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Noise-dependent optimal strategies for quantum metrology
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For phase estimation using qubits, we show that for some noise channels, the optimal entanglement-assisted
strategy depends on the noise level. We note that there is a nontrivial crossover between the parallel-entangled
strategy and the ancilla-assisted strategy: in the former the probes are all entangled; in the latter the probes are
entangled with a noiseless ancilla but not among themselves. The transition can be explained by the fact that
separable states are more robust against noise and therefore are optimal in the high-noise limit, but they are in
turn outperformed by ancilla-assisted ones.
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I. INTRODUCTION

Quantum metrology describes strategies which allow the
estimation precision to surpass the limit of classical approaches
[1–3]. When the system is sampled N times, there are different
strategies [4] which will allow one to achieve the Heisenberg
limit, where the variance of the estimated parameter scales
as 1/N2. All of these are equivalent when the systems are
noiseless. However, in the presence of noise, these strategies
are shown to be inequivalent, where entanglement and the
use of ancillas are shown to improve the precision of the
estimation [5].

In this paper, we show that for some noise channels, the best
entanglement-assisted strategy depends on the noise parame-
ter. The results obtained are valid for phase estimation using
qubits. We note that there is a nontrivial crossover between the
parallel-entangled strategy [Fig. 1(a)] and the ancilla-assisted
strategy [Fig. 1(b)], where the individual probes in the latter
case may be entangled with an ancilla but not to each other.
One would expect the performance of the intermediate strategy
[Fig. 1(c)] to lie in between that of Figs. 1(a) and 1(b), which
we show to be true.

In optical interferometry, in the noiseless regime, N maxi-
mally entangled probes in a NOON state [6] promise to provide
Heisenberg limited sensitivity. However, in the presence of
noise, the NOON state is no longer optimal, since losing
information on a single probe renders the entire state useless.
In the presence of loss, NOON states can be made more robust
(at the expense of reduced sensitivity) by populating additional
components in the probes’ Hilbert space [7,8]. As the noise
parameter increases, the optimal probe becomes less entangled.

Performance of the parallel-entangled scheme in the pres-
ence of noise has been extensively investigated (see for ex-
ample Refs. [5,9–11]); it has been shown that the quantum
enhancement in the asymptotic limit of large N amounts to a
constant factor [5,11]. On the other hand, unentangled probes
are typically less noise sensitive and are therefore optimal in
the high-noise regime.

A strategy to reduce the effect of noise is to use an ancillary
system that is entangled with the probes but does not participate

in the estimation [4]. It has been shown for many channels
that the ancilla is useful for all levels of the noise parameter
[9,12]. (In bosonic loss channels, ancillas do not provide an
advantage in the small-N limit that we examine. See for
example Refs. [8,13] for engineering states that are more
tolerant to loss, and Ref. [14] for optimal continuous variable
sensing in the presence of loss.) Since unentangled probes
usually perform better than entangled ones in the high-noise
regime, which is in turn outperformed by ancilla-assisted ones,
when comparing the unentangled ancilla-assisted strategy to
the parallel-entangled strategy, there must be a crossover in the
performance of the strategy depending on the noise parameter:
we show there is a large class of noise channels where this
transition occurs.

Here we focus on Markovian phase-covariant noise chan-
nels [15] where the noise map commutes with the parameter
encoding. We find the optimal state for each of the strategies
either analytically or numerically, and compare their quantum
Fisher information (QFI). We see that this crossover occurs in
channels with noise types including amplitude damping (first
noted in Ref. [4]), relaxation-excitation (Pauli x and y noise),
isotropic depolarization, and those which are a combination
thereof.

The results we obtain are based on the quantum Cramér-Rao
(QCR) bound [16–19]. It is a lower bound to the variance
of the estimation of a parameter ϕ encoded onto a state ρϕ .
For unbiased estimators, �ϕ2 � 1/νJ (ρϕ), where ν is the
number of times the estimation is repeated, and J is the QFI
associated with the global state ρϕ of probes and ancillas (after
the interaction Eϕ with the probed system). When there is a
unique most probable estimate, the bound is achievable in the
asymptotic limit that ν → ∞. The QFI is

J (ρϕ) =
∑

j,k:λj +λk �=0

2|〈j |ρ ′
ϕ|k〉|2/(λj + λk), (1)

where ρ ′
ϕ = ∂ρϕ/∂ϕ, and λj and |j 〉 are the eigenvalues and

eigenvectors of ρϕ . The map Eϕ encodes the phase parameter
ϕ onto the probes: ρϕ = Eϕ[ρ], ρ being the initial state. For
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FIG. 1. The quantum metrology strategies whose optimality may
depend on the noise level of the channel. (a) The parallel entangled
strategy: a state of N probes goes through N maps in parallel; this
is known to be optimal in the noiseless case. (b) The ancilla-assisted
strategy, where N individual probes entangled with a noiseless ancilla
go through the map; the probes are not entangled to each other. (c)
The intermediate strategy, where two probes are entangled with a
noiseless ancilla.

qubit channels we suppose that the phase is encoded onto the
computational basis by the unitary Uϕ = |0〉〈0| + eiϕ |1〉〈1|.

The structure of the paper follows. In Sec. II we examine
the noise channels describable by a general Pauli channel.
In Sec. III we investigate the amplitude damping channel. In
Appendix A we outline the methods of calculating the QFI
of the optimal states. In Appendix B we detail the two-qubit
case for a general phase-covariant noise model and show
that the ancilla provides an advantage over a large range
of parameters in state space. In Appendix C we extend our
studies to noise parameter estimation, where different quantum
metrology strategies are applied to estimate the depolarizing
probability of the depolarizing channel. In the subsequent
text, we use the term “ancilla-assisted strategy” to denote the
optimal two-qubit strategy where one is the ancilla and the
other is the probe, and “intermediate strategy” to mean where
there are a larger number of probes than ancillas.

II. PAULI NOISE CHANNELS

A. Pauli x- y noise

We start by analyzing the Pauli channel where the σx and
σy noise occur with the same probability p/2. The channel is
described by

E[ρ] → (1 − p)ρ + p

2
(σxρσ †

x + σyρσ †
y ), (2)

where the efficiency (1 − p) is the probability that the trans-
mission is noiseless. For this channel, the optimal ancilla-
assisted state is 1/

√
2(|00〉 + |11〉), which has QFI (1 − p).

See Appendix A for details of the calculation. Since the noise
channel is unital, one would expect the optimal state to be
symmetric: this is indeed the case. When noise acts upon the
probe state, it populates the |01〉 and |10〉 components, which

(a)

(b)

FIG. 2. Pauli x-y noise: (a) QFI for the ancilla-assisted state
1√
2
(|00〉 + |11〉) where one is the probe and the other is an ancilla

(the channel is used four times; solid green line), the optimal parallel-
entangled four-qubit state (red circles), the optimal three-qubit state
where two are probes and one is an ancilla used twice (orange trian-
gles), and the upper bound for the ancilla-less strategy (dashed blue
line) in the presence of Pauli x and y noise occurring with equal prob-
ability. The shaded region denotes where the intermediate strategy is
optimal. (b) The QFI ratio of the ancilla-assisted strategy to the op-
timal four-qubit state (red circles), the ancilla-assisted strategy to the
intermediate strategy (yellow triangles), and the ancilla-assisted strat-
egy to the best classical strategy (dashed blue line). Since the QFI of
the ancilla-assisted strategy is concave as p → 1 and the other two are
convex, the advantage becomes increasingly obvious in this regime.

are orthogonal to the probe state subspace and therefore can
be distinguished.

For N = 2, in the interval (1 − p) ∈ [0.47,1], we ob-
serve numerically that the optimal parallel-entangled state is
1/

√
2(|00〉 + |11〉), whose QFI is 4(p − 1)4/(2p2 − 2p + 1).

The crossover between the two strategies occurs at (1 − p) ≈
0.647.

To illustrate the difference between the three strategies in
Fig. 1, we show the QFI of the optimal states in Fig. 2 for
N = 4. All the data points displayed with discrete markers are
obtained numerically, whereas the continuous ones are derived
analytically.

Here we observe two transitions: the ancilla-assisted
strategy is optimal in the interval (1 − p) ∈ [0,0.52], the
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intermediate strategy in [0.52,0.7], and the parallel-entangled
strategy in [0.7,1.0]. As expected, the performance of the
intermediate strategy is in between the other two.

This can be explained by the fact that in the low-noise
regime, QFI of the parallel-entangled strategy approaches N2

and the ancilla-assisted strategy approaches N . Therefore, as
the noise parameter p → 0, the parallel-entangled strategy is
optimal. As the noise parameter increases, the optimal four-
qubit state becomes less entangled, and in the limit that p ≈ 1,
the optimal state is 1/

√
2(|0〉 + |1〉)⊗4 and has QFI 4(1 − p)2.

In this regime, the ancilla-assisted state whose QFI is 4(1 − p)
performs better. Therefore, there must be a transition point at
which their performance crosses over.

In reality, one may be more interested in finding a strategy
that beats the best classical strategy even in the presence of
large noise. The best classical strategy, i.e., one that only
uses qubits in the optimal initial state without entanglement
or ancillas, uses the |+〉 = 1/

√
2(|0〉 + |1〉) state, which has

QFI (1 − p)2.
Therefore, for N uses of the channel, the QFI is

J (E[ρ]⊗N ) = N (1 − p)2. (3)

The QFI ratios of the ancilla-assisted state to Eq. (3), to the
intermediate strategy, and to the optimal four-qubit state are
shown in Fig. 2(b). Values above 1 mean that the ancilla-
assisted strategy is superior. It is interesting to note that for
the Pauli x-y noise channel, the ratio of the ancilla-assisted
case to the ancilla-less case becomes increasingly significant
as the noise parameter increases (in fact, the ratio approaches
infinity as p approaches 1).

B. Depolarizing noise channel

Next we turn to the depolarizing channel, where we observe
the transition numerically for small N . The channel is given
by

E[ρ] = (1 − p)ρ + p
1

d

=
(

1 − 3p

4

)
ρ + p

4
(σxρσ †

x + σyρσ †
y + σzρσ †

z ), (4)

where the efficiency (1 − p) is the probability that the trans-
mission is noiseless, and d is the dimension of the system the
noise acts upon. For the ancilla-assisted strategy, the optimal
ancilla-assisted state is 1/

√
2(|00〉 + |11〉), which has QFI

2(1 − p)2/(2 − p).
For any N , it was shown in Ref. [20] that the QFI

of the parallel-entangled strategy is upper bounded by
N/(eγ0+γ1+γ2 − 1), where γ0, γ1, and γ2 are the noise pa-
rameters of pure dephasing, excitation, and relaxation, re-
spectively [20]. The depolarizing channel can be rewritten
in terms of these parameters, where 2γ0 = γ1 = γ2 = γ . For
the depolarizing channel, p ≡ 1 − e−2γ , which gives an upper
bound of N/(e5γ /2 − 1) = N (1 − p)5/4/(1 − (1 − p)5/4). The
bound is valid and tight in the high-noise regime, where
N (eγ0+γ1+γ2 − 1)  1 [20]. This upper bound is larger than
that of the ancilla-assisted state. For small N , we observe
the crossover numerically. (The analysis for the bounds is
not applicable to the Pauli x-y noise channel and is therefore
omitted from the previous section.)

(a)

(b)

FIG. 3. Depolarizing noise: (a) QFI for the ancilla-assisted state
1√
2
(|00〉 + |11〉), where one is the probe and the other is an ancilla

(the channel is used four times; solid green line), the optimal parallel-
entangled four-qubit state (red circles), the optimal three-qubit state
where two are probes and one is an ancilla (orange triangles), and the
upper bound to the ancilla-less case (dashed black line) in the presence
depolarizing noise. (b) The QFI ratio of the ancilla-assisted strategy to
the optimal four-qubit state (red circles), the ancilla-assisted strategy
to the intermediate strategy (yellow triangles), and the ancilla-assisted
strategy to the best classical strategy (dashed blue line).

For N = 2, we observe numerically that for the parallel-
entangled strategy the transition occurs at (1 − p) ≈ 0.65.
In the high-noise regime, the optimal state takes the form
ε/

√
2(|00〉 + |11〉) + √

1 − ε2/
√

2(|01〉 + |10〉), where ε is
some parameter that varies with p. In the high-noise regime,
ε → 1/

√
2. As p decreases, the optimal probe state becomes

more entangled, and the maximally entangled state is optimal
in the interval (1 − p) ∈ [0.82,1].

For N = 4, when (1 − p) is less than ≈0.65, the ancilla-
assisted strategy performs better than the parallel-entangled
strategy (and vice versa; see Fig. 3). It is interesting to note that,
unlike in the channels with Pauli x-y noise and the amplitude
damping noise (see Sec. III), the intermediate strategy does
not provide a notable advantage over the parallel-entangled
strategy, even in the high-noise regime.

For the depolarizing channel, the best classical strategy is
also to use the |+〉 state, which has QFI

J (E[(ρ⊗N )]) = N (1 − p)2. (5)
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The QFI ratios of the ancilla-assisted state to Eq. (5), the
ancilla-assisted state to the intermediate strategy, and to the
optimal four-qubit state are shown in Fig. 3(b).

III. AMPLITUDE DAMPING

In the presence of amplitude damping noise, we show that
the crossover occurs for both the small-N regime and the
asymptotic limit of large N . We also detail the interesting case
for N = 2 where the transition occurs at efficiency 0.5 exactly.

The channel is described by the Kraus operators

K1 =
(

1 0

0
√

1 − p

)
, K2 =

(
0

√
p

0 0

)
, (6)

where p is the probability that the probe undergoes a tran-
sition |1〉 → |0〉. For all p, the optimal ancilla-assisted state
takes the form α(p) |00〉 +

√
1 − α(p)2 |11〉. Here α(p) =

[
√

1 − p/(1 + √
1 − p)]1/2 maximizes the QFI Jadc, giving

Jadc = 8(1 − p)/(
√

1 − p + 1)
2
.

For all N , it was noted in the supplementary material in
Ref. [4] that for the parallel-entangled strategy, the upper bound
is Np/(1 − p), and the transition occurs at (1 − p) ≈ 0.36.

As in the Pauli x-y noise, here we also observe two tran-
sitions: the ancilla-assisted strategy is optimal in the interval
(1 − p) ∈ [0,0.4], the intermediate strategy in [0.4,0.6], and
the parallel-entangled strategy in [0.6,1.0]. As expected, the
intermediate strategy crosses the parallel-entangled strategy at
larger efficiencies, but in the noiseless limit, it also outperforms
strategy (b) in Fig. 1 by a factor of N/2.

We also observed that as N is increased from 2 to 6, the
transition shifts towards smaller values of (1 − p), which is
consistent with the bound.

For the amplitude damping channel, the optimal classical
state is once again |+〉, with QFI (1 − p). The QFI ratios of the
ancilla-assisted state to (1 − p), to the intermediate strategy,
and to the optimal four-qubit state are shown in Fig. 4(b).

Now we examine the N = 2 case in more detail, where we
see that the crossover between the parallel-entangled strategy
and the ancilla-assisted strategy occurs at exactly p = 1/2. For
the parallel-entangled strategy, up to p ≈ 0.58, we observe
numerically that the best two-probe state takes the form
ε(p) |00〉 +

√
1 − ε(p)2 |11〉, where

ε =

√
p(p(2(p−3)p+7)−4)−

√
(p−1)4(2(p−1)p+1)+1

(p−1)3p√
2

(7)

gives the maximum QFI

Jpa = 8(p2 −
√

2p2 − 2p + 1 − p + 1)

(p − 1)2
. (8)

At p = 0.5, α(p) coincides with ε(p); i.e., the optimal states
for the two strategies are the same. This means that using
the ancilla-assisted state twice has the same QFI as using the
parallel strategy once, and the relationship between the two is
shown as a schematic in Fig. 5. There is a factor of 4 between
the QFI of the two-probe state as depicted in cases (i) and (ii),
since the only difference between the two output states is in
the off-diagonal component, where the former (latter) picks up
a factor of e2iϕ (eiϕ).

(a)

(a)

(b)

FIG. 4. (a) Amplitude damping noise: 1√
2
(|00〉 + |11〉) where one

is the probe and the other is an ancilla (the channel is used four times;
solid green line), the optimal parallel-entangled four-qubit state (red
circles), the optimal three-qubit state where two are probes and one is
an ancilla (orange triangles), and the upper bound to the ancilla-less
case (dashed black line) in the presence of amplitude damping noise.
The shaded region denotes where the intermediate strategy is optimal;
to the left of the region, the ancilla-assisted strategy is optimal, and
to the right, the parallel-entangled strategy is optimal. (b) The QFI
ratio of the ancilla-assisted strategy to the optimal four-qubit state
(red circles), the ancilla-assisted strategy to the intermediate strategy
(yellow triangles), and the ancilla-assisted strategy to the best classical
strategy (dashed blue line).

Now, we compare cases (iii) and (ii) of Fig. 5. The presence
of the ancilla acts like a “filter” for the damped component:
it prevents the noise from mixing with the phase-sensitive
component. Thus, the noise has a similar effect on the probe
state as a loss. Acting as a lossy channel with transmissivity
(1 − p) reduces its QFI by a factor of (1 − p). Therefore, there
is a factor of 2 between cases (iii) and (ii); hence when case (iii)
is used twice, it has the same QFI as the two-probe entangled
state.

IV. CONCLUSION

In conclusion, we have shown that, in the presence of
Pauli x-y, depolarizing, and amplitude damping noise, the
optimal entanglement-assisted strategy for quantum metrol-
ogy depends on the strength of the noise parameter. When
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Factor of F4 actor of 2

Therefore
factor of 2

(i)

(ii)

(iii)

FIG. 5. The amplitude damping channel at p = 0.5: Eϕ refers to
applying the noise as well as the phase unitary. E by itself means
that only the noise acts on the probe and no unitary is applied. The
schematic shows (i) the parallel-entangled state and (iii) the ancilla-
assisted state.

comparing the parallel-entangled strategy to the ancilla-
assisted unentangled strategy, the former is optimal in the
low-noise regime, since entanglement between probes allows
estimation precision to beat the standard quantum limit. In the
high-noise regime, unentangled probes perform better because
they are less noise sensitive, and in this regime, ancilla-assisted
states provide an advantage.
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APPENDIX A: QFI DERIVATION FOR THE PAULI x- y
NOISE CHANNEL

We use numerical optimization to find the QFI and the
form of the optimal states, then we derive it analytically if
the solution has a simple form. The same method is used to
obtain all the other results.

To perform the numerical optimization, we first parametrize
the N -qubit state. For example, an arbitrary two-qubit state
vector can be written as

|ψ〉 = cos(θ0/2) cos(θ1/2) |00〉
+ cos(θ0/2) sin(θ1/2)eiω1 |01〉
+ sin(θ0/2) cos(θ2/2)eiω0 + |10〉
+ sin(θ0/2) sin(θ2/2)ei(ω0+ω2) |11〉 . (A1)

We act the channel on the state, diagonalize the density
matrix, and calculate its QFI using Eq. (1), where ∂ρϕ/∂ϕ =
1
i
(Gρϕ − ρϕG), and G is the generator for the phase unitary.

In this case G is the Pauli z operator. We use the SCIPY

optimization package to find globally the values of the θ ’s
which maximize the QFI. To save time here, we can omit the
ω’s in the optimization, because the noise channels we consider
here are phase covariant: the ω’s cancel out when substituted

into Eq. (1). Note that, for non-phase-covariant channels, this
is not true in general.

To find the QFI for an N -qubit state analytically is lengthy;
therefore, we numerically search for the optimal form of the
state, then find the solution. For the ancilla-assisted strategy, we
observe numerically that the optimal state is the Bell state. We
illustrate with this simple case how the QFI is then calculated.

After the channel in Eq. (2) acts on it, the density matrix
becomes⎛

⎜⎜⎜⎝

1−p

2 0 0 1
2e−iφ(1 − p)

0 p

2 0 0

0 0 p

2 0
1
2eiφ(1 − p) 0 0 1−p

2

⎞
⎟⎟⎟⎠. (A2)

Diagonalizing the density matrix in Eq. (A2), the eigenval-
ues and eigenvectors are{

0,1 − p,
p

2
,
p

2

}
,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2

⎛
⎜⎜⎜⎝

−e−iφ

0

0

1

⎞
⎟⎟⎟⎠,

1√
2

⎛
⎜⎜⎜⎝

e−iφ

0

0

1

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (A3)

These are substituted into Eq. (1). The final expression simpli-
fies to give the QFI (1 − p).

On the other hand, to find the best single-qubit state for the
channel is straightforward. We start off with the arbitrary state

ε |0〉 + eiϕ
√

1 − ε2 |1〉 . (A4)

After passing through the noisy channel, this diagonalizes
easily, since there are only two bases. We can then use Eq. (1) to
calculate the QFI and obtain an expression that is a function of
ε. Then one can, for example, use calculus to find the value of ε

that maximizes the QFI. Here for the Pauli x-y noise channel,
ε = 1/

√
2 maximizes the QFI for all p.

APPENDIX B: GENERAL PHASE-COVARIANT NOISE

The most general form of phase-covariant noise maps have
Kraus operators given by [15]

K1 =
√

1 − η|| + κ

2

(
0 1

0 0

)
,

K2 =
√

1 − η|| − κ

2

(
0 0

1 0

)
,

K3 =
√

λ+

(
cos(t) 0

0 sin(t)

)
,

K4 =
√

λ+

(− sin(t) 0

0 cos(t)

)
, (B1)

where

t = tan−1

⎛
⎝ 2η⊥

κ +
√

κ2 + 4η2
⊥

⎞
⎠,

λ± =
1 + η|| ±

√
κ2 + 4η2

⊥
2

. (B2)
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1.0
-1.0

FIG. 6. The phase-covariant noise channel: for N = 2, the QFI
difference between the optimal ancilla-assisted state and the optimal
parallel-entangled state. We show the plot from different perspectives
for clarity.

For the map to be complete positive and trace preserving,
these conditions are required:

η|| + κ � 1, 1 + η|| �
√

4η2
⊥ + κ2. (B3)

In the Bloch sphere representation, |κ| �= 0 corresponds to
a displacement of qubit in the z direction and −1 � κ � 1;
η⊥ represents its length in the x-y plane, with 0 < η⊥ < 1,
and η|| is its length in the z direction, with 0 � η|| � 1. Pure
dephasing corresponds to η|| = 1, κ = 0, and 0 � η⊥ � 1. Re-
laxation (excitation) corresponds to 0 � κ � 1 (−1 � κ � 0).
Isotropic depolarization is given by 0 � η|| = η⊥ � 1.

Since we know that ancillas do not provide an advantage
in the small-N limit, to obtain the biggest difference in QFI
between the two strategies as a function of κ and η||, η⊥ is
chosen to be

√
1 + η2

|| − κ2/2, i.e., the largest value possible
given by the conditions in Eq. (B3).

For N = 2, the difference in QFI between the optimal
parallel-entangled state and the ancilla-assisted state is plotted
in Fig. 6. Values above zero mean that the ancilla-assisted
strategy performs better. We see that there is a large parameter
space for which the data points are positive; i.e., the ancilla-
assisted state is advantageous. As expected, the difference is
the most negative (i.e., the parallel-entangled strategy performs

the best) when κ = 0, η|| = 1, corresponding to the noiseless
regime.

APPENDIX C: NOISE PARAMETER ESTIMATION

The crossover between the strategies occurs because in
the noiseless limit, the quantum Fisher information scales
as N2, which occurs only for unitary transformations [21].
For a class of channels which authors in Ref. [22] termed
“teleportation stretchable,” i.e., the channels which commute
with teleportation, they show that the estimation cannot exceed
the standard quantum limit, and the highest quantum Fisher
information is given by the Choi matrix of the channel. This
coincides with the ancilla-assisted scheme in Fig. 1(b).

Here, for estimating the depolarizing parameter, we inves-
tigate the performance of the different quantum metrology
strategies in Ref. [4]. We also numerically confirm the result
in Ref. [22]. First, we rewrite Eq. (4) as

E(ρ) → (1 − t)ρ + t
1

d
. (C1)

In the cases where analytical solutions can be obtained, we
use Fisher information to characterize the achievable precision:

J (ρt ) =
∑

i

λ(i|t)
(

∂ log[λ(i|t)]
∂t

)2

, (C2)

whereλ(i|t) correspond to the eigenvalues of the density matrix
ρt at the output of the channel.

We start with the sequential strategy, where an unentan-
gled probe is cycled in the channel N time sequentially.
We parametrize the input state as ε |0〉 + √

1 − ε2 |0〉. The
eigenvalues of the output density matrix are 1 − t

2 and t
2 , and

the eigenvectors are independent of t . In this case, the Fisher
information is J (E(ρseq)) = 1/(2t − t2). Applying the channel
twice gives Fisher information

J [E2(ρseq)] = 4(t − 1)2

(2 − t)t(t2 − 2t + 2)
, (C3)

and three times gives

J [E3(ρseq)] = − 9(t − 1)4

t(t2 − 3t + 3)(t3 − 3t2 + 3t − 2)
. (C4)

We observe that J [E(ρseq)] > J [E2(ρseq)]/2 > J

[E3(ρseq)]/3. Therefore, using unentangled probes, if the
channel can be sampled N times, the best precision is
achieved by using N probes to go through the channel once.
We show J [E(ρseq)] in Fig. 7 as a dot-dashed purple line.

Now we turn to the parallel-entangled strategy, where N

probes go through the channel in parallel. We show that using
entanglement can improve the precision of the estimation. We
numerically search for the optimal two-probe state. Since the
transformation is nonunitary, the definition for QFI in Eq. (1)
cannot be used since the generator of the operation of the
channel is not trivial to define. In this case, we use an alternative
definition:

J (t) = 8(1 − F [ρ(t),ρ(t + δt)])

dt2
, (C5)

where F (ρ,σ ) = Tr
√√

σρ
√

σ is the Bure quantum fidelity
between ρ and σ [23–25].
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FIG. 7. QFI for two uses of the channel, estimating the depo-
larizing probability. The results shown are the sequential strategy
J [E(ρseq)] (dot-dashed purple line), the maximally entangled state
where both are probes (dashed blue line), the optimal two-probe
state (red circles), and the ancilla-assisted state, where one probe is
maximal to a noiseless ancilla (solid green line).

Since the QFI of the state in Eq. (C5) is smooth in t , we
choose a reasonably small δt → 0, and find the optimal two-
qubit probe state by numerically optimizing

8
(
1 − F

[
ρ
(
t − δt

2

)
,ρ

(
t + δt

2

)])
δt2

. (C6)

The solution is shown by the red circles.

For comparison, the maximally entangled state (both are
probes) has QFI given by

JNOON = 3

4
(t − 1)2(2t − t2)

(
3

3t2 − 6t + 4
+ 4

(t − 2)2t2

)

(C7)

and we plot JNOON/2 as a dashed blue line in Fig. 7.
The ancilla-assisted state 1/

√
2(|00〉 + |11〉), where one is

the probe and the other is a noiseless ancilla, has QFI Janc =
3/(4t − 3t2), which is plotted as a solid green line.

As evident from the plot, the maximally entangled state
performs better than the sequential strategy when t � 0.2,
and the optimal two-probe parallel-entangled state starts to
outperform the unentangled probe around t � 0.4. Clearly,
the parallel-entangled strategy must perform better than the
unentangled strategy, because the separable states are a subset
of the parallel-entangled ones. The ancilla-assisted scheme,
where one probe is maximally entangled to an ancilla, has the
highest quantum Fisher information.

We also performed a search over all possible four-qubit
states where two are probes and two are ancillas. The opti-
mization shows that the optimal state is still 1/

√
2(|00〉 + |11〉)

used twice, which confirms that for these channels, indeed one
cannot perform better than using the ancilla-assisted state.

To conclude, the parallel-entangled strategy performs better
than the sequential strategy (by definition, since the latter is
a special case of the former), and the ultimate precision is
achieved by the ancilla-assisted strategy, where the probe is
maximally entangled with an ancilla.
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