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A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes
that cannot be forged. In this work, we report a proof-of-principle experimental demonstration of the preparation
and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental
imperfections fully into account. We measure a total of 3.6 × 106 states in one verification round, limiting
the forging probability to 10−7 based on the security analysis. Our results demonstrate the feasibility of preparing
and verifying quantum banknotes using currently available experimental techniques.
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I. INTRODUCTION

Remarkable progress has been made in quantum cryptog-
raphy since its inception several decades ago. Quantum key
distribution is widely considered to be one of the first practical
quantum technologies [1–3], while many other protocols are
beginning to shift from theoretical proposals to experimental
demonstrations. Examples of these are developments in quan-
tum signature schemes [4–9], quantum fingerprinting [10–12],
secure quantum computation [13–16], covert communication
[17–20], and bit commitment [21–24]. Despite these advances,
quantum money [25] (the first quantum cryptography protocol
to be proposed) has only recently started to enter the realm of
possible experimental implementations.

Quantum money was first introduced in a seminal paper by
Wiesner in 1970. The goal of any quantum money scheme
is to enable a trusted authority, the bank, to provide un-
trusted users with verifiable banknotes that cannot be forged.
Many variants of Wiesner’s original scheme were found to
be vulnerable to so-called “adaptive attacks” [26–28], which
motivated the formulation of new quantum money protocols
which are provably secure against unbounded quantum ad-
versaries. Similarly, progress was made in developing simpler
protocols that take into account experimental limitations. In
Ref. [29], a secure quantum money protocol was proposed
requiring only classical communication between a verifier
and the bank. The issue of tolerance to experimental errors
was first addressed in Ref. [30], with further developments
in Ref. [31]. Recently, a practical protocol with nearly optimal
noise tolerance was proposed in Ref. [32]. These developments
have led to the first quantum money experiment, with a
demonstration of forging in Wiesner’s original scheme [33].
An unforgeable demonstration of quantum money remains
experimentally challenging.

In this work, we present an experimental implementation
of the quantum money scheme of Ref. [32], demonstrating
the entire life-cycle of the quantum states contained in a
quantum banknote: from preparation using a laser source
and phase modulation, to verification using passive linear
optics. We perform a security analysis of the protocol that
takes experimental imperfections fully into account. The setup
allows for fast and efficient verification of quantum banknotes,
compatible with on-chip realizations and storage in quantum
memories [34], which may be performed in the future.

In the remainder of this paper, we give a detailed description
of the quantum money protocol, including the bank’s algorithm
for preparing the quantum banknotes and the verification
procedure of the holders. We then describe the experimental
setup for state preparation and verification, and finally give the
results of calibration of the protocol as well as the verification
of the banknotes.

II. QUANTUM MONEY PROTOCOL

Any scheme for producing unforgeable quantum banknotes
consists of a procedure from the bank to prepare the banknotes
and a method to verify their authenticity. In this work, we
implement the practical quantum money scheme of Ref. [32],
which is based on hidden matching quantum retrieval games
(QRGs) [29,35]. In these QRGs, the bank encodes a four-bit
classical string x = x1x2x3x4 into a sequence of coherent states
with amplitude α of the form

|α,x〉 := |(−1)x1α〉|(−1)x2α〉|(−1)x3α〉|(−1)x4α〉. (1)

The verifier’s goal is to perform a measurement on |α,x〉
that allows her to retrieve the value of the parity bit b =
xi ⊕ xj , where the possible (i,j ) pairs are specified by the
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matchings M1 = {(1,2),(3,4)}, M2 = {(1,3),(2,4)}, and M3 =
{(1,4),(2,3)}. This measurement can be done by employing
unbalanced Mach-Zehnder interferometers, as explained in
detail later in this paper. These hidden matching QRGs form
the building block of the quantum money protocol, as described
below.

A. Banknote preparation

1. The bank independently and randomly chooses N strings
of four bits which we call x1, . . . ,xN .

2. The bank creates N quantum states |α,x1〉,
|α,x2〉, . . . ,|α,xN 〉, which constitute the quantum banknote.
The bank assigns a unique serial number to the banknote for
identification.

3. The bank creates a classical binary register r and
initializes it to 0N . This register keeps a record of the states
that have been previously used in the verification.

4. The bank creates a counter variable s and initializes it to
0. This counter keeps a record of the number of verification
attempts for the banknote. The bank also has a pre-defined
maximum number of allowed verifications T . The banknote
should be returned to the bank if s � T .

B. Banknote verification

Before the verification step, the protocol must be calibrated
with respect to the total efficiency η and the base error rate
β of the measurement setup. The details of this calibration
are explained in Appendix A. The verification procedure is
specified below.

1. The holder randomly chooses a subset of indices L ⊂ [N ]
of size l = |L| such that rk = 0 for each k ∈ L. For each k ∈ L,
the holder sets the corresponding bit of r to 1, indicating that
these states will be measured.

2. For each k ∈ L, the holder picks a matchingMk at random
from M1,M2,M3 and applies the corresponding measurement
to obtain outcome bk = xi ⊕ xj . If there is no outcome, we set
bi = Ø. The number of successful outcomes is defined as l′.

3. The bank sets the efficiency threshold to be η − ε, where
ε > 0 is a small positive security parameter. If l′ < lmin :=
(η − ε)l, the verifier aborts the protocol.

4. The holder sends all triplets [k,(i,j ),bk] to the bank, who
checks that s < T .

5. For each k, the bank checks whether the answer is correct
by comparing [k,(i,j ),bk] to the secret xk values. The bank
sets an error threshold to be β + δ, where δ is a small positive
constant. The bank accepts the banknote as valid only if fewer
than l′(β + δ) of the answers are incorrect.

6. The bank updates s to s + 1.
The complete protocol is illustrated in Fig. 1. The security

and correctness of this protocol was proven in Ref. [32], where
it was shown that an honest verifier will fail to verify a valid
banknote with probability

Pr(Ver fails) � e−2lminδ
2 + e−2lε2

, (2)

and the probability that an adversary can forge a banknote is
bounded by

Pr(Forge) � e
−2 ε2

η2 l + e−2lε2 + e−2lminδ
2
. (3)

FIG. 1. Schematic illustration of the quantum money protocol.
The bank produces N quantum states |x1〉,|x2〉, . . . ,|xN 〉 according
to a random secret string x = x1x2 · · · xN . The bank also assigns a
unique serial number to the banknote and creates a register r that
records whether each state has been used previously for verification.
To verify the banknote, a holder randomly selects l quantum states.
For each state, the holder randomly selects one of the three matchings
M1,M2,M3 and performs the corresponding measurement. The out-
comes consist of a matching pair (i,j ) and a parity bit b, which are
recorded and sent for comparison with the bank’s secret string x. The
banknote is accepted as valid if the error rate observed by the bank is
sufficiently low.

Both of these probabilities decrease exponentially in the proto-
col parameter l. The parameters ε and δ are chosen to minimize
the value of l necessary to achieve a given security level. We use
emin to represent the minimum average error rate introduced by
an adversary attempting to forge a banknote. Here, emin comes
from forging action totally. Even the adversary forges from a
perfect coin and using a perfect measurement device, he cannot
get an average error rate smaller than emin. A natural choice for
δ is then δ = (emin − β)/2, i.e., half of the gap between the
average error rate for a genuine coin and a forged coin. This
is a compromise between high security against forging (which
increases with δ) and correctness of verification for honest
users (which increases with small δ). Security can always be
obtained as long as β < emin. For the protocol, it was proven
in Ref. [32] that emin is bounded by

emin �
(

1
6 − 3ε

2η

1 − 3ε
η

)
4|α|2e−4|α|2

1 − e−4|α|2 . (4)

The optimal choice of ε depends on the system parameters
and is calculated numerically. In what follows, we outline
the experimental procedure to implement the quantum money
protocol.

III. EXPERIMENTAL IMPLEMENTATION

To prepare the banknotes, we employ a continuous-wave
(CW) laser with a wavelength of 1550.12 nm and a linewidth of
50 kHz. The laser’s amplitude is modulated to generate a block
of four continuous pulses using an intensity modulator. Every
block is 96-ns long while each individual pulse has a width of
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FIG. 2. (a) Experimental setup for generating and verifying quantum banknotes. A laser source produces sequences of coherent states which
are modulated in phase according to a secret string x and attenuated to an amplitude of |α|2 = 0.25. The signals are passively split into three
arms using a 1 × 3 beam-splitter and routed to three Mach-Zehnder interferometers. The interferometers, which, respectively, have delays of 2,
4, and 6 ns, are standard fiber Michelson interferometers. Each of them consists of a single beam-splitter and two Faraday mirrors. The delays
are depicted in the figure in terms of the varying length of the lower arm of the interferometer connected to the mirror. Delays of lengths 5
and 10 m are placed to distinguish the outputs of each interferometer, which are recombined using a 1 × 3 beam-splitter and measured using
superconducting nanowire single-photon detectors. IM: Intensity Modulator. PM: Phase Modulator. ATT: Attenuator. BS: beam-splitter (2 × 2
and 1 × 3). Cir: Circulator. FM: Faraday Mirror. PC: Polarization Controller. (b) The block structure scheme. The graph in the left side shows
the initial state, consisting of a total of four pulses. The graph in the right side shows the detection time-bins in one cycle, which consist of three
parts corresponding to a 4, a 2, and a 6 ns MZI, respectively. The delay of the three parts are mainly decided by the length of delay lines.

2 ns so that the blocks of four pulses occupy a total of 8 ns, see
Fig. 2(b). This resulting low duty ratio is chosen to allow for
time multiplexing while still allowing a large repetition rate
of 10 MHz. The block’s length is much shorter than laser’s
coherent time, so all the pulses in a block have the same global
phase. The phase information, which depends on the bank’s
secret key x, is encoded on each pulse via a phase modulator
to create the states as in Eq. (1). The secret key x is generated
using a quantum random number generator and stored in a
pulse pattern generator (PPG) with amplifiers. The key data
are then used to modulate the phase of the pulses. Finally, an
attenuator adjusts the average photon number to |α|2 = 0.25.
Each block is now a quantum state of the banknote, which is
transmitted to the holder.

For verification of the banknote, the holder randomly
selects a subset of all pulses and measures them. In this
proof-of-principle experiment, this is done by measuring all
states and selecting a random subset of all outcomes. Verifi-
cation requires the holder to choose randomly between three
different measurements, each corresponding to a different
matching. This is achieved using a 1 × 3 beam-splitter (BS)
to passively select between three Mach-Zehnder interferom-
eters with delays of 2, 4, and 6 ns. The interferometers
employ Faraday mirrors and a single beam-splitter to combine
all possible pairings in the matchings. Due to interference
in the beam-splitter, the holder can retrieve information
about the parity of the secret bits encoded in the phase of
the pulses.

Since the pulses in each block are separated by 2 ns,
the 2-ns interferometer performs interference of the pairs
(1,2),(2,3),(3,4); the 4 ns interferes pairs (1,3),(2,4); and the

last interferometer interferes the pairing (1,4). This covers all
six pairs in the matchings, allowing the holder to perform
the banknote verification. At the output of the beam-splitter,
delays of lengths 0, 5, and 10 m are introduced to distin-
guish the outputs of the interferometers by their arrival time.
Two 1 × 3 beam-splitters are used to recombine the output
light of the interferometers. We use two superconducting
nanowire single-photon detectors (SNSPDs) for detection. The
SNSPDs have a desired polarization which corresponds to
its maximum detection efficiency of 70%. At each output
port of the interferometers, we use a polarization controller
to adjust the polarization. Finally, the detection events are
recorded by a time-digital converter (TDC) for analysis. The
experimental setup is shown in Fig. 2(a). The timing jitter
of SNSPD is about 50 ps. The TDC’s timing jitter is 25
ps, the same as its bin time. It is sufficient to distinguish
each pulse. The TDC’s data were transmitted and stored in a
computer and we processed data after all experiments rounds
finished.

IV. EXPERIMENTAL RESULTS

As seen in Eqs. (2) and (3), the security levels of the protocol
depend partly on two parameters: the overall efficiency η

and the expected error rate β. The parameters α and ε are
optimized to achieve the lowest number of measurement states
l. The detailed method for optimization can be referred to
Appendix B. Before verification, we perform calibration to
determine the error rate of a genuine banknote in our setup,
as well as the final system efficiency after balancing each
measurement basis, allowing an optimal choice of protocol
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TABLE I. Calibration data for the quantum money protocol. A
total of 108 states are prepared and measured using our experimental
setup, obtaining a total of 3,543,143 detection events, unevenly
distributed among all matching pairs due to imperfections in the
experiment. The third column shows the fraction of measurement
outcomes that will be kept for each pairing. The last column shows
the error rate of each matching pair.

Matching pair Total counts Percentage kept Error rate

(1,2) 602,341 93% 0.0268
(1,3) 619,482 90% 0.0260
(1,4) 559,590 100% 0.0368
(2,3) 578,825 97% 0.0332
(2,4) 613,475 91% 0.0311
(3,4) 569,430 98% 0.0303

parameters. The calibration result is shown in Table I. We
obtain η = 3.36% and β = 0.033, leads to an optimal value
of ε = 0.002, and the value of emin = 0.055. The details of the
calibration step can be found in Appendix A. In Fig. 3, we
estimate the experimental error rate for different block sizes.
The shaded area corresponds to accepting the banknote in our
protocol. The genuine banknote leads to an error rate near β,
thus all the genuine banknotes pass the verification.

The security of the quantum money protocol is quantified by
the forging probability, which we set to 10−7 for definiteness,
although other values could be chosen depending on the
security requirements. The forging probability of our protocol
is shown in Fig. 4. At most l = 2.16 × 106 states need to
be measured in one verification round to ensure the desired
security level, which decreases exponentially with l. This
verification takes less than 210 ms in our experiment. We also
compare it to the ideal case, where there is no base error.
It is seen that to get the same security level, the number of

FIG. 3. Experimental error rate for different values of the number
of states l used in the verification. The standard error is calculated from
ten rounds of experiments. The red solid line shows emin, the minimum
average error rate caused by an adversary, the magenta dashed line
shows the acceptance threshold, and the shaded area corresponds to
values of the error rate where the banknote is accepted. The genuine
banknotes generated in the experiment can pass the verification, and
coincide with the calibration results β = 0.033.

FIG. 4. Forging probability for different values of the number
of states used in verification l. The blue line corresponds to our
experimental parameters while the green line corresponds to the ideal
case. The dashed line represents the 10−7 target security level.

verification states used are only roughly twice the value of the
ideal case.

V. DISCUSSION

We report an experimental implementation of the prepa-
ration and verification of unforgeable quantum banknotes.
As a proof-of-principle demonstration, our results show that
these ingredients of quantum money protocols are technolog-
ically viable. To reach full applicability of quantum money
schemes, it is crucial to be able to store the quantum states
constituting the banknote in quantum memories. This remains
a daunting challenge, but progress has been made rapidly
in developing memories capable of storing the quantum
states of optical modes as required by this money protocol
[36–38]. Additionally, the interferometers used for verification
are suitable for an implementation using integrated optics,
which would allow a convenient method for verifying quantum
banknotes. Beyond their application to quantum money, our
results demonstrate an implementation of QRGs, which have
the potential to be used as building blocks in other crypto-
graphic protocols. This is an area worth exploring further. For
example, it is intriguing to note the similarity between hidden
matching QRGs and round-robin differential phase-shift QKD
[39], a connection that may lead to new insights into these
protocols.

Note added. Recently we became aware of a relevant
work [40]. Their work is based on the theoretical pro-
posal of Ref. [30] using polarization qubits while we uti-
lize high-dimensional time-bin qudits based on the protocol
of Ref. [32].
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APPENDIX A: CALIBRATION OF THE
QUANTUM MONEY PROTOCOL

The protocol requires calibration of the total efficiency η

and the base error rate β of the measurement device. Security
can be guaranteed as long as β < emin, but an optimal value of
the parameter δ requires knowledge of the average error rate.

There is another requirement in the calibration and ver-
ification steps. The security proof requires that all three
measurements are selected with equal probability. This, in
turn, leads to an equal average number of outcomes for each
of the six pairs (1,2),(1,3),(1,4),(2,3),(2,4),(3,4). In an ideal
implementation, this condition is ensured because all pulses
have equal amplitude when they interfere, leading to an equal
probability of obtaining a click. However, due to imperfections,
there will be a difference between the average number of
outcomes obtained for each of the three interferometers. This is
addressed in the protocol by introducing additional loss for the
more frequently occurring pairings, so that the same average
number of outcomes is obtained for all pairs.

In the calibration step, we prepared 108 blocks and mea-
sured them using the interferometers. We recorded a total of
3,543,143 detection events, leading to a detection efficiency of
3.54%. From the statistics, it is possible to determine the frac-
tion of outcomes that should be kept for each pair. The result is
shown in Table I in the main text, leading to a final efficiency
of η = 3.36%. The expected error rate β is calculated from the
number of errors in these measurements, yielding a value of
β = 0.033. In a verification round, the raw outcomes should
be postprocessed according to the percentage kept in Table I
in the main text, then sent to the bank for verification.

APPENDIX B: OPTIMIZATION OF PROTOCOL
PARAMETERS

The parameters ε and α must be optimized in the protocol
to achieve the lowest possible value of l, the number of states
used in each verification. For now, we consider α to be fixed
and we perform an optimization over ε. The optimization
procedure can then be repeated for different values of α to
arrive at optimal parameters. First, we rewrite the expression
of Pr(Forge) as follows:

Pr(Forge) � exp[−2T1l] + exp[−2T2l] + exp[−2T3l],

(B1)

T1 = ε2

η2
, (B2)

T2 = ε2, (B3)

T3 = (η − ε)δ2. (B4)

Note that Pr(Forge) depends implicitly on α through the
parameter δ. Because l is very large, Pr(Forge) is dominated
by the value of min{T1,T2,T3}, with the other terms being
exponentially smaller in comparison. In our setup, it holds that
T1 � T2 so we have exp[−2T1l] � exp[−2T2l] and the first
term in Eq. (B1) can be omitted. We recall that

emin �
(

1
6 − 3ε

2η

1 − 3ε
η

)
4|α|2e−4|α|2

1 − e−4|α|2 . (B5)

FIG. 5. The relationship between emin and ε.

The parameter emin is a decreasing function of ε (see Fig. 5).
Thus, T3 will decrease with ε while T2 increases. The goal of
the optimization is then to find maxε min{T2,T3}. For a given α,
based on the calibration result for η and β, we can numerically
compute the optimal value of ε as illustrated in Fig. 6.

To find an optimal value of α, we try several different
values and find a best one. The optimal value of |α|2 should be
0.32. However, our detectors have a maximum counting rate
of 450 k events every second. When input photons exceed this
value, the detector will shutdown. Even when input photons
are slightly lower than this value, there is still some chance for
the detector shutdowns after working a while. We turn down
the |α|2 to 0.25, seeing the detectors work stablly during the
entire experiment. In that case, the optimal ε is 0.002, and
we require l = 2.02 × 106 states in one verification round to
achieve a forging probability of 9.6 × 10−8. Here, enlarging
the block time can also reduce the average light intensity, but
the amplitude modulator will not work as well and therefore
create more errors.

FIG. 6. Optimization curves for computing maxε min T2,T3.
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