G,n̂, . . . n̂D} with S = L +
G and N = max(L,G,2D). We know from Eq. (6.11) that the
code words correspond to antipodal spin-coherent states of
spin J = 1

2 (N + 1). We will refer to the N + 1-dimensional
subspace as the spin space.

Imagine that one error from the set E has taken place on an
encoded state. The following procedure describes how to undo
this error. First, one nondestructively measures the eigenvalues
of the check operator J 2

x which has eigenvalue +J 2 on all
states in the code space. Here we assume that the operator
Jx only has support on the Fock states |m(S + 1)〉 and thus
has zero eigenvalues elsewhere. Of course, the check operator
Jx is not unique and any form of nondestructively learning
the value |mx | is permitted. For odd N (integer spin J ), such
a measurement has outcomes |mx |2 with |mx | = 0,1, . . . ,J .
The outcome mx = 0 cannot have come about from one of the
dephasing errors of the form n̂k since this error operator maps
an initial state with |mx | = J to a superposition of states with
|mx | � J − k so that for k � D, one cannot reach |mx | = 0.
For even N (half-integer spin J ), mx will never be zero by
the application of a dephasing error. Hence, if one finds the
eigenvalue mx = 0, one concludes that photon loss or photon
gain errors of the form âk , k � L and (â†)l , l � G must
have occurred. In order to learn more about these photon loss
and gain errors, one then measures the photon parity check
operator (5.7). If one finds any another value of |mx | = k

for the first measurement, one rotates the two-dimensional
mx = ±k subspace back to the two-dimensional mx = ±J

subspace by some unitary transformation. For stabilizer (resp.,
gkp), this correction can be a Pauli operator (resp., small
displacement). Note that, unlike for stabilizer, cat, or gkp
codes, it is necessary to physically apply the correction. In
other words, unlike the use of Pauli frames [102], we cannot
just record the value of |mx | and keep the quantum information
in this error space with a lower value for |mx |: Subsequent
dephasing errors would lead to more laddering up and down
in the spin space so the QEC conditions would no longer
be met [see Fig. 7(b)]. In case mx = 0, one nondestructively
measures the eigenvalues of Cbin (5.7) (via phase estimation,
say), allowing one to learn the photon parity k modulo S + 1.
When k � G (at most G photons are gained), one applies

U+
k =

1∑
μ=0

|μbin〉〈μbin|âk√
〈μbin|âk(â†)k|μbin〉

+ V +
else, (6.18)

where V +
else is chosen to make U+

k unitary. When k > G (at
most L photons lost), one applies

U−
l =

1∑
μ=0

|μbin〉〈μbin|(â†)l√
〈μbin|(â†)l âl|μbin〉

+ V −
else (6.19)

with l = S + 1 − k. These rotations are not a simple adding or
subtracting of photons since some Fock states in |μbin〉 have
been annihilated.

This form of error correction unfortunately does not correct
products of dephasing and photon loss or gain errors, which
are in principle errors against which the code can correct
[23]. Note also that Ref. [23] has shown that specifically for
the photon loss channel with errors as in Eq. (1.4), only the
measurement of the rotation operator Cbin (5.7) is required
(since there is one particular dephasing error associated with
a particular number of photon losses). The procedure above
thus falls short of giving a general prescription for error
correction for the binomial codes. However, for the bino-
mial qubit code bin(N = 2,S = 1), one can give a scheme
which corrects all the errors which meet the quantum error
conditions. The code bin(N = 2,S = 1) can correct against
the errors in E = {I,â,n̂}. For these parameters, the code
space is inside the Fock space with a maximum of 6 photons,
F6 = Span{|0〉, . . . ,|6〉}. We split this space into the direct
sum of the even subspace and the odd subspace, that is F6 =
F even

6 ⊕ Fodd
6 = Span{|0〉,|2〉,|4〉,|6〉} ⊕ Span{|1〉,|3〉,|5〉}.

The code space is inside F even
6 . We identify F even

6 with a
spin J = 3/2 via the mapping

|6〉 ≡ ∣∣mz = 3
2

〉
, |4〉 ≡ ∣∣mz = 1

2

〉
,

|2〉 ≡ ∣∣mz = − 1
2

〉
, |0〉 ≡ ∣∣mz = − 3

2

〉
,

so that |0bin〉 and |1bin〉 code states are the highest and lowest
eigenstates of Jx(J = 3/2),

|0bin〉 = ∣∣mx = 3
2

〉
, |1bin〉 = ∣∣mx = − 3

2

〉
.

One dephasing error leaves the code states inside F even
6 . More

precisely, it is a linear combination of the identity and Jz(J =
3/2) such that

n̂|0bin〉 = 2
∣∣mx = 1

2

〉 + 3|0bin〉, (6.20a)

n̂|1bin〉 = 2
∣∣mx = − 1

2

〉 + 3|1bin〉. (6.20b)

For convenience, we relabel the error states |mx = ± 1
2 〉 ≡

|n±〉.
Remarkably, one photon loss maps F even

6 onto Fodd
6 in such

a way that the code states are mapped onto shifted5 code states
for N = 1. This is in fact true for general N and S: One photon
loss maps the code space (N,S) to the code space (N − 1,S)
but shifted by +S in the Fock basis [23]. With this in mind, we
can identify Fodd

6 with a spin J = 1 with the mapping

|5〉 ≡ |mz = 1〉, |3〉 ≡ |mz = 0〉, |1〉 ≡ |mz = −1〉,
and then the error states are the highest and lowest eigenstates
of Jx(J = 1),

â|0bin〉 ∝ |mx = 1〉, â|1bin〉 ∝ |mx = −1〉,
which we rename for convenience |mx = ±1〉 ≡ |a±〉. The
third state of this spin-1 subspace is called the unknown state
as ending up in this state means the loss of logical information,
|mx = 0〉 ≡ |?〉. To complete the description, one can note
that the action of n̂ on Fodd

6 is also a linear combination of
Jz(J = 1) and the identity I , i.e., mapping |a±〉 to a linear
combination of itself and |?〉, and using the fact that ân̂ =
n̂â − â, one can note that |n±〉 is mapped by â onto a linear
combination of |a±〉 and |?〉. These relations are summarized in
Table II.
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TABLE II. Relations between code states and error states for
bin(N = 2,S = 1).

Jx(J = 3/2) F even
6 Fodd

6 Jx(J = 1)

3
2 |μbin = 0〉 â−→ |a+〉 1

n̂ ↓ ↓ n̂

1
2 |n+〉 â−→ |?〉 0

− 1
2 |n−〉

n̂ ↑ ↑ n̂

− 3
2 |μbin = 1〉 â−→ |a−〉 −1

One possible way to extract error information is then to
measure (via phase estimation) the eigenvalues of the following
unitary

U = exp

{
2πi

b
[a(Jx(3/2))2 ⊕ (Jx(1))2]

}
, (6.21)

where the two parameters a and b can be chosen to obtain good
spacing between different eigenvalues. For example, one can
choose a = 8 and b = 5, leading to Table III.

To obtain the four eigenvalues of U (via phase estimation),
one needs at least two qubit ancillas. A more direct method
would be to first measure photon parity. If odd, then correct for
photon loss. If even, then one measures the eigenvalues ofJ 2

x by
measuring U = exp(i32πJx(3/2)2/9), which has eigenvalue
+1 for the no-error case and eigenvalue exp(i32π/36) ≈ −1
in the dephasing error case.

VII. GKP CODES

While their error-correcting properties were first revealed in
Ref. [9], gkp states have connections to quantum foundations
[103], solid-state physics [104], and signal processing (where
their analogs are frequency combs). The ideal (i.e., infinite n̄)
square lattice gkps code space, denoted by its projection P ideal

gkps ,
is the simultaneous +1 eigenspace of the two commuting
stabilizers

Sx = D√
2π and Sp = Di

√
2π , (7.1)

where Dα ≡ eαâ†−α
â is the displacement operator (note that
D√

2π = e−i2
√

πp̂). The projection onto the code can be con-
structed out of all of their powers,

P ideal
gkps ≡

(
1√
π

∑
n∈Z

Sn
x

)(
1√
π

∑
n∈Z

Sn
p

)
≡ PxPp. (7.2)

Applying the Poisson summation formula allows us to express
Px (Pp) as a sum of projections onto eigenstates |n√

π〉x̂

TABLE III. Eigenstructure of the proposed unitary to be measured
for error correction of bin(N = 2,S = 1).

Eigenstates |μ = 0 or 1〉 |n+〉,|n−〉 |a+〉,|a−〉 |?〉
Eigenvalues ei6π/5 ei4π/5 ei2π/5 1
Decoding No error Dephasing Photon loss Failure

(|n√
π〉p̂) of x̂ (p̂). We demonstrate this for Pp:

Pp = 1√
π

∑
n∈Z

ei2
√

πnx̂ (7.3a)

=
∑
n∈Z

δ(x̂ − √
πn) (7.3b)

=
∑
n∈Z

|√πn〉x̂〈
√

πn|. (7.3c)

These sets of positions and momenta make up the code lattice,
the lattice dual to the stabilizer lattice (in the language of
Ref. [9]) and generated by the logical operators

Xgkps = D√
π/2 = S1/2

x , (7.4a)

Zgkps = Di
√

π/2 = S1/2
p . (7.4b)

The maximally mixed state 1
2Pgkps reproduces this lattice,

shown in the fourth panel in Fig. 1.
Conventionally, gkps logical states are expressed in terms

of squeezed states,∣∣μideal
gkps

〉 ∝
∑
n∈Z

|√π(2n + μ)〉x̂ . (7.5)

One can obtain an equivalent (see Appendix D 2) representa-
tion in terms of coherent states by projecting the vacuum state
|0〉 onto the code and the ±1 eigenstates of Zgkps:∣∣μideal

gkps

〉 ∝ [I + (−1)μZgkps]P ideal
gkps|0〉

=
∑
�n∈Z2

D√
π
2 (2n1+μ)Di

√
π
2 n2

|0〉, (7.6)

where �n ≡ (n1,n2). The above displacements generate the two
state lattices for Zgkps-logical states, whose horizontal spacing
is twice that of the code lattice due to the I ± Zgkps term. In
general, the state lattice depends on the logical basis used (see
Fig. 8) while the code lattice is basis independent.

The usual way to make the states (7.5) have finite n̄ (and
therefore be normalizable) is to assume finite squeezing for
each position eigenstate and add a �2-dependent Gaussian
envelope, producing the gkps states in Eq. (7.7a) below.
Alternatively, one can add a Gaussian envelope to Eq. (7.6),
yielding a representation in terms of coherent states, Eq. (7.7b).
A third finite-n̄ representation can be written in terms of
|μideal

gkps〉 smeared by a Gaussian distribution of displacements
[9], making contact with the errors that the codes are designed
to correct. This is the third equation below:∣∣μ�

gkps

〉 ∝
∑
n∈Z

e− π
2 �2(2n+μ)2

D√
π
2 (2n+μ)S− ln �|0〉 (7.7a)

∼
∑
�n∈Z2

e− π
2 �2[(2n1+μ)2+n2

2]D√
π
2 (2n1+μ)Di

√
π
2 n2

|0〉

(7.7b)

∼
∫

d2α
e−|α|2/�2√
π�2/2

Dα

∣∣μideal
gkps

〉
, (7.7c)

where μ ∈ {0,1} and Sr = e+ 1
2 r(â2−â†2) is the squeezing oper-

ator. We use � ∈ [0,1] for both the envelope and squeezing
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FIG. 8. Wigner function sketches of the two Zgkps-, Xgkps-, Ygkps-
logical states. Comparing to the fourth panel in Fig. 1, which shows
that the code lattice is square, here we see that the lattices formed by
the logical states may be square or rectangular, depending on which
logical operator is considered. The unit cell of the state lattices (7.6) is
marked by “×” in the two leftmost panels; the remaining dots appear
as a result of the coherences between different coherent states.

parameters for simplicity. These representations numerically
converge to each other very quickly in the � → 0 limit, but
there are visual differences between them for small envelopes.
A fourth representation in terms of Fock states is possible
using Eq. (86) from Ref. [94]. Note that |0�

gkps〉 and |1�
gkps〉

are nonorthogonal for nonzero �, and this source of error
manifests itself in the QEC matrix.

Recall that gkps(� → 0) states can protect against dis-
placement errors Dα1+iα2 in phase space, where |α1|,|α2| <√

π/8. The representations can easily generalize to more tightly
packed lattices, yielding a slightly larger volume of correctable
displacements. To construct the coherent-state representation
of the Zgkp-logical states, one first constructs commuting
stabilizers (following Ref. [9]) and repeats Eq. (7.6). Adding
an envelope, this representation (7.7b) is particularly simple to
express: ∣∣μ�

gkp

〉 ∝
∑

α∈L(μ)

e−�2|α|2e−iα1α2 |α〉, (7.8)

where |α = α1 + iα2〉 is a coherent state and L(μ) is the
state lattice for each code state μ. We considered both these
lattices and their shifted versions (B4) for the gkp numerics
(see Appendix B). For all analytics below, we use the finite-
n̄gkps unshifted square-lattice states |μ�

gkps〉 (7.7c), noting any
generalizations to other lattices.

We have calculated moments of the occupation number,
yielding a geometric (i.e., thermal) distribution:

n�
gkps ≡ 1

2 Tr{Pgkpsn̂
�} ∼ �!n̄�

gkps, (7.9)

where the average occupation number is

n̄gkps ∼ 1

2�2
− 1

2
. (7.10)

As expected, the moments diverge as the states become
unnormalizable in the small � limit.

A. QEC matrix for GKP codes

Recall that any trace class bosonic operator A (i.e., satisfy-
ing Tr{A†A} < ∞) can be expanded in terms of displacement
operators using the orthogonality condition of Dα at the
superoperator level [105],

Tr{D†
αDβ} = πδ2(α − β). (7.11)

The expansion is then A = ∫
d2α
π

Tr{D†
αA}Dα , where the inte-

gral is over all of phase space and Tr{D†
αA} is the characteristic

function of A. Protection of gkp against pure loss was previ-
ously discussed using an approximation of â in terms of a sum
of displacements instead of an integral, at first very briefly [9]
and subsequently taking into account the maximum number
of photons in the oscillator [106]. Here we calculate the QEC
matrix ε

gkps
��′ (4.1) by expressing Kraus operators in terms of

the full integral expansion.
Unlike â, the error operator E� and its variants are trace

class due to the damping term, yielding

E
†
�E�′ =

∫
d2α

π
e− 1

2 (1−γ )|α|2〈�|Dα
 |�′〉Dα
√

γ , (7.12)

where 〈�|Dα
 |�′〉 are matrix elements of the displacement
operator Dα in the Fock state basis (D2). To obtain this, one
can express the trace in Tr{D†

αE
†
�E�′ } as a sum over Fock

states, plug in Eq. (D2), and use the generating function of
Laguerre polynomials (D3). Complementing the expansion
of Gaussian noise {Dα} in terms of photon creation and
annihilation operators (e.g., Ref. [107]), the above equation
completes the “Rosetta stone,” expressing each of the two
primary noise models in the language of the other.

To gain a flavor of the calculations below, let us first
examine how we can calculate c

gkps
�� = 1

2 Tr{PgkpsE
†
�E�}. Us-

ing Eq. (7.12), this calculation boils down to determining
Tr{PgkpsDα}. Consider first the infinite n̄gkps limit, recalling
from Fig. 1 that Pgkps is a sum of (unphysical) points of fixed
position and momentum arranged in a square code lattice.
Then, Tr{PgkpsDα} will be nonzero only for those α which
displace the lattice back on top of itself, i.e., α displaces by a
multiple of the lattice’s unit cell. For those cases, the overlap
of each point with itself will be infinite, and so the total result
is

∑
� δ2(α − �), where the sum is over all displacements

� ∈ √
π/2(n1,n2) (with integers n1,2) preserving the code

lattice. Coming back to finite n̄gkps, a natural guess would be

to substitute the Gaussian representation 1
�

e
− 1

2�2 |α−�|2 for the
Dirac δ function in the sum. This almost obtains the right result,
but there are two more steps. The first is normalization, which
cancels the 1

�
in front of the Gaussian representation of the

δ function. The second is addition of the Gaussian envelope,
yielding

1

2
Tr{PgkpsDα} ∼

∑
�

e
− 1

2�2 |α−�|2
e− �2

2 |�|2 . (7.13)

Notice that what used to be a Dirac δ is now a Kronecker
δα,� ∼ e

− 1
2�2 |α−�|2 in the small � limit. As a sanity check,

setting α = 0 yields unity in that limit.
Calculating these overlaps is more involved (see Ap-

pendix D 3), but we can nevertheless use the above intuition to
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understand the more general element (with ν ∈ {0,1})〈
μ�
gkps

∣∣Dα

∣∣ν�
gkps

〉
∼

∑
�n∈Z2

eiπ(n1+ μ+ν

2 )n2e
− 1

2�2 |α−��n
δμ|2

e− �2

2 |��n
δμ|2 , (7.14)

where δμ ≡ μ − ν and ��n
δμ ≡ √

π
2 [(2n1 + δμ) + in2]. Since

there are two different state lattices, there are extra phases in the
sum and the sum is over displacements α ∈ ��n

δμ which overlap

the two lattices. We can now plug this into E
†
�E�′ (7.12) and

proceed to calculate the integral (see Appendix D 4), yielding〈
μ�
gkps

∣∣E†
�E�′

∣∣ν�
gkps

〉
∼

√
c
gkps
�� c

gkps
�′�′

∑
�n∈Z2

e
− (1−γ )

2γ
|��n

δμ|2

× eiπ(n1+ μ+ν

2 )n2e− �2

2 |��n
δμ|2〈�|D(��n

δμ)
/
√

γ |�′〉, (7.15)

for γ n̄gkps → ∞, where c
gkps
�� will turn out to be the probability

of losing � photons,

c
gkps
�� = 1

2
Tr{PgkpsE

†
�E�} ∼ (γ n̄gkps)�

(γ n̄gkps + 1)�+1
. (7.16)

Thus, the photon loss distribution for gkps is a asymptotically
thermal with mean γ n̄. Ignoring the �2 envelope term from
now on, all � dependence of Eq. (7.15) is contained in c

gkps
�� .

Notice that |〈�|D(��n
δμ)
/

√
γ |�′〉| � 1 because they are over-

laps between two states. Thus, the only quantity regulating the

sum (7.15) is e
− (1−γ )

2γ
|��n

δμ|2 . Assuming γ  1, the “on-site” term
(�n = �0) in Eq. (7.15) is μ independent and thus contributes to

c
gkps
��′ ∼ c

gkps
�� δ��′ , (7.17)

while the “nearest-neighbor” terms (|�n| = 1) contribute to the
leading-order uncorrectable parts∣∣zgkps��′

∣∣∼√
c
gkps
�� c

gkps
�′�′ e

− π
4

1−γ

γ 〈�|(D√
π
2γ

+ D
†√

π
2γ

)|�′〉 (7.18)

and |xgkps
��′ | = |zgkps��′ |. (There is no |ygkps

��′ | to this order.) The
uncorrectable parts are the same (up to sign) due to the identical
effect of position and momentum displacements on the code.
So, while the nearest neighbors �n = (0,±1) contributed to
z
gkps
��′ and �n = (±1,0) contributed to x

gkps
��′ , the two quantities

have to be equal in magnitude due to this effect. (Considering
more general lattices can, of course, break this balance.) We can
also see another symmetry manifest itself—the invariance of
the lattice under parity (−1)n̂. Since the sum of displacements
is even under parity, it does not connect even Fock states to
odd ones and guarantees that z

gkps
��′ = 0 unless � − �′ is even.

This means that technically gkps codes have spacing S = 1.
However, this spacing disappears when the lattice is slightly
shifted and the symmetry lost, but the performance of the
codes remains. This should not be surprising since shifted
gkps code spaces are akin to Pauli frames in the stabilizer
formalism [106]. The most striking result is that the reason
for this high performance is not due to the spacing, but to
the suppression by the γ -dependent exponential factor in
Eq. (7.18). Namely, while ε

gkps
��′ contains uncorrectable parts

for all �,�′ (modulo symmetry constraints), all of these parts

are suppressed exponentially by e
− π

4
1−γ

γ when γ  1. As an
example, we show the comparable strength of the exponential
suppression of uncorrectable parts for gkps(n̄ ≈ 6) in Fig. 5.
Assuming that the infidelity 1 − FE to leading order in γ is
polynomial in all uncorrectable parts, one expects 1 − FE to
also be exponentially suppressed by 1−γ

γ
. We proceed to show

this by bounding 1 − FE using an explicit recovery.

B. Removing energy constraints

In Fig. 2, we have observed that F gkps

E is significantly higher
than that for all other codes for most γ . While the nontrivial
exponential suppression of uncorrectable parts (7.18) of the
QEC matrix hints at an analytical explanation, this still does
not tell us how FE scales with γ . For this, we need to consider
a specific analytically tractable recovery. Having investigated
several recoveries, the simplest one we found is based on
the fact that the combination of amplification and pure loss
produces Gaussian (i.e., displacement) noise [2]—a channel
which most naturally fits the error-correction capabilities of
gkps.

Coming back to the formulation of N in terms of a beam
splitter (1.6), consider amplifying the signal

â →
√

Gâ + √
G − 1b̂† (7.19)

after application of N . Here, G is the gain of the amplifier,
which we set to G = eχ = 1

1−γ
to compensate the effect of

damping. Tracing out the b̂ mode, amplification is simply the
properly normalized transpose of pure loss,

A(·) = (1 − γ )N‡(·), (7.20)

where “‡” is the adjoint in the matrix representation. The
Kraus operators of A are

√
1 − γE

†
� for � ∈ {0,1, . . . } {e.g.,

Ref. [34], Eq. (5.5)} and it is simple to verify that A is indeed
a channel: (1 − γ )

∑∞
�=0 E�E

†
� = I .

Upon amplification, the pure-loss channelN is transformed
into a Gaussian noise channel with variance γ

1−γ
. The noise

comes from two parts: the intrinsic noise due to amplification
and the amplified noise due to pure loss. More explicitly, we
can apply Eq. (7.12) to express AN in terms of displacements
and use displacement orthogonality (7.11):

AN (ρ) = (1 − γ )
∫

d2α

π

d2β

π
e− 1−γ

2 (|α|2+|β|2)D α√
γ

ρ D β√
γ

×
∞∑

�,�′=0

〈�|Dα
 |�′〉〈�′|Dβ
 |�〉

= (1−γ )
∫

d2α

π
d2βe− 1−γ

2 (|α|2+|β|2)D α√
γ

ρD β√
γ
δ2(α+β)

= 1 − γ

γ

∫
d2α

π
e
− 1−γ

γ
|α|2

Dα ρ D†
α. (7.21)

Appending amplification with the conventional gkp recov-
ery RGKP which measures and corrects displacements within
the correctable unit cell [9], the total recovery we consider is

RAGKP = RGKPA. (7.22)
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FIG. 9. Contour plot of FE vs dimensionless Kerr parameter Kt and damping parameter χ ≡ κt for cat, bin, num, and gkps picked such
that they all have n̄ ≈ 2. Here, K is the strength of the Kerr Hamiltonian (8.1), κ is the cavity decay rate, and t is time. Starting with a fixed χ

and tracking increasing Kt , we see that FE quickly decreases to a constant for all codes considered, implying a potentially universal failure of
error correction when Kt is large. However, FE is minimal at high-symmetry points of the codes (dashed red lines) and maximal in between.
For example, 1

2 Pnum for the num code is threefold symmetric (see Fig. 1), and FE (num) is minimal at Kt , being the first few multiples of 2π/3.

Note that the above derivation of Gaussian noise is exact
for all values of γ . We bound FE by calculating the success
probability that RAGKP will succeed in correcting the above
Gaussian noise AN starting with ideal (i.e., infinite n̄gkps)
code states:

Psucc(γ ) = 1 − γ

γ

∫
�

dα1dα2

π
e
− 1−γ

γ
(α2

1+α2
2 )
, (7.23)

where the integration is over correctable displacements
|α1|,|α2| �

√
π/8 denoted by �. The channel infidelity 1 −

F AGKP
E can then be estimated using the failure probability,

which is the complementary integral outside of the unit cell.
Upper bounding that integral by integrating the complement
of the circle with radius

√
π/8 (instead of the complement of

the square with length
√

π/8) yields

Pfail(γ ) <
1 − γ

γ

∫
|α|�

√
π
8

d2α

π
e
− 1−γ

γ
|α|2 = e

− π
8

1−γ

γ . (7.24)

We remark that this bound can be improved to e
− π

4
√

3
1−γ

γ using
ideal hexagonal gkp.

VIII. ADDITIONAL FEATURES

A. Nonlinearity

We have tried to address the effect of pure loss on our codes,
but real-world microwave cavities have undesired unitary
evolution (i.e., coherent errors). In general, the joint effect of
pure loss and a unitary process on the state depends not only
on how many losses have occurred but also their specific times.
The purpose of this subsection is to answer the following:
Does adding coherent errors reduce code performance?
The answer to this, at least in our case, is a firm “yes.”

The coherent (i.e., unitary) error we add is generated by a
Kerr nonlinearity with Hamiltonian

HK ≡ 1
2Kn̂(n̂ − 1) = 1

2Kâ†2â2, (8.1)

with Kerr parameter K . Here, we show what happens when
our codes get exposed to the joint evolution of pure loss and
Kerr, namely, the channel

Nχ,Kt (·) = e−iKt[ 1
2 n̂(n̂−1),·]+χD(·), (8.2)

where D(·) is the Lindbladian for the pure loss channel from
Sec. I A. Since the Kerr nonlinearity is prominent in cavities
coupled with transmons (as opposed to optical fibers), we use
the excitation loss rate κ to quantify the strength of pure loss
(recall that γ = 1 − e−κt ). Thus, the two unitless scales of the
problem are χ ≡ κt and Kt . An analytic Kraus representation
for Nχ,Kt has yet to be obtained, but various approaches have
come close [108,109].

Figure 9 plots FE (Kt,χ ) for four code families at n̄code ≈ 2.
For Kt = 0 (horizontal axis in each plot), we see the same
behavior in FE vs pure loss strength as we saw before. For
the other extreme of χ = 0 (vertical axis), we see unit FE
since Kerr nonlinearity alone is a perfectly correctable unitary
process. Starting with a fixed nonzero χ and looking up at the
vertical line of increasing Kt , we see that FE quickly decreases
to a (roughly) constant value for all codes. Since the optimal
recovery is not able to ascertain exactly when photon loss
events occurred, Kerr evolution induces rotations of unknown
angle between those events, e−iHK t â ∝ âein̂Kt e−iHK t , and thus
destroys the quantum information. Metrology protocols are
also susceptible to this effect [110]. The value to which FE
decreases at large Kt seems to be (roughly) universal across
all codes, so there might be a fundamental limit to correcting
large n̄-dependent coherent errors in the presence of incoherent
errors. However, it is still possible to use error correction
to our advantage in, e.g., the Kt ≈ 1 regime (given n̄ ≈ 2).
Incidentally, in that regime, cat shows an increase in FE ,
implying that a slight amount of Kerr is actually helping
cat-code performance. We are investigating this effect in a
subsequent publication.

Lastly, we want to mention that FE for a given code is
minimal when Kt is at an angle by which rotating 1

2Pcode

leaves the projection invariant. Recall that evolution under
e−iHK t causes a coherent state to transform into cat states at
certain rational t [111–113], but such recurrences are quickly
degraded under pure loss [114]. Nevertheless, we see some
periodicity in code performance, e.g., in the case of num in the
third panel in Fig. 9. From Fig. 1, we know that 1

2Pnum for this
num code is threefold rotationally symmetric in phase space.
Coincidentally, FE (num) is minimal at Kt being the first few
multiples of 2π/3 (dashed red lines) and maximal in between.
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FIG. 10. Channel fidelity for cat, bin, num, and gkps picked
such that they all have n̄ ≈ 2, given (a) the pure-loss channel N
(1.4) and (b) the pure-loss channel with the capability of knowing the
number of photons lost, modeled by the quantum instrument Ñ (8.4).
(c) Uncorrectable parts of the QEC matrices, εcode − ccode (see
Sec. IV), for the four codes (cf. Fig. 5). Since uncorrectable parts
in the diagonal blocks εcode�� are all that matter in recovering from Ñ ,
we see that cat, bin, and num outperform gkp at this n̄.

We do not know the reason for this effect, but one can see that
it occurs for all codes to various extent.

B. Parity measurements

Here, we briefly consider the following question: What if
we know how many photons were lost?

While microwave cavities still do not have the capability to
directly count photons, one can perform nondemolition photon
parity measurements of microwave cavity modes [29,115] and
vibrational modes of trapped ions [116]. If we assume that
(1) we have a fixed-parity initial state and (2) we can measure
parity (−1)n̂ during the loss portion of the channel E perfectly
and faster than any time scale of the system, then we can
in principle track every loss event â without destroying the
state. This results in an unraveled [117] system, where part of
the knowledge reserved for the environment—the number and
times of the loss events—is now learned by the experimenter.
For example, a trajectory lasting time t during which jumps
occurred at times τ2 � τ1 would incur the conditional evolution

Ẽ2|ψ〉 ≡ e− 1
2 κ(t−τ2)n̂âe− 1

2 κ(τ2−τ1)n̂âe− 1
2 κτ1n̂|ψ〉, (8.3)

where |ψ〉 is the initial state of the oscillator and we have not
yet renormalized the state. Defining Ẽ� in similar fashion and
permuting all â’s to the left leaves us with Ẽ� = f�E�, where
E� (1.4) is the Kraus operator for the pure-loss channel and f�

is a function of the jump times. Since f� is a scalar, knowledge
of jump times is irrelevant to error correction against pure loss,
and we can ignore it from now on. We model this process using
an extended version of pure loss N—the quantum instrument
[62]

Ñ (ρ) =
∞∑

�=0

E�ρE
†
� ⊗ |�〉〈�|, (8.4)

where ρ is a single-mode density matrix. The second tensor
factor represents our knowledge of �, making sure that each
E�ρE

†
� is mapped into an orthogonal subspace of the extended

Hilbert space. The corresponding recoveryR has Kraus opera-
tors Ucode

� ⊗ 〈�|, with Ucode
� being a unitary mapping E�Pcode

into Pcode.
We compare FE (1.11) with FẼ , the fidelity given the

extended loss channel Ñ (8.4), in Figs. 10(a) and 10(b),
respectively. Code performance improves for all codes, even
the naive 0/1 Fock state encoding (dashed gray line). Note
that, given this extra knowledge, only the diagonal blocks εcode��

of the QEC matrix (4.1) are relevant. The gkps codes have
the largest uncorrectable parts in those blocks at this n̄gkps
[see Fig. 10(c)], so their performance increases the least out
of all the codes. The num code winds up being the optimal
encoding in the eyeball norm, but the parity-tracking procedure
described above is not applicable to this code since its states
(B2a) are not of fixed parity.

IX. CONCLUSION

The results of this paper can be categorized into two
parts: one regarding code performance and one regarding code
structure. Here, we summarize these results and comment on
future directions and open questions.

A. Code performance

We gave a numerical and analytical performance compari-
son of the four primary single-mode continuous-variable quan-
tum codes—cat [13,15,27], binomial (bin) [23], numerically
optimized (num, Ref. [23] and here), and gkp [9] codes—
against the pure loss channel with loss rate γ . For the numerical
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part, we compared the codes’ ability to preserve entanglement
using channel-adapted error correction [35] subject to two
caveats: (1) the encoding, recovery, and decoding are all
assumed perfect and (2) the codes are grouped by their mean
occupation number n̄code � 2,5,10. For the analytical part, we
calculated the quantum error-correction (QEC) conditions for
cat, bin, and gkp. We briefly discuss our results below, but
encourage the reader to peruse Sec. II for more details.

Even though cat and bin follow the traditional convention
of correcting exactly against a subset of errors, their perfor-
mance is significantly worse than that ofgkp for many γ . While
gkp does not exactly correct against any errors, we find that the
violation of the QEC conditions for each error is insignificant
compared to the violation of the leading-order uncorrectable
errors for cat and bin for most n̄code.

In the limit of vanishing γ , we observe the following order
of performance: gkp < cat < bin < num. On the one hand,
since cat and bin codes correct exactly against the first few
errors, their performance scales polynomially with γ . We
further reveal the regions in the {γ,n̄code} parameter space in
which bin codes outperform cat codes. On the other hand,
we analytically show that gkp code entanglement infidelity is
O(e− c

γ ) (with c a constant dependent on the type of gkp code).
As γ increases,gkp quickly overpowers the rest of the codes

and their performance persists even for high γ . For example,
optimal recovery of a gkp state with 10 photons on average
yields a fidelity of 99.5% given γ ≈ 20%, compared to a
fidelity of 96.9% for bin and 96.6% for cat. At γ ≈ 30%,
where about one in every three photons are lost, the fidelity
of gkp is still 95%, which is 5% higher than that of cat
and bin. At such high γ , we observed the following order
of performance: bin � cat < num < gkp.

We extended our analysis of entanglement preservation to
determine achievable rates of quantum communication using
these codes, where we saw similar orders of performance.
We also show that sending a gkp state with an average
occupation number of two photons produces a higher com-
munication rate than distributing two photons among four
modes using the smallest encoding protecting against one loss
error.

Relaxing the n̄code constraint, we have numerical evidence
showing that performance of gkp codes and a subset of bin
codes increases with increasing n̄code. Since the ideal gkp
states indeed have infinite n̄gkp, it is reasonable that their
performance increases monotonically as they become more
ideal. To back this claim analytically, we cook up a simple
recovery procedure involving phase-insensitive amplification
that converts the pure-loss channel into Gaussian noise; this
procedure can also be used in multimode extensions of gkp
codes [54]. The bin increase in performance can be justified
by showing they have a larger set of approximately correctable
errors than previously thought; we do so in Secs. VI A–VI B.

We added a unitary error in the form of a Kerr nonlinearityK

in order to see how code performance is changed. We observed
that cat code performance increases slightly at small K and
that all code performance oscillates with periods depending
on their symmetries; these are subjects of future investigation.
We also observed that, at sufficiently large K , the performance
of all codes fails at about the same rate, signaling the need to
keep such coherent errors low in a real device. We also briefly

addressed changes in code performance if one is able to learn
how many photons were lost.

There are obvious generalizations of this analysis to other
multimode codes mentioned in the introduction, storing mul-
tiple qubits worth of information; we are currently pursuing
some of them. Another direction has to do with having gkp and
bin codes catch up to cat codes in terms of experimental real-
izability. While gkp codes may have been considered by some
to be unphysical in the past, recent technological advances in,
e.g., microwave cavity [118], atomic ensemble [119,120], and
trapped ion [121] control, suggest that making these states may
be within reach. In fact, there are recent theoretical proposals
related to making and maintaining gkp states in two of the
aforementioned technologies [106,122] (see Refs. [123–128]
for other proposals) and a related trapped-ion experiment
[129]. While the comparison offered here is completely free
from consideration of experimental imperfections, we hope
that our conclusions will motivate the community to pursue
quantum information processing and communication schemes
with bin and gkp states.

B. Code structure

We discussed a connection between bin codes and spin-
coherent states and used it to characterize related two-mode
binomial codes as well as multiqubit permutation-invariant
codes [73]. This connection yields a check operator for bin
dephasing errors, and we discussed an error-correction scheme
that utilizes this operator. This connection was also extended
to qudit versions of the aforementioned codes, yielding a
generalization of spin-coherent states and a check operator for
qudit codes.

By mapping the coefficients of the qudit bin code into
a particular subspace of multiple qudits, we introduced a
multiqudit (i.e., discrete variable) code that extends the mul-
tiqubit permutation-invariant codes. The extension, which we
call perm′ in order to differentiate it from another extension
[75], turns out to be nothing but a multiqudit bit-flip code
when expressed in the basis of products of the individual
qudit states. However, when expressed in terms of a qudit
extension of Dicke states, the coefficients next to those states
match those of the qudit binomial codes. This relates the
protection of the continuous-variable binomial codes to that
of a discrete-variable bit-flip code. A similar bit-flip-like trick
was used for another code—the noon code [22]—where two-
mode noon states and their multimode generalizations were
tensored together to form codes protecting against pure loss.
Such intriguing connections between discrete- and continuous-
variable codes should be investigated further. In addition, the
generalization of spin-coherent states introduced here may be
useful in experimental settings such as atomic ensembles (e.g.,
Refs. [120,130]) and magnetometry (e.g., [131–133]).

ACKNOWLEDGMENTS

The authors acknowledge Steven T. Flammia, David Poulin,
Saikat Guha, Richard Kueng, Mazyar Mirrahimi, John Preskill,
R. J. Schoelkopf, Matti Silveri, Murphy Yuezhen Niu, and Bei
Zeng for enlightening discussions. V.V.A. thanks Misha Guy
and the Yale Center for Research Computing for resources

032346-21



VICTOR V. ALBERT et al. PHYSICAL REVIEW A 97, 032346 (2018)

and support and acknowledges support from the Walter Burke
Institute for Theoretical Physics at Caltech. V.V.A., K.N., C.S.,
L.L., and L.J. acknowledge support through the ARL-CDQI,
ARO (Grants No. W911NF-14-1-0011 and No. W911NF-14-
1-0563), ARO MURI (W911NF-16-1-0349), NSF (EFMA-
1640959), AFOSR MURI (FA9550-14-1-0052 and FA9550-
15-1-0015), the Alfred P. Sloan Foundation (BR2013-049),
and the Packard Foundation (2013-39273). K.D., C.V., and
B.M.T. acknowledge support through ERC Consolidator Grant
No. 682726. S.M.G. acknowledges support through the NSF
(DMR-1609326) and ARO (W911NF1410011).

V.V.A., K.N., and K.D. contributed equally to this work.

APPENDIX A: THE MANY FACES OF CHANNEL
FIDELITY

A well-known property of FE is the relation to the average
input-output fidelity of E [134] (see also Ref. [135]),∫

dψ〈ψ |E(|ψ〉〈ψ |)|ψ〉 = dFE + 1

d + 1
, (A1)

where d is the dimension of the system. Above,
〈ψ |E(|ψ〉〈ψ |)|ψ〉 is the input-output fidelity for some initial
state |ψ〉 of the source qubit and dψ is a uniform distribution
over all pure states. Because of the above equality, one should
not be surprised that the capacity of entanglement transmission
determined by FE is equivalent to the capacity of pure state
preservation determined by the input-output fidelity [136]. In
addition, since FE is a fidelity between two states, it gives
rise to a metric, is stable under addition of ancillary systems,
and satisfies the chaining property (meaning that it can be
used to provide a bound on the error of a larger quantum
computation). These properties can be proven using Ref. [137],
where FE = Fpro(E,I).

The channel fidelity can be related to the worst-case input-
output fidelity min|ψ〉〈ψ |E(|ψ〉〈ψ |)|ψ〉 [138],

1 − d

√
1 − F 2

E � min
|ψ〉

〈ψ |E(|ψ〉〈ψ |)|ψ〉. (A2)

The dependence of the bound on the dimension as well as the
square of FE suggests that FE is not a good measure of the
worst-case scenario. There is indeed a discrepancy between
average and worst-case behavior for channels that contain
a combination of coherent and incoherent noise [139,140].
Such an example here is pure loss with an additional Kerr
nonlinearity, considered in Sec. VIII. However, the pure loss
channel alone contains only incoherent noise and so FE is a rea-
sonable marker of even worst-case behavior; moreover, one can
prove that the dimension dependence goes away entirely [141].
Note that Eq. (A2) was derived starting from the worst-case
infidelity 1 − min|ψ〉〈ψ |E(|ψ〉〈ψ |)|ψ〉, applying the Fuchs–
van de Graaf inequalities [142] to convert the infidelity to
the maximum trace distance max|ψ〉 ‖(E − I)(|ψ〉〈ψ |)‖tr (with
‖A‖tr ≡ Tr{

√
A†A}), upper bounding said trace distance by

its stabilized version max|ψ〉 ‖(E ⊗ I − I⊗2)(|ψ〉〈ψ |)‖tr (i.e.,
the diamond norm), upper bounding the diamond norm by the
trace norm d‖ρE − ρI‖tr between the Choi matrices of E and
I using Lemma 7 from Refs. [143,144] (this is where the d

dependence comes in), and once again applying Fuchs–van de
Graaf to turn the trace norm into d

√
1 − F 2

E .
An information-theoretic property of FE is its presence in

the quantum Fano inequality [145] (see also Ref. [81], Theorem
12.9). This is an upper bound on the von Neumann entropy
of ρE ,

H (ρE ) � H ({FE ,1 − FE }) + (1 − FE ) log2(d2 − 1), (A3)

where H (ρE ) = −Tr{ρE log2 ρE }. The entropy H (ρE ) is also
called the entropy exchange since it quantifies the entropy
gained by the environment responsible for the nonunitary
nature of E . There is also the anti-Fano inequality [36], a lower
bound on FE in terms of the entropy,

FE � e−2H (ρE ). (A4)

A similar relation to information-theoretic quantities can be
made regarding a specific error map—the erasure channel. Let
us divide B into two regions, B1 and B2, and trace over B2.
Then, the FE given the optimal recovery which reconstructs
B2 using only B1 satisfies

FE � e− 1
2 I (A:B2|B1), (A5)

where I (A : B2|B1) is the conditional mutual information
quantifying correlations between A and B2 given information
from B1 [146]. In this context, FE is also called the fidelity of
recovery [147].

From yet another information theory perspective ([41],
Theorem 2), the optimal FE yields the equality

dFE = 2−Hmin(B|A)NS , (A6)

where Hmin(B|A)NS is the conditional min entropy of the Choi
matrix ρNS (1.9) of the encoding and loss portions of E . This
inequality can be adapted from the equation below Eq. (4.5) in
Ref. [42] by noting that R‡S is a unital map. In this context,
A and B (of dimensions ∞ and two, respectively) share a
state ρNS = NS ⊗ I(|Ψ 〉〈Ψ |), and Hmin(B|A)NS is the most
conservative way to quantify the uncertainty about the state of
B after the state of A is sampled.

APPENDIX B: NUMERICAL BENCHMARKING DETAILS

The parameters for the specific members of the
cat, bin, gkps, and gkp code families that optimize FE (γ )
in Fig. 2 are given in Table IV.

There are a total of five num codes, organized by their
approximate mean occupation number

n̄num ∈ {1.562,2.696,2.770,4.149,4.336}. (B1)

Interestingly, the first code—the
√

17 code [23]—can be
expressed as

∣∣0n̄≈1.562
num

〉 = 1√
6

(

√
7 −

√
17|0〉 +

√√
17 − 1|3〉), (B2a)

∣∣1n̄≈1.562
num

〉 = 1√
6

(

√
9 −

√
17|1〉 −

√√
17 − 3|4〉). (B2b)

All five code states are listed in the ancillary MATHEMATICA

notebook accompanying this paper as Supplemental Mate-
rial [148]. The n̄num ∈ {1.562,2.696,4.149} codes are from
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TABLE IV. Code parameters for the code giving the highestFE (1.11) out of all codes of a given code family with the constraint n̄code � 2,5,10
and a given loss rate γ (1.3). The first column lists the γ ’s sampled while the next three sets of seven columns give the code parameters for
cat(α,S) (5.1), bin(N,S) (6.1), gkps(�) (7.8), and gkp(�,a) (B4). Each of the three sets corresponds to one of the three energy constraints.
Optimal code values below γ � 0.0124 do not change significantly and so are not shown. For γ � 0.4512, a small n̄ is preferable for all codes
and optimal cat and bin switch to encoding into the first two Fock states. For n̄gkp � 10 and γ � 0.05, denoted with the “symbol in the
last column, we bound FE with the channel fidelity F

QR
E that uses the quadratic recovery RQR [149] (see also Refs. [150,151]) for unshifted

hexagonal gkp (7.8) because FE decreases significantly around that regime due to numerical precision limitations of the optimization. We also
use F

QR
E to bound FE in Sec. VI B.

n̄code � 2 n̄code � 5 n̄code � 10

cat bin gkps gkp cat bin gkps gkp cat bin gkps gkp

γ α S N S � � a α S N S � � a α S N S � � a

0.0124 1.440 1 1 1 0.481 0.477 1.550 1.739 2 2 2 0.309 0.309 1.650 2.890 3 3 4 0.221 0.221 ”
0.0247 1.440 1 1 1 0.481 0.477 1.618 1.746 2 2 2 0.309 0.309 1.650 2.890 3 3 4 0.221 0.221 ”
0.0488 1.396 1 1 1 0.481 0.477 1.618 1.962 3 1 2 0.309 0.309 1.650 3.162 4 2 4 0.221 0.221 ”
0.0723 1.369 1 1 1 0.481 0.477 1.618 1.969 3 1 3 0.309 0.309 1.700 3.162 4 2 5 0.221 0.221 ”
0.0952 1.351 1 1 1 0.481 0.477 1.618 1.975 3 1 3 0.309 0.309 1.700 1.975 3 2 5 0.221 0.221 ”
0.1175 1.332 1 1 1 0.481 0.477 1.618 1.981 3 1 3 0.309 0.309 1.700 1.981 3 2 5 0.221 0.221 1.725
0.1393 1.508 2 1 1 0.481 0.477 1.618 1.987 3 1 3 0.309 0.309 1.700 1.987 3 2 5 0.221 0.221 1.725
0.1605 1.508 2 1 1 0.481 0.477 1.618 1.994 3 1 3 0.309 0.309 1.700 1.994 3 2 5 0.221 0.221 1.725
0.1813 1.508 2 1 1 0.481 0.477 1.618 1.994 3 1 3 0.309 0.309 1.700 1.994 3 2 5 0.221 0.221 1.725
0.2015 1.508 2 1 1 0.481 0.477 1.618 2.000 3 1 3 0.309 0.309 1.700 2.000 3 2 5 0.221 0.221 1.725
0.2212 1.508 2 1 1 0.481 0.477 1.618 2.000 3 1 3 0.309 0.309 1.700 2.000 3 2 5 0.221 0.221 1.725
0.2404 1.508 2 1 1 0.481 0.477 1.618 2.000 3 1 3 0.309 0.309 1.700 2.000 3 1 3 0.221 0.221 1.725
0.2592 1.508 2 1 1 0.481 0.477 1.618 2.000 3 1 3 0.309 0.309 1.700 2.000 3 1 3 0.221 0.221 1.725
0.2775 1.508 2 1 1 0.481 0.477 1.618 1.994 3 1 3 0.309 0.309 1.700 1.994 3 1 3 0.221 0.221 1.725
0.2953 1.508 2 1 1 0.481 0.477 1.618 1.994 3 1 3 0.309 0.309 1.700 1.994 3 1 3 0.221 0.221 1.725
0.3127 1.508 2 1 1 0.481 0.477 1.618 1.987 3 1 3 0.309 0.309 1.700 1.987 3 1 3 0.221 0.221 1.725
0.3297 1.508 2 1 1 0.481 0.477 1.618 1.981 3 1 3 0.309 0.309 1.700 1.981 3 1 3 0.221 0.221 1.725
0.3462 1.508 2 1 1 0.481 0.477 1.618 1.975 3 1 3 0.309 0.309 1.700 1.975 3 1 3 0.221 0.221 1.725
0.3624 1.508 2 1 1 0.481 0.477 1.618 1.969 3 1 3 0.309 0.309 1.700 1.969 3 1 3 0.221 0.221 1.725
0.3781 1.194 1 0 0 0.481 0.477 1.618 1.643 2 1 3 0.309 0.309 1.700 1.643 2 1 3 0.246 0.243 1.700
0.3935 1.183 1 0 0 0.481 0.477 1.525 1.636 2 1 2 0.316 0.312 1.732 1.636 2 1 2 0.316 0.312 1.732
0.4084 1.173 1 0 0 0.481 0.477 1.525 1.628 2 1 2 0.392 0.394 1.650 1.628 2 1 2 0.392 0.394 1.650
0.4231 1.173 1 0 0 0.481 0.510 1.450 1.612 2 1 2 0.471 0.510 1.450 1.612 2 1 2 0.471 0.510 1.450
0.4373 1.162 1 0 0 0.500 0.659 1.350 1.162 1 0 0 0.500 0.659 1.350 1.162 1 0 0 0.500 0.659 1.350
0.4512 0 0 0 0 0.535 0.659 1.350 0 0 0 0 0.535 0.659 1.350 0 0 0 0 0.535 0.659 1.350
0.4647 0 0 0 0 0.577 0.913 1.250 0 0 0 0 0.577 0.913 1.250 0 0 0 0 0.577 0.913 1.250
0.4780 0 0 0 0 0.632 0.933 1.200 0 0 0 0 0.632 0.933 1.200 0 0 0 0 0.632 0.933 1.200
0.4908 0 0 0 0 0.632 0.953 1.150 0 0 0 0 0.632 0.953 1.150 0 0 0 0 0.632 0.953 1.150
0.5034 0 0 0 0 0.632 0.976 1.100 0 0 0 0 0.632 0.976 1.100 0 0 0 0 0.632 0.976 1.100

Ref. [23] while the n̄num ∈ {2.770,4.336} codes were ob-
tained here using a different optimization routine, described
as follows. In order to find logical states |μnum〉 for μ ∈
{0,1} which allow for the correction of error operators e� ∈
{I,â,â2}, we create a cost function from the QEC ma-
trix fμν��′ = 〈μnum|e†�e�′ |νnum〉, c1 = ∑

�,�′ |f00��′ − f11��′ |2 +
|f01��′ |2. In order to prefer lower occupation, the penalty c2 =
λn̄n̄num is introduced with λn̄ = 10−3. Code words are produced
by numerically optimizing the total cost over complex unit
vectors:

minimize
|ψ0〉,|ψ1〉∈CNmax

c1 + c2, (B3)

where Nmax is the Fock space cutoff. The
√

17 code is
the only code below n̄num = 2. For n̄num � 5,10, the best-
performing code for γ � 0.3935 is num(4.149), for γ =
0.4084 is num(2.770), and for γ � 0.4231 is the

√
17 code.

We were unable to find good codes with n̄num > 5 due to the
prominence of shallow local minima.

For the numerical comparison, we swept all values of
the code parameters for cat(α,S), bin(N,S), num(n̄), and
gkps(�) subject to the energy constraints. For gkp(�,a), we
only considered values of � which gave n̄gkp ≈ 2, 5, or 10
(since we knew from the gkps calculations that increasing
n̄ generally increased FE for all but the largest values of γ ).
We also did not consider all possible nonrectangular lattices,
but instead implemented a subset of them by sweeping the
lattice parameter a ∈ [1,2] in the following coherent-state
representation for the shifted nonsquare gkp code states:∣∣μshift

gkp

〉 ∝
∑
�n∈Z

(−1)μn1e−i π
2 n2(2n1+μ)e− πa

4 �2[(2n1+μ)2+( 2
a
n2)2]

×
∣∣∣∣√πa

2

(
2n1 + μ + i

2

a
n2

)〉
. (B4)
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The � → 0 states are stabilized by

Sx = −D√
πa
2 (1+i 2

a ) and Sp = D4i
√

π
2a

.

The resulting code lattice formed by 1
2P shift

gkp is shifted, retaining
its error-correcting properties but not having a lattice point at
the origin. Both shifted and unshifted lattices are used in the
numerics, but only unshifted lattices are used for analytical
calculations in Appendix D. Note that |0shift

gkp 〉 is odd while
|1shift

gkp 〉 is even under parity (−1)n̂, so there is no spacing S.
Since cat and gkp code states are formally superpositions

of an infinite number of Fock states, we have to truncate them
and use a finite Fock state superposition

∑Nmax
n=0 cn|n〉 for each

logical state. We picked Nmax such that
∑Nmax

n=0 |cn|2 � 0.99999
for both logical states. For gkps/gkp code states, we used
the coherent state representation and picked only the lattice
points values s,t � �4/��. The codes were generated with
MATHEMATICA while the semidefinite program was executed
using the CVX package [152] in MATLAB, with the MATLINK

add-on [153] for MATHEMATICA acting as the bridge. Helpful
routines were borrowed from Cubitt [154].

APPENDIX C: QUDIT bin AND bin2 CODES

Here we extend the analogy from Sec. VI C between bin
codes and spin-coherent states to qudit bin codes, introducing
a multiqudit code perm′ in the process and eventually yielding
a logical Xcode operator and a check operator for the qudit bin
[23] and bin2 codes. We consider the following generalization
of spin-coherent states (6.10),

|θ,φ〉J,d =
2J∑

m=0

√(
N+1

m

)
d
eiφm tan2m d−1

d
θ√( ∑d−1

μ=0 tan2μ d−1
d

θ
)N+1

|J,m − J 〉,

(C1)

where |J,m − J 〉 is the spin basis of a spin J =
1
2 (d − 1)(N + 1), and

(
N+1

m

)
d

are extended binomial coef-
ficients [155] (also called polynomial coefficients [156]),
defined by

(1 + x + · · · + xd−1)N+1 =
(d−1)(N+1)∑

m=0

(
N + 1

m

)
d

xm. (C2)

(Note a similar generalization in the proof of Ref. [75],
Theorem 1.2). For d = 2, {|π

2 ,πμ〉J,d=2}1
μ=0 reduce to the two

antipodal spin-coherent states discussed in the main text. In
general, the d states {|π

2 , 2π
d

μ〉J,d}d−1
μ=0 are similar to squeezed

spin-coherent states equidistantly distributed along the equator
of the Bloch sphere. For a fixed J , the amount of squeezing
increases with increasing d, as shown in an example in Fig. 11.
This is sensible since increasing d for fixed J means fitting
more quantum information in the same amount of space.

Mapping the basis |J,m − J 〉 to Fock states |(S + 1)m〉 or
two-mode Fock states

|(S + 1)[(d − 1)(N + 1) − m],(S + 1)m〉
yields qudit versions of bin and bin2, respectively, for general
parameters N,S. It was shown in Ref. [23] that qudit bin
codes can protect to order O(γ N ) against dephasing and O(γ S)
against loss. We do not prove this for bin2 here, but anticipate
this to also be the case for those codes. Observing the protection

FIG. 11. Overlap |J 〈θ,φ| π

2 , 2π

d
μ〉J,d |2 vs θ,φ (in radians) for

qudit states | π

2 , 2π

d
μ〉J,d (C1) with μ = 0 and d,N picked such that

the spin J = 1
2 (d − 1)(N + 1) = 12. These states resemble spin-

squeezed states and characterize the qudit bin and bin2 codes (see
Appendix C). For fixed J , the degree of squeezing increases with d .

offered by noon codes [22], it is also reasonable to believe
that tensor products |π

2 , 2π
d

μ〉⊗M
J,d (with |J,m − J 〉 mapped to

one- or two-mode Fock states) will yield yet another class
of multimode codes. Regarding the multiqubit mapping, we
introduce perm′—a different extension of qubit perm codes to
qudits. These codes can be obtained by mapping |J,m − J 〉 to
a qudit generalization of Dicke states |DN+1

m 〉 that we denote
as the extended binomial states |Ed−1,N+1

m 〉, i.e.,

|μperm′ 〉 =
(d−1)(N+1)∑

m=0

ei 2π
d

μm

√
dN+1

√(
N + 1

m

)
d

∣∣Ed−1,N+1
m

〉
.

(C3)

The states |Ed−1,N+1
m 〉 are defined as normalized equal super-

positions of all multiqudit states having a total of m excitations
distributed over N + 1 qudits,

∣∣Ed−1,N+1
m

〉 = 1√(
N+1

m

)
d

d−1∑
v1,··· ,vN+1=0∑

i vi=m

|v1, . . . ,vN+1〉. (C4)

The normalization of these states happens to be exactly the
extended binomial coefficient because ( N+1

m
)d is, by definition,

the number of ways of obtaining m as the sum of N + 1
independent random variables which take values from 0 to
d − 1 [156].

The code perm′ is different from the qudit perm codes [75]
because those utilize a different generalization of qubit Dicke
states. For example, extended binomial states for d = 3 and
N = 1 are

∣∣E2,2
0

〉 = |00〉, ∣∣E2,2
1

〉 = 1√
2

(|01〉 + |10〉), (C5a)

∣∣E2,2
2

〉 = 1√
3

(|02〉 + |11〉 + |20〉), (C5b)

∣∣E2,2
3

〉 = 1√
2

(|21〉 + |12〉), ∣∣E2,2
4

〉 = |22〉. (C5c)
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In contrast, qudit Dicke states [75] are superpositions of a
multiqudit state which has a fixed number of excitations for
each qudit and all of that state’s permutations. For the above
case, the qudit Dicke states are |E2,2

0 〉,|E2,2
1 〉,|E2,2

3 〉,|E2,2
4 〉

along with 1√
2
(|02〉 + |20〉) and |11〉. In the general case of

N + 1 qudits, there are
(
N+d

d−1

)
qudit Dicke states while only

(d − 1)(N + 1) + 1 extended binomial states. While the qudit
Dicke states span the entire fully symmetric N + 1-qudit
subspace, extended binomial states span only a subspace
of that subspace. After introduction of a spacing S 
= 0 in
similar fashion to perm codes (see Sec. VI C 2), it may be
that |μperm′ 〉 protects against multiqubit amplitude damping,
but such properties have yet to be proven.

We conclude this section by relating perm′ to eigenstates
of an N -qudit generalization of an N -qubit collective spin
operator. This reveals that such codes are closely related to
bit-flip codes and provides a check operator for qudit bin and
bin2 codes.

1. Relating perm′ codes to bit-flip codes

We start with the spin-coherent states from Sec. VI (i.e.,
d = 2) written in the irrep for which Jx is a collective operator
for a 2J = M-qubit system with S = 0. In other words, Jx =
1
2

∑M
k=1 Xk , where Xk is the Pauli matrix of the kth qubit. For

those parameters, the qubit states |μperm〉 in this irrep are simply
tensor products of eigenstates |(−1)μ〉k of Xk ,

|μperm〉 =
M⊗

k=1

|(−1)μ〉k = 1√
2M

M⊗
k=1

[|0〉k + (−1)μ|1〉k]

(C6)
with Xk|(−1)μ〉k = (−1)μ|(−1)μ〉k . Proving this is simple if
one writes out

⊗M
k=1 |(−1)μ〉k in terms of the Dicke states

{|DM
m 〉}Mm=1. Observe that, after performing all tensor prod-

ucts, |μperm〉 will consist of an equal linear superposition of
multiqubit states (denoted by binary strings) with coefficients
±1/

√
2M . To change basis to Dicke states, we group multiqubit

states by their total number of excitations (i.e., the number
of 1’s in each binary string). For m excitations out of M

qubits, the number of such states is ( M
m

). Moreover, since
each additional excitation brings about an additional factor
of −1, all states with the same number of excitations have
matching coefficients. Thus, we can group each superposition
of states with fixed excitations into unnormalized Dicke states.
Multiplying and dividing each unnormalized Dicke state by
( M

m
)−1/2 yields the original form of |μperm〉 in Eq. (6.14).
We can now generalize the above setup to qudits. Consider

M qudits of dimension d and let

X =
d−1∑
ν=0

|ν〉〈ν + 1 mod d| (C7)

now be the shift operator for a qudit (i.e., defined such that
X|d − 1〉 = |0〉). This X has d eigenstates

|ei 2π
d

μ〉 = 1√
d

d−1∑
ν=0

ei 2π
d

μν |ν〉 (C8)

(with μ ∈ {0,1, . . . ,d − 1}) whose eigenvalues are ei 2π
d

μ. Us-
ing the same procedure as above, one can consider tensor

products of |ei 2π
d

μ〉,

|μperm′ 〉 = (|ei 2π
d

μ〉)⊗M, (C9)

and express them in the extended binomial basis. Now,
|μperm′ 〉 consists of equal superpositions of multiqudit states
with coefficients {ei 2π

d
μν/

√
dM}d−1

ν=0, but the coefficients in
front of multiqudit states of fixed total excitation match. The
normalization of |Ed−1,M

m 〉 is the square root of the number of
multiqudit states in |Ed−1,M

m 〉, which we have already defined
to be

(
M

m

)
d
. This yields the perm′ code states from Eq. (C3)

with M = N + 1.
An important consequence of the above description is that

now all qudit codes ∈ {bin,bin2} admit a logical operator

Xcode = 1

M

M∑
k=1

Xk, (C10)

where Xk is X for the kth qudit, and a corresponding check
operator (Xcode)M . It is implied that both of these are projected
only onto the subspace spanned by the extended binomial states
{|Ed−1,M

m 〉}(d−1)M
m=0 (vs the full permutation-symmetric subspace

spanned by the qudit Dicke states discussed above). Thus,
the logical operator will be a matrix of dimension (d − 1)M
satisfying

Xcode|μperm′ 〉 = ei 2π
d

μ|μperm′ 〉. (C11)

Mapping the extended binomial state basis to the correspond-
ing Fock states thus creates analogous check operators for
bin and bin2. One can also consider products of Xk’s and
form other check operators. Such check operators should prove
useful in experimental realizations of the error-correcting
procedures of these codes.

APPENDIX D: CALCULATIONS FOR gkp CODES

1. Useful identities

Throughout the text, we have used the following standard
identities for coherent states Dα|0〉 = |α〉 and |β〉:

exn̂|α〉 = e− 1
2 |α|2(1−|ex |2)|αex〉, (D1a)

DαDβ = e
1
2 (αβ
−α
β)Dα+β, (D1b)

〈α|β〉 = e− 1
2 (|α|2+|β|2)+α
β . (D1c)

We also use the Fock space matrix elements of Dα [157],

〈�|Dα|�′〉 = e− |α|2
2

√
�′!
�!

L
(�−�′)
�′ (|α|2)α�−�′

, (D2)

for � � �′ and 〈�|Dα|�′〉 = (〈�′|D−α|�〉)
 for � < �′, where
L(a)

n (x) is the generalized Laguerre polynomial. The generating
function of these polynomials is

∞∑
p=0

(m + p)!

p!
tpL

(α)
m+p(x) = m!e− tx

1−t

(1 − t)m+α+1
L(α)

m

(
x

1 − t

)
.

(D3)
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Finally, we use the Poisson summation formula; for a function
f (x), ∑

n∈Z
f (n) =

∑
n∈Z

∫ ∞

−∞
dxe2πinxf (x). (D4)

2. Equivalence between squeezed and coherent
state representations for gkp

We sketch a derivation of Eq. (7.5) from Eq. (7.6). Writing
the displacements in Eq. (7.7b) in terms of position and mo-
mentum operators x̂ and p̂, inserting a resolution of the identity
in terms of position eigenstates between the displacements, and
using e−ix2p̂|x1〉x̂ = |x1 + x2〉x̂ yields∣∣μideal

gkps

〉 ∝
∑
�n∈Z2

∫
dx|x + √

π (2n1 + μ)〉x̂ x̂〈x|ei
√

πn2 x̂ |vac〉,

(D5)

where �n = (n1,n2), |vac〉 is the Fock state |0〉, and we use
“∝” to ignore normalization and any constant prefactors that
we obtain throughout the calculation. Now, we recall that
x̂〈x|vac〉 ∝ exp(− 1

2x2) and apply the Poisson summation (D4)
to the sum over n2, yielding a sum over Dirac δ functions. We
can then easily evaluate the integral over x, yielding∣∣μideal

gkps

〉 ∝
∑
�n∈Z2

e−2πn2
2 |√π (2n1 + 2n2 + μ)〉x̂ . (D6)

Finally, we can redefine indices and evaluate one of the new
sums to yield ∣∣μideal

gkps

〉 ∝
∑
n∈Z

|√π (2n + μ)〉x̂ . (D7)

3. Projecting displacements onto the gkp code space

We have utilized all three representations (7.7a)–(7.7c)
to verify the calculations below, initially calculating over-
laps 〈μ�

gkps|â†pâq |μ�
gkps〉 and summing them up to yield the

QEC matrix ε
gkps
��′ . We will not report on these calculations,

noting that they are cumbersome, but do yield the right
answers.

We evaluate matrix elements 〈μideal
gkps|Dα|ν ideal

gkps〉 of the dis-
placement operator for ideal gkps states (written in terms
of position eigenstates |√π (2n + μ)〉x̂) from Eq. (7.5). We
can split Dα = Dα1+iα2 into a shift by

√
2α1 in position and

by
√

2α2 in momentum. The latter translates |√π (2n + μ)〉x̂
while the former turns into a phase since |√π (2n + μ)〉x̂ are
eigenstates of x̂. We can then use the orthogonality of position
eigenstates, x̂〈x1|x2〉x̂ = δ(x1 − x2), and change indices to
obtain〈

μideal
gkps

∣∣Dα

∣∣ν ideal
gkps

〉 =
√

2

π

∑
n1,n2∈Z

e−iα1α2e−i
√

2π (2n2+μ)α2

× δ

(
α1 −

√
π

2
(2n1 + δμ)

)
, (D8)

where we multiplied each |μideal
gkps〉 by ( 2√

π
)1/2 to remove con-

stants in front of the sum (D9) below. We now apply the Poisson
summation formula (D4) to turn the sum of n2-dependent

phases into another sum of Dirac δ functions for α2, yielding〈
μideal
gkps

∣∣Dα

∣∣ν ideal
gkps

〉 =
∑
�n∈Z

eiπ(n1+ μ+ν

2 )n2δ2
(
α − ��n

δμ

)
, (D9)

where ��n
δμ = √

π
2 [(2n1 + δμ) + in2].

Now let us consider finite gkps states in the smeared
representation (7.7c) and calculate〈

μ�
gkps

∣∣Dα

∣∣ν�
gkps

〉
=

∫
d2βd2γ

π�2/2
e
− 1

�2 (|β|2+|γ |2)〈
μideal
gkps

∣∣D−βDαDγ

∣∣ν ideal
gkps

〉
.

(D10)

We add the displacements and use Eq. (D9), whose δ functions
allow us to immediately evaluate one of the integrals. The
remaining Gaussian integral is also simply evaluated to yield〈

μ�
gkps

∣∣Dα

∣∣ν�
gkps

〉
=

∑
�n∈Z2

eiπ(n1+ μ+ν

2 )n2e
− 1

2�2 |α−��n
δμ|2

e− �2

8 |α+��n
δμ|2 . (D11)

We can then substitute α ∼ ��n
δμ into the envelope function in

the � → 0 limit, yielding Eq. (7.14).

4. QEC matrix for gkp codes

To compute the QEC matrix for gkps, let us sandwich both
sides of Eq. (7.12) by 〈μ�

gkps| and |ν�
gkps〉:〈

μ�
gkps

∣∣E†
�E�′

∣∣ν�
gkps

〉
=

∫
d2α

π
e− (1−γ )

2 |α|2〈�|Dα
 |�′〉〈μ�
gkps

∣∣D√
γα

∣∣ν�
gkps

〉
.

(D12)

Plugging in Eq. (D11) with α ∼ ��n
δμ in the �2-dependent

envelope and switching the sum and integral, one obtains〈
μ�
gkps

∣∣E†
�E�′

∣∣ν�
gkps

〉
∼

∑
�n∈Z2

eiπ(n1+ μ+ν

2 )n2e− �2

2 |��n
δμ|2

×
∫

d2α

π
e− (1−γ )

2 |α|2〈�|Dα
 |�′〉e− γ

2�2 |α−��n
δμ/

√
γ |2

. (D13)

Next, we evaluate the integral by changing to polar coordinates
α = |α|eiθ and evaluating the angular integral first. This
integral turns out to be integral representation of the modified
Bessel function of the first kind, In(z) = ∫ π

0
dθ
π

ez cos θ cos(nθ ).
Recalling that 〈�|Dα
 |�′〉 (D2) contain Laguerre polynomials,
the remaining integral over |α| contains bothL

(|�−�′ |)
�min

and I|�−�′ |.
Luckily, it can be evaluated using Ref. [158], Sec. 2.19.12,
Eq. (6): ∫ ∞

0
dxx

λ
2 e−pxIλ(2b

√
x)L(λ)

n (x)

= bλ (p − 1)n

pλ+n+1
e

b2

p L(λ)
n

(
b2

p(p − 1)

)
. (D14)
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The prefactor (p−1)n

pn+1 eventually gives the thermal weights in

the QEC coefficients c
gkps
�� (7.16). The resulting Laguerre

polynomials can then be re-expressed in terms of displacement
matrix elements (D2). During this simplification, we take the
limit

γ

(
1

2�2
− 1

2

)
∼ γ n̄gkps � 1, (D15)

relating γ to n̄gkps. This yields the QEC matrix elements〈
μ�
gkps

∣∣E†
�E�′

∣∣ν�
gkps

〉
∼ (γ n̄gkps)

�+�′
2

(γ n̄gkps + 1)
�+�′

2 +1

∑
�n∈Z2

e
− (1−γ )

2γ
|��n

δμ|2

× eiπ(n1+ μ+ν

2 )n2e− �2

2 |��n
δμ|2〈�|D(��n

δμ)
/
√

γ |�′〉, (D16)

where we can once again let � → 0 to produce Eq. (7.15).
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