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The asymmetry of quantum states is an important resource in quantum information processing tasks such
as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry
weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the
convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding
semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP
form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can
be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be
viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry
and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence
weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1

norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers,
namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given
by a single letter formula.
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I. INTRODUCTION

The role of symmetry in physics is essentially twofold—it
provides both a constraint on the dynamics and a simplification
in the structure of a theory. The special theory of relativity,
for example, is a theory based on the constraints that the
laws of physics remain invariant in all inertial frames of
reference and that the speed of light in vacuum is the same
for all observers, regardless of the state of motion of the light
source. These constraints manifest themselves in the form of
Lorentz invariance (or Poincaré invariance, more generally)
of physical quantities and in turn provide simplifications in
the calculations in this theory. Similarly, in quantum theory,
the presence of continuous symmetries like space and time
translation invariance, and discrete symmetries like parity and
time reversal, often helps in simplifying a given problem. At
the same time, they can also manifest themselves as constraints
in the form of superselection rules—postulated rules that
forbid the preparation of quantum states that exhibit coherence
between eigenstates of certain observables.1

For ubiquitous physical systems, dynamics can be so com-
plex that the only way to characterize their evolution is through
the study of underlying symmetries—which could, otherwise,
be so tortuous that one could not possibly hope to study them.

*bkf@zju.edn.cn
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1Note that superselection rules need not necessarily originate from

an underlying symmetry.

Symmetry, therefore, takes a pivotal stance in the fundamental
process of deciphering the nature of the physical world. It
is, then, not hard to see that if the dynamics of a physical
system respects certain symmetries, then the states evolving
under such processes cannot generate any more asymmetry
than they already began with—which motivates the popular
dictum—symmetric dynamics cannot generate asymmetry.
However, not all asymmetry is bad; given that local operations
and classical communication cannot generate entanglement,
entangled states can be seen as asymmetry-carrying states
which, as is known, are extremely useful when it comes to
quantum information processing.

In this paper, we would like to take the outlook of symme-
tries as constraints and use them to construct the corresponding
resource theories. Once we have identified the presence of a
symmetry in a given scenario, the constraints arise naturally.
Every constraint on quantum operations, in turn, defines a
resource theory—determining how quantum states that cannot
be prepared under the constraint may be used to outmaneuver
the restriction. A resource theory is usually composed of two
basic elements: the free states and the free operations. The set
of allowed states (operations) under the given constraint is what
we call the set of “free” states (operations). States of a physical
system that do not satisfy the said symmetry are called asym-
metric states and may become useful as a resource for various
tasks in the presence of the constraint. This is precisely the
content of resource theories of asymmetry—the quantification
and manipulation of asymmetric states as a resource.

A mathematical entity is called symmetric if it is invariant
under the action of a symmetry group G. The resource
theory of asymmetry is then defined with respect to a desired
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representation of a symmetry group and has led to a plethora of
interesting results in the area of quantum information theory
[1–7]. One of the earliest resource theories is that of quan-
tum entanglement [8], which is a basic resource for various
quantum information processing protocols such as superdense
coding [9], remote state preparation [10,11], and quantum
teleportation [12]. Other notable examples include the resource
theories of thermodynamics [13], coherence [14–20], super-
position [21], and steering [22]. Interestingly, the notion of
resource theories can be generalized to include any description
or knowledge that one may have of a physical state [23].
The asymmetry of states is germane to quantum information
theory and has interesting applications ranging from quantum
metrology [24–26] to quantum communication [27,28]. Inter-
esting experimental progress has been reported in this direction
recently; for example, metrologically useful asymmetry and
entanglement were detected in an all-optical experiment by
studying how these resources affect the speed of evolution of
a quantum system under a unitary transformation [29].

One of the main advantages that a resource theory offers is
the lucid quantitative and operational description as well as the
manipulation of the relevant resources at one’s disposal. The
robustness-based quantifiers capture the robustness of a given
resource to noise and form an operationally powerful method
to quantify the resource. The quantifiers that are obtained from
this method include the robustness of entanglement [30], the
robustness of steering [31], the robustness of asymmetry [32],
and the robustness of coherence [33]. Another important class
of quantifiers which are known as the resource weight-based
quantifiers is defined by the smallest amount of resource
needed to prepare a given state. The best separable approxima-
tion of entangled states [34], the steering weight [35], and the
measurement incompatibility weight [36] are some examples
of the same. Fortunately, both the robustness-based and the
weight-based quantifiers are easy to calculate numerically
since they can be characterized as the solutions to the cor-
responding semidefinite programming (SDP) forms [32,37].

In this paper, we introduce weight-based quantifiers in
the resource theories of asymmetry and coherence and term
them as the asymmetry and coherence weight, respectively.
We then prove several properties such as their convexity and
monotonicity under free operations and also provide the cor-
responding SDP forms which make the numerical calculations
tractable. The SDP form indicates that the asymmetry weight
can be regarded as a state-dependent asymmetry witness and
some entanglement witnesses may be viewed as a special
asymmetry witness (see also Ref. [38] for a discussion on the
connection between entanglement and asymmetry witnesses).
Additionally, we find interesting relationships between coher-
ence (asymmetry) weight and other coherence (asymmetry)
measures. For pure coherent (asymmetric) states, the coher-
ence (asymmetry) weight is always equal to 1—suggesting the
coarse-grained nature of the coherence (asymmetry) weight.
Then, we consider a broad class of mixed bipartite quantum
states, namely, the generalized X states, and find analytical
expressions for their coherence weight. Moreover, for Werner
states, we show that the coherence weight, the robustness
of coherence, and the l1 norm of coherence are all equal.
Furthermore, in the context of distribution of coherence, we
provide some useful inequalities between the coherence weight

(robustness of coherence) of bipartite quantum states and that
of their marginals.

The paper is organized as follows. We start by giving an
exposition to the resource theories of asymmetry and coherence
and a brief overview of semidefinite programming in Sec. II. In
Sec. III, we give the definition of asymmetry weight and inves-
tigate the convexity and monotonicity properties and show how
to cast it in the form of a semidefinite program. Additionally, we
find various relationships between the asymmetry weight and
other asymmetry measures. Moreover, we give the definition of
coherence weight and investigate the properties of coherence
weight in a similar spirit to the asymmetry weight in Sec. IV,
and in particular we obtain explicit analytical results for Werner
states, Gisin states, and in general the generalized X states
(Sec. IV A). Finally, we conclude with a brief discussion and
overview of the results obtained in this paper in Sec. V.

II. PRELIMINARIES

A. Resource theory of asymmetry

The resource theory of asymmetry with respect to a given
representation of a symmetry group G has been used ex-
tensively to distinguish and quantify the symmetry-breaking
properties of both the states and the operations [2,4,5]. Given a
Hilbert spaceH and the convex setD(H ) of density operators
acting on it, let us consider a symmetry group G with an
associated unitary representation {Ug}g∈G on H . The free
states in the resource theory of asymmetry are called symmetric
states [2,4,5] and the set of symmetric states in D(H ) is
defined as

J = { σ ∈ D(H ) : Ug(σ ) = σ,∀g ∈ G } ,

where Ug(σ ) := UgσU
†
g [2,4,5,32]. The set J can also be

written as

J = { σ ∈ D(H ) : G (σ ) = σ } , (1)

where G (σ ) = 1
|G|

∑
g Ug(σ ) is the group average [2,4,5,32].

The free operations that we consider in this paper are the
selective covariant operations with respect to G [4]. For any
such quantum operation � = ∑

i �i , then, [�i,Ug] = 0 for
any i,∀g ∈ G [4]. For example, the Kraus representation of
a quantum operation � can be written in the above form by
considering the suboperation �i as �i(ρ) = KiρK

†
i .

Given a quantum state ρ ∈ D(H ), the relative entropy of
asymmetry Ar [7] and the robustness of asymmetry AR [32]
are defined, respectively, as

Ar (ρ) = S[ρ||G (ρ)] = S[G (ρ)] − S(ρ), (2)

AR(ρ) = min
τ

{
s � 0 :

ρ + sτ

1 + s
∈ J ,τ ∈ D(H )

}
. (3)

Here S is the von Neumann entropy and, for a state ρ, S(ρ) =
−Tr[ρ ln ρ].

B. Resource theories of quantum coherence

Given a fixed reference basis, say {|i〉i=0,...,d−1} for some
d-dimensional Hilbert space, H d , any quantum state which
is diagonal in the reference basis is called an incoherent state
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and is a free state in the resource theory of coherence. However,
note that there is still no general consensus on the set of
allowed operations in the resource theory of coherence and,
for example, we have resource theories of coherence based on
incoherent operations and symmetric operations [2,6,14,20].
More details can be found in a recent review on the resource
theories of coherence [39].

In this paper, we consider the resource theory of coherence
based on incoherent operations [14]. Let I be the set of
all incoherent states. An operation � is called an incoherent
operation if the set of Kraus operators {Ki} of � is such that
KiI K

†
i ⊆ I for each i. For a d-dimensional quantum system

in a state ρ and a fixed reference basis {|i〉}, the l1 norm of
coherence Cl1 (ρ) [14], the relative entropy of coherence Cr (ρ)
[14], and the robustness of coherence CR(ρ) [33] are defined,
respectively, as

Cl1 (ρ) =
d−1∑

i,j = 0
i �= j

| 〈i| ρ |j 〉 |, (4)

Cr (ρ) = S(ρ(d)) − S(ρ),ρ(d) =
∑

k

ρkk|k〉〈k|, (5)

CR(ρ) = min
τ

{
s � 0 :

ρ + sτ

1 + s
∈ I ,τ ∈ D(H )

}
. (6)

C. Semidefinite programming

SDP is a powerful tool in combinatorial optimization, which
is a generalization of linear programming problems [37]. A
semidefinite program over X = CN and Y = CM is defined
as a triple (�,C,D), where � is a Hermiticity-preserving
map from L (X ) (linear operators on X ) to L (Y ) (linear
operators on Y ), C ∈ Herm(X ) (Hermitian operators over
X ), and D ∈ Herm(Y ) (Hermitian operators over Y ). There
is a pair of optimization problems associated with every
semidefinite program (�,C,D), known as the primal and the
dual problems. The standard form of a semidefinite program
(that is typically used for general conic programming) is [40]

Primal problem Dual problem

maximize: 〈C,X〉, minimize: 〈D,Y 〉,
subject to: �(X) � D, subject to: �∗(Y ) � C,

X ∈ Pos(X ). Y ∈ Pos(Y ).

(7)

SDP forms have interesting and ubiquitous applications in
quantum information theory [40]; for example, it was recently
shown by Brandao and Svore [41] that there exists a quantum
algorithm for solving semidefinite programs that gives an
unconditional square-root speedup over any existing classical
method.

III. ASYMMETRY WEIGHT

The weight-based quantifier in the resource theory of
asymmetry which we call the asymmetry weight is given in
an operationally motivated way and will be proved to satisfy
all the conditions that a proper asymmetry measure needs to
fulfill. We also give the corresponding SDP form and show
how the asymmetry weight can be viewed as a state-dependent
asymmetry witness.

σ

τ
ρ

Hilbert space

1 − s
s

Symmetric
states

FIG. 1. The set of symmetric states J (shown in blue) forms a
subspace of the total Hilbert space H (shown in red). The asymmetry
weight of a quantum state ρ is then defined as the minimum weight
convex mixture of σ and τ where σ ∈ J and τ ∈ D(H ).

Definition 1. In the process of preparing some given quan-
tum state ρ, we want to use the least number of asymmetry
resources—which means that we would like to use the sym-
metric states as much as possible and the asymmetric states as
little as possible—such that we generate the given state ρ on
an average. That is, given a quantum state ρ, the asymmetry
weight of ρ is defined as (see also Fig. 1)

Aw(ρ) = min
{σ,τ }

{s � 0 : ρ = (1 − s)σ + sτ,σ ∈ J ,

τ ∈ D(H )}. (8)

The asymmetry weight, defined as above, has some nice
properties such as convexity and monotonicity under covariant
operations, which we will prove in the following.

Proposition 1. Given a quantum state ρ ∈ D(H ), the
asymmetry weight Aw(ρ) is bounded as 0 � Aw(ρ) � 1, and
Aw(ρ) = 0 iff ρ ∈ J , i.e., iff ρ is symmetric.

Proof. The proof follows directly from the definition of
asymmetry weight. �

Proposition 2. The asymmetry weight Aw is convex in ρ,
i.e.,

Aw[pρ1 + (1 − p)ρ2] � pAw(ρ1) + (1 − p)Aw(ρ2),

where p ∈ [0,1] and ρ1,ρ2 ∈ D(H ).
Proof. Let ρ1 = [1 − Aw(ρ1)]σ ∗

1 + Aw(ρ1)τ ∗
1 and ρ2 =

[1 − Aw(ρ2)]σ ∗
2 + Aw(ρ2)τ ∗

2 be the optimal decompositions
for ρ1 and ρ2, where σ ∗

1 ,σ ∗
2 ∈ J and τ ∗

1 ,τ ∗
2 ∈ D(H ). Let

σ = 1

1 − s
{p[1 − Aw(ρ1)]σ ∗

1 + (1 − p)[1 − Aw(ρ2)]σ ∗
2 },

τ = 1

s
[pAw(ρ1)σ ∗

1 + (1 − p)Aw(ρ2)σ ∗
2 ],

s = pAw(ρ1) + (1 − p)Aw(ρ2).

Then

pρ1 + (1 − p)ρ2 = (1 − s)σ + sτ, (9)

which implies that Aw[pρ1 + (1 − p)ρ2] � s = pAw(ρ1) +
(1 − p)Aw(ρ2). �

Proposition 3. Let � = ∑
i �i be a selective G-covariant

quantum operation; i.e., for any i, [�i,Ug] = 0,∀g ∈ G. Then,
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the asymmetry weight is monotonically nonincreasing on an
average:

Aw(ρ) �
∑

i

piAw(ρi), (10)

where pi := Tr[�i(ρ)] and ρi = �i (ρ)
pi

.
Proof. Let ρ = [1 − Aw(ρ)]σ ∗ + Aw(ρ)τ ∗ be the optimal

decomposition, where σ ∗ ∈ J and τ ∗ ∈ D(H ). Then

�i(ρ) = [1 − Aw(ρ)]�i(σ
∗) + Aw(ρ)�(τ ∗).

Let

σi = 1

(1 − si)pi

[1 − Aw(ρ)]�i(σ
∗),

τi = 1

sipi

Aw(ρ)�i(τ
∗),

si = 1

pi

Aw(ρ) Tr[�i(τ
∗)],

then ρi = (1 − si)σi + siτi . As �i(σ ∗) ∈ J , then Aw(ρi) �
si . Therefore,

∑
i piAw(ρ̂i) �

∑
i pisi = Aw(ρ). This con-

cludes the proof of the proposition. �
Using the above three propositions, we have shown that

the asymmetry weight is a proper asymmetry measure. In
the following, we express the asymmetry weight in terms of
semidefinite programs and explore its connection to asymme-
try and entanglement witnesses.

A. Asymmetry weight as a semidefinite program

A decomposition of a given state ρ = (1 − s)σ + sτ is equiv-
alent to the condition ρ � (1 − s)σ , where σ ∈ J , as there
exists a quantum state τ ∈ D(H ) such thatρ − (1 − s)σ = sτ

if ρ � (1 − s)σ . Then, the asymmetry weight can also be
characterized as

Aw(ρ) = min
σ∈J

{ s � 0 : ρ � (1 − s)σ }. (11)

In view of the formula (11), the SDP form of asymmetry can
be obtained as follows.

Theorem 1. For a given state ρ ∈ D(H ), the asymmetry
weight Aw(ρ) can be characterized as the solution of the
following optimization problem:

max Tr[ρW ],

such that G (W ) � 0, (12)

W � I,

where operator W is Hermitian.
Proof. Since Aw(ρ) can be written as

Aw(ρ) = min
σ∈J

{s � 0 : ρ � (1 − s)σ } ,

1 − Aw(ρ) can be obtained as the solution of the following
semidefinite program:

max Tr [̃σ ],

such that σ̃ � ρ,

G (̃σ ) = σ̃ ,

σ̃ � 0, (13)

where σ̃ = (1 − s)σ . Let us consider the following semidefi-
nite program:

max Tr [̃σ ],

such that G (̃σ ) � ρ, (14)

σ̃ � 0.

Since σ̃ � ρ and G (̃σ ) = σ̃ , then G (̃σ ) � ρ, which implies
that the solution of (14) is an upper bound of (13). Additionally,
as G 2(̃σ ) = G (̃σ ) and Tr [G (̃σ )] = Tr [̃σ ], we have that (13)
is an upper bound of (14). Thus, (13) and (14) are equivalent,
that is, Aw(ρ) can be characterized as the solution of (14).

The standard form of (14) is

max Tr [Bσ̃ ],

such that �† (̃σ ) � C,

σ̃ � 0,

with B = I,�† (̃σ ) = G (̃σ ), and C = ρ. The dual semidefinite
program is

min Tr [CX],

such that �(X) � B,

X � 0.

That is,

min Tr [ρX],

such that G (X) � I,

X � 0.

Note that the dual is strictly feasible as we only need to choose
X = αI for a large enough α. Thus, strong duality holds, which
implies that Aw can be viewed as the solution of the following
semidefinite program:

max 1 − Tr [ρX],

such that G (X) � I,

X � 0.

Take W = I − X, then

max Tr [ρW ],

such that G (W ) � 0,

W � I.

This concludes the proof of the theorem. �

B. Asymmetry witness as an entanglement witness

For any Hermitian operator W with G (W ) � 0 and for
any state σ ∈ J , we have Tr [σW ] � 0. Any such W can
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be viewed as an asymmetry witness (similar to the idea
of asymmetry witness defined in Ref. [32] up to a signal),
as for any state ρ ∈ D(H ) with Tr [ρW ] > 0 implies that
ρ is asymmetric. In quantum entanglement theory, entan-
glement witnesses have been introduced to detect entangle-
ment [42,43]. For example, the swap entanglement witness
V = ∑

ij |ij〉 〈ji| has been used to indicate the existence of
entanglement where Tr [ρV ] < 0 [42,44]. Since the group
{ I,V } is a unitary representation of the symmetry group
S2 on the the Hilbert space Cd ⊗ Cd , let us take W = −V ,
which implies that G (W ) = −2V � 0. That is, the swap
entanglement witness may be regarded as a special asymmetry
witness. This goes on to accentuate the interplay between
nonclassicality like coherence and squeezing and quantum
correlations like discord [45–47] and entanglement [18]. A
recent linear optics experiment took an important step in this
direction where coherence in a local system was consumed
to synthesize an identical amount of quantum discord with an
ancilla system using only incoherent operations [48].

Additionally, given a quantum state ρ, there exists the
optimal choice W ∗

ρ which depends on ρ, such that Aw =
Tr [ρW ∗

ρ ]. That is, Aw can be viewed as a quantitative
asymmetry witness (which is state dependent). In fact, we
find that many other asymmetry measures can be regarded as
quantitative asymmetry witnesses, for example, the relative en-
tropy of asymmetry Ar (ρ) = S[ρ||G (ρ)] = Tr [ρWs

ρ ], where
Ws

ρ = log ρ − log G (ρ) is an asymmetry witness as G (Ws
ρ ) �

0. Also, the robustness of asymmetry can be expressed as
AR(ρ) = − Tr [ρWr

ρ ], where G (Wr
ρ ) = 0 (see Ref. [32]).

Furthermore, in view of the fact that the asymmetry weight
can be expressed as an asymmetry witness, we can get a lower
bound on the asymmetry weight by using the Hilbert-Schmidt
distance between ρ and G (ρ).

Proposition 4. For any given state ρ ∈ D(H ), we have

Aw(ρ) � ‖ρ − G (ρ)‖2
2

‖ρ‖∞
� ‖ρ − G (ρ)‖2

2, (15)

where ||A||22 := Tr [A†A] is the Hilbert-Schmidt norm and
||A||∞ := maxi λi with λi being the ith eigenvalue of

√
A†A.

Proof. Let W = ρ−G (ρ)
‖ρ‖∞

, then G (W ) = 0 and W � ρ

‖ρ‖∞
�

I. Thus,

Aw(ρ) � Tr[ρW ]

= Tr{ρ[ρ − G (ρ)]}
‖ρ‖∞

= Tr[ρ2] − Tr[G (ρ)2]

‖ρ‖∞

= ‖ρ − G (ρ)‖2
2

‖ρ‖∞
� ‖ρ − G (ρ)‖2

2.

Here, we use the fact that Tr [ρG (ρ)] = Tr [G (ρ)2]. �
The distance between the state ρ and G (ρ) can be used

to quantify how asymmetric the state ρ is, as the state ρ is
symmetric iff ρ = G (ρ). The above proposition facilitates a
connection between the asymmetry weight and the Hilbert-
Schmidt distance. In the following, we find the relationship be-
tween the asymmetry weight and other asymmetry measures.

Proposition 5. Given a quantum state ρ ∈ D(H ), we have

Aw(ρ) � 1

d − 1
AR(ρ), (16)

Aw(ρ) � 1

ln d
Ar (ρ). (17)

Proof. Let ρ = [1 − Aw(ρ)]σ ∗ + Aw(ρ)τ ∗ be the optimal
decomposition, where σ ∗ ∈ J . Since AR is convex [32],

AR(ρ) � [1 − Aw(ρ)]AR(σ ∗) + Aw(ρ)AR(τ ∗)

= Aw(ρ)AR(τ ∗),

where AR(σ ∗) = 0 comes from the fact that σ ∗ ∈ J . Addi-
tionally, AR(τ ∗) � d − 1 implies that

Aw(ρ) � AR(ρ)

AR(τ ∗)
� 1

d − 1
AR(ρ).

Similarly, from the convexity of the asymmetry measure Ar (ρ)
and using Ar (τ ∗) � ln d, we get

Aw(ρ) � Ar (ρ)

Ar (τ ∗)
� 1

ln d
Ar (ρ).

�

C. All pure asymmetric states have asymmetry weight 1

If |ψ〉 is a pure asymmetric state, then its decomposition
as |ψ〉〈ψ | = (1 − s)σ + sτ , where σ ∈ J and τ ∈ D(H ),
implies Aw(|ψ〉〈ψ |) = 1 as s = 1. That is, for any pure
asymmetric state, the asymmetry weight is always 1.

IV. COHERENCE WEIGHT

In this section, we introduce the coherence weight of a quantum
state as a quantifier of coherence. Since coherence of a d-
dimensional quantum system can be regarded as asymmetry
with respect to a specific d-dimensional representation of
G ≡ U(1) [32], we can define the coherence weight of a given
quantum state ρ in a similar spirit as the asymmetry weight.
That is,

Cw(ρ) = min
{σ,τ }

{s � 0 : ρ = (1 − s)σ + sτ,σ ∈ I ,

τ ∈ D(H )}. (18)

From the above definition, it is clear that the coherence weight,
Cw(ρ), of a given state ρ can be interpreted operationally as the
minimal number of genuine resource (coherent) states needed
in the preparation process of the quantum state. According to
(11), coherence weight can also be expressed as

Cw(ρ) = min
σ∈I

{s � 0 : ρ � (1 − s)σ } . (19)

In the following, by the incoherent operations we mean any
quantum operation � with the Kraus representation { Ki } such
that KiI K

†
i ⊆ I for each i [14].

Proposition 6. Let �(·) = ∑
i Ki · K

†
i be an incoherent

operation with KiI K
†
i ⊆ I for each i. Then, the coherence

weight of any state ρ is monotonically nonincreasing on
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average, i.e.,

Cw(ρ) �
∑

i

piCw(ρi), (20)

where pi := Tr [KiρK
†
i ] and ρi = KiρK

†
i

pi
.

Proof. Let ρ = [1 − Cw(ρ)]σ ∗ + Cw(ρ)τ ∗ be the optimal
decomposition, where σ ∗ ∈ I and τ ∗ ∈ D(H ). Then

KiρK
†
i = [1 − Cw(ρ)]Kiσ

∗K†
i + Cw(ρ)Kiτ

∗K†
i .

Now, let us consider

σi = 1

(1 − si)pi

[1 − Cw(ρ)]Kiσ
∗K†

i ,

τi = 1

sipi

Cw(ρ)Kiτ
∗K†

i ,

si = 1

pi

Cw(ρ) Tr[Kiτ
∗K†

i ].

Then, ρi = (1 − si)σi + siτi . As �i(σ ∗) ∈ J , we have
Cw(ρi) � si . Therefore,

∑
i piCw(ρi) �

∑
i pisi = Cw(ρ).

This completes the proof of the proposition. �
Moreover, Cw is a convex function of density matrices, i.e.,

Cw[pρ1 + (1 − p)ρ2] � pCw(ρ1) + (1 − p)Cw(ρ2), (21)

where p ∈ [0,1] and ρ1,ρ2 ∈ D(H ). Since the definition of
the coherence weight is very similar to the asymmetry weight,
it can also be expressed as a semidefinite program.

Proposition 7. The coherence weight Cw can be character-
ized as the solution of the following semidefinite program:

max Tr [ρW ],

such that �(W ) � 0,

W � I,

where �(·) = ∑
i |i〉〈i| · |i〉〈i|.

Proof. The proof is similar to the proof of Theorem 1. �
In the Supplemental Material [49], we provide the MATLAB

[50] code to evaluate the above semidefinite program numer-
ically and calculate the coherence weight for a given state

ρ using the open-source MATLAB-based modeling system for
convex optimization, CVX [51,52].

Proposition 8. For a given state ρ ∈ D(H ), we have

Cw(ρ) � ‖ρ − �(ρ)‖2
2

‖ρ‖∞
� ‖ρ − �(ρ)‖2

2, (22)

where ||A||22 := Tr [A†A] is the Hilbert-Schmidt norm and
||A||∞ := maxi λi with λi being the ith eigenvalue of

√
A†A.

Proposition 9. Given a quantum state ρ ∈ D(H ), we have

Cw(ρ) � 1

d − 1
CR(ρ), (23)

Cw(ρ) � 1

d − 1
Cl1 (ρ), (24)

Cw(ρ) � 1

ln d
Cr (ρ). (25)

Propositions 8 and 9 can be proved in a similar spirit as we
have proved Propositions 4 and 5, respectively. See also Figs. 2
and 3.

The l1 norm of coherence has played a pivotal role in
the quantification of coherence and its operational meaning
has been investigated recently in Ref. [53]. In the following,
we explore the relationships between the coherence weight,
the robustness of coherence, and the l1 norm coherence. In
addition to the simple connections (23) and (24), we find better
relationships between the three measures for special classes of
states in finite-dimensional Hilbert spaces.

Proposition 10. For a quantum state ρ ∈ D(H ), if there
exists an incoherent unitary U = ∑

j eiφk |k〉〈k| such that ρ ′ =
UρU † with ρ ′

ij = −|ρij |, for any i �= j , then

Cw(ρ) � Cl1 (ρ). (26)

Proof. Similar to the method in [32], consider the optimal
incoherent state σ ∗ such that

ρ � [1 − Cw(ρ)]σ ∗.

Apply the incoherent unitary U on both sides, then we have

ρ ′ = UρU † � [1 − Cw(ρ)]σ ∗.
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FIG. 2. Comparison between the coherence weight Cw (horizontal axis) and (a) the l1 norm of coherence Cl1 and (b) the robustness of
coherence CR (vertical axes), for 104 randomly generated quantum states (uniformly distributed with respect to the Haar measure) of dimension
3. All the axes are unitless.
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FIG. 3. Comparison between the coherence weight Cw (horizontal axis) and (a) the l1 norm of coherence Cl1 and (b) the robustness of
coherence CR (vertical axes), for 104 randomly generated quantum states (uniformly distributed with respect to the Haar measure) of dimension
4. All the axes are unitless.

Let us take the maximally coherent state |ψ+〉 = 1√
d

|j 〉, then

〈ψ+|ρ ′|ψ+〉 � [1 − Cw(ρ)]〈ψ+|σ ∗|ψ+〉,
where

〈ψ+|ρ ′|ψ+〉 = 1

d

⎛⎝1 −
∑
i �=j

|ρij |
⎞⎠ = 1

d

[
1 − Cl1 (ρ)

]
,

and 〈ψ+|σ ∗|ψ+〉 = 1
d

. That is,

1

d

[
1 − Cl1 (ρ)

]
� 1

d
[1 − Cw(ρ)],

which implies that Cw(ρ) � Cl1 (ρ). �

A. Exact coherence weight for generalized X states, Werner
states, and Gisin states

Here we find the exact analytical expressions of the co-
herence weight for some relevant classes of mixed states of
d-dimensional single and bipartite quantum systems.

1. Generalized X states

Generalized X states [54,55] form a (2N+1 − 1)-parameter
family of N -qubit states that encompass several classes of
states like Werner states, Bell-diagonal states, and Dicke states.
Given the complete characterization of the algebraic structure
underlying the generalized X states [54,55], these states are
of paramount interest for analytical calculations in quantum
information theory (see, e.g., Refs. [56,57]). Proposition 10
holds for the generalized X states, which have the form [32]

ρ =
{∑d/2

k=0 ηk, d is even,∑�d/2�
k=0 ηk + ηc, d is odd,

where

ηk = ρkk|k〉〈k| + ρk,d−1−k |k〉 〈d − 1 − k|
+ ρd−1−k,k |d − 1 − k〉 〈k|
+ ρd−1−k,d−1−k|d − 1 − k〉〈d − 1 − k|

and ηc = ρ�d/2�+1|�d/2� + 1〉〈�d/2� + 1|. Thus, one can see
that the l1 norm of coherence of generalized X states is always
less than 1, no matter how large the dimension d is.

2. Werner states

A Werner state ρW [44,58] was originally defined as a bipar-
tite quantum state that is invariant under all unitary operators of
the form U ⊗ U . That is, a d-dimensional Werner state satisfies
ρW = (U ⊗ U )ρW (U † ⊗ U †) for all unitary operators U acting
on the d-dimensional Hilbert space. Every Werner state can be
written as a mixture of projectors onto the symmetric and anti-
symmetric subspaces. The only parameter that defines Werner
states is the relative weight, say α ∈ [0,1], between the sym-
metric and antisymmetric subspaces. Here, we show that for
Werner states in any dimension d the coherence weight, the ro-
bustness of coherence, and the l1 norm coherence are all equal.

Proposition 11. For d-dimensional Werner states ρW (α) =
α I−F

d(d−1) + (1 − α) I
d2 with F = ∑d−1

i,j=0 |ij〉 〈ji| and α ∈ [0,1],
we have

Cw[ρW (α)] = CR[ρW (α)] = Cl1 [ρW (α)] = α.

Proof. First, it is easy to see that the l1 norm of co-
herence of ρw(α) is α. Now, since Werner states are gen-
eralized X states, therefore CR[ρW (α)] = Cl1 [ρW (α)] as the
robustness of coherence and the l1 norm coherence are
equal for generalized X states [32]. According to Propo-
sition 10, we have Cw[ρW (α)] � Cl1 [ρW (α)] = α as ρW (α)
are generalized X states. Moreover, due to the convexity of
the coherence weight, we have Cw[ρW (α)] � αCw( I−F

d(d−1) ) +
(1 − α)Cw( I

d2 ) = α. Therefore, Cw[ρW (α)] = CR[ρW (α)] =
Cl1 [ρW (α)] = α. �

3. Gisin states

Gisin states are a family of two-qubit states introduced in
Ref. [59] and can be written as ρλ,θ = λ|ψ(θ )〉〈ψ(θ )| +
(1 − λ)σ0, where |ψ(θ )〉 = sin θ |01〉 − cos θ |10〉,
σ0 = 1

2 |00〉〈00| + 1
2 |11〉〈11|, λ ∈ [0,1], and θ ∈ [0,2π ].

These states are considered “local” in the sense that they do
not violate any Bell–Clauser-Horne-Shimony-Holt inequality,

032342-7



KAIFENG BU, NAMIT ANAND, AND UTTAM SINGH PHYSICAL REVIEW A 97, 032342 (2018)

but it was shown that after interaction with two independent
environments these states can violate a Bell inequality [59].

Note that ρλ,θ reduces to an incoherent state when λ = 0
or sin θ cos θ = 0. Thus, we consider the nontrivial case: λ ∈
(0,1] and θ ∈ (0,π/2).

Proposition 12. For Gisin state ρλ,θ with λ ∈ (0,1] and θ ∈
(0,π/2), we have Cw(ρλ,θ ) = λ and Cl1 (ρλ,θ ) = CR(ρλ,θ ) =
λ| sin 2θ |.

Proof. It is easy to see that Cl1 (ρλ,θ ) = λ| sin 2θ |. Also, since
Gisin states can be regarded as X states, we have λ| sin 2θ | =
Cl1 (ρλ,θ ) = CR(ρλ,θ ) [32]. Moreover, the convexity of Cw im-
plies that Cw(ρλ,θ ) � λCw(|ψ(θ )〉〈ψ(θ )|) + (1 − λ)Cw(σ0) �
λ. If Cw(ρλ,θ ) < λ, then there exists an incoherent state
ρ0 such that ρλ,θ � [1 − Cw(ρλ,θ )]ρ0. Now, consider a pure
state |ψ⊥(θ )〉 = cos θ |01〉 + sin θ |10〉 which is orthogonal to
|ψ(θ )〉. Then,

〈ψ⊥(θ )|ρλ,θ |ψ⊥(θ )〉 � [1 − Cw(ρλ,θ )]〈ψ⊥(θ )|ρ0|ψ⊥(θ )〉
implies that 0 � 〈ψ⊥(θ )|ρ0|ψ⊥(θ )〉 = cos2 θ〈01|ρ0|01〉 +
sin2 θ〈10|ρ0|10〉. Therefore, 〈01|ρ0|01〉 = 〈01|ρ0|01〉 = 0
and we can write ρ0 = p0|00〉〈00| + p1|11〉〈11| with
p0 + p1 = 1. Without loss of any generality, we can
assume that p0 � 1

2 . Now, 0 = λ〈00|ψ(θ )〉〈ψ(θ )|00〉 �
[1 − Cw(ρλ,θ )]〈00|ρ0|00〉 − (1 − λ)〈00|σ0|00〉, which implies
that 0 � p0[1 − Cw(ρλ,θ )] − 1

2 (1 − λ) > 0. Therefore,
Cw(ρλ,θ ) = λ for Gisin states ρλ,θ . This concludes the
proof of the proposition. �

B. All pure coherent states have coherence weight 1

If |ψ〉 is a coherent pure state, then considering a decompo-
sition of |ψ〉〈ψ | as |ψ〉〈ψ | = (1 − s)σ + sτ , where σ ∈ I and
τ ∈ D(H ), implies that s = 1. That is, the coherence weight
of any pure coherent state is always equal to 1. Operationally
this means that the coherence weight is a coarse-grained mea-
sure and cannot distinguish between different pure coherent
states.

At this point, it is important to note that there exist some
quantum states ρ for which Cw(ρ) > Cl1 (ρ) and there also exist
some states σ such that Cw(σ ) � Cl1 (σ ), based on the results
obtained in this paper. This is different from the relationship
CR(ρ) � Cl1 (ρ), which is true for any quantum state.

C. Coherence weight for more general bipartite quantum states

Proposition 13. For any two quantum states ρ1 ∈ D(H1)
and ρ2 ∈ D(H2), we have

Cw(ρ1 ⊗ ρ2) � Cw(ρ1) + Cw(ρ2) − Cw(ρ1)Cw(ρ2), (27)

CR(ρ1 ⊗ ρ2) � CR(ρ1) + CR(ρ2) + CR(ρ1)CR(ρ2). (28)

Proof. Consider the optimal decompositions of ρ1 and ρ2

as

ρ1 = [1 − Cw(ρ1)]σ ∗
1 + Cw(ρ1)τ ∗

1 ,

ρ2 = [1 − Cw(ρ2)]σ ∗
2 + Cw(ρ2)τ ∗

2 ,

where σ ∗
1 ∈ I1, σ

∗
2 ∈ I2, τ

∗
1 ∈ D(H1), and τ ∗

2 ∈ D(H2).
Then, we have

ρ1 ⊗ ρ2 = [1 − Cw(ρ1)][1 − Cw(ρ2)]σ ∗
1 ⊗ σ ∗

2

+ [1 − Cw(ρ1)]Cw(ρ2)σ ∗
1 ⊗ τ ∗

2

+Cw(ρ1)[1 − Cw(ρ2)]τ ∗
1 ⊗ σ ∗

2

+Cw(ρ1)Cw(ρ2)τ ∗
1 ⊗ τ ∗

2 ,

where σ ∗
1 ⊗ σ ∗

2 is an incoherent state in D(H1 ⊗ H2).
The above equation implies that Cw(ρ1 ⊗ ρ2) � 1 − [1 −
Cw(ρ1)][1 − Cw(ρ2)] = Cw(ρ1) + Cw(ρ2) − Cw(ρ1)Cw(ρ2).

Similarly, for the optimal incoherent states δ∗
1 and δ∗

2 such
that

ρ1 + CR(ρ1)δ∗
1

1 + CR(ρ1)
∈ I1,

ρ2 + CR(ρ2)δ∗
2

1 + CR(ρ2)
∈ I2,
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FIG. 4. Violation of Eqs. (29) and (30) for two-qubit mixed states. (a, b) Histograms of Cw(ρ) + Cw(ρ1)Cw(ρ2) − [Cw(ρ1) + Cw(ρ2)] and
CR(ρ) − [CR(ρ1) + CR(ρ2)], respectively. All the axes are unitless. If Eqs. (29) and (30) were to hold true for arbitrary bipartite mixed states
then there would not exist any states to the left of the vertical black line drawn in the figures. This, however, is not the case as one can see for
104 randomly generated two-qubit mixed states (obtained by the partial tracing of the Haar distributed random pure states of dimension 4 ⊗ 4).
The coherence weight is calculated using a MATLAB code which we provide in the Supplemental Material [49] and the robustness of coherence
CR is calculated using QETLAB [60].
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the state
[ρ1 + CR(ρ1)δ∗

1 ] ⊗ [ρ2 + CR(ρ2)δ∗
2 ]

[1 + CR(ρ1)][1 + CR(ρ2)]

is an incoherent state in D(H1 ⊗ H2). This implies that
CR(ρ1 ⊗ ρ2) � [CR(ρ1) + 1][CR(ρ2) + 1] − 1. This com-
pletes the proof of the proposition. �

The inequality (27) also implies Cw(ρ1 ⊗ ρ2) � Cw(ρ1) +
Cw(ρ2). Additionally, the relationship between the coherence
weight (or robustness of coherence) in ρ and the coherence
weight (or robustness of coherence) in ρ1 and ρ2 can play
an important role in the distribution of coherence on bipartite
systems [61].

Proposition 14. If ρ ∈ D(H1 ⊗ H2) is a pure state with
reduced states ρ1 = Tr2 [ρ] and ρ2 = Tr1 [ρ], then

Cw(ρ) � Cw(ρ1) + Cw(ρ2) − Cw(ρ1)Cw(ρ2), (29)

CR(ρ) � CR(ρ1) + CR(ρ2). (30)

However, for general bipartite states, the relationships (29) and
(30) need not hold (see Fig. 4).

Proof. For coherence weight, the result comes directly from
the fact that the coherence weight of any coherent pure state
always attains the maximal value 1.

If ρ is a bipartite pure state with reduced states ρ1 = Tr2 [ρ]
and ρ2 = Tr1 [ρ], then

CR(ρ) = Cl1 (ρ) � Cl1 (ρ1) + Cl1 (ρ2)

� CR(ρ1) + CR(ρ2). (31)

Here the first inequality follows from the fact that the l1 norm
of coherence in any bipartite state is larger than the sum of the
l1 norm of coherence in the reduced states [62]. The second
inequality comes from the relation Cl1 (ρ) � CR(ρ) [32]. �

V. CONCLUSION

In this paper, we introduce the notion of the asymmetry
weight and the coherence weight in the resource theories of
asymmetry and coherence, respectively. The asymmetry and
the coherence weight satisfy some interesting properties such
as convexity and monotonicity, and thereby qualify as bona
fide measures of asymmetry and coherence, respectively. These
measures can also be interpreted operationally as the minimum
number of genuine resource states needed in the preparation
process of a given quantum state under the restrictions imposed
by the relevant resource theory. Interestingly, these measures
can easily be computed numerically for arbitrary quantum
states since they can be characterized as the solutions of the
corresponding semidefinite programs. Moreover, we show that

coherent (asymmetric) pure quantum states have coherence
(asymmetry) weight equal to 1. Importantly, we analytically
find the exact coherence weight for some classes of bipartite
mixed states such as the Werner states and Gisin states, which
are subsets of the generalized X states. For Werner states, we
find that the coherence weight, the robustness of coherence,
and the l1 norm of coherence are all equal and are given
by a single letter formula. Similarly, for Gisin states, we
find closed-form expressions for the coherence weight, the
robustness of coherence, and the l1 norm of coherence. In
general, for bipartite states, we establish various relationships
between the coherence weight, the robustness of coherence,
and the l1 norm of coherence. Our results imply that there
exist some quantum states for which the coherence weight is
greater than or equal to the l1 norm of coherence and there
also exist some states for which the opposite holds. This is in
stark contrast to the fact that the l1 norm of coherence is always
greater than or equal to the robustness of coherence.

Moreover, the SDP form of the asymmetry weight readily
allows us to establish a plausible connection with the (state-
dependent) asymmetry witnesses. As the swap entanglement
witness can be viewed as a special asymmetry witness, this
suggests that asymmetry may be applied to detect the existence
of entanglement in a given bipartite state. Furthermore, in
the context of the distribution of quantum coherence, we
provide some relationships between the coherence weight
(the robustness of coherence) of a given bipartite state and
the coherence weight (the robustness of coherence) of its
marginals.

We hope that the operational interpretation and the ease to
calculate the coherence (asymmetry) weight for an arbitrary
quantum state make these measures desirable and therefore
may help in improving our understanding of these two re-
sources at a quantitative level. Also, given the connection
between the asymmetry weight and the entanglement wit-
nesses, it will be an important future direction to find the exact
relationship between the asymmetry and the entanglement.
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