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We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on
fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-
efficient bosonic QEC codes that are suitable for χ (2)-interaction based quantum computation in multimode Fock
bases: the χ (2) parity-check code, the χ (2) embedded error-correcting code, and the χ (2) binomial code. All of
these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements,
and then correct them via χ (2) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator
framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables
convenient extension of a given encoding to higher-dimensional qudit bases. The χ (2) binomial code is of special
interest because, with m � N identified from channel monitoring, it can correct m-photon-loss errors, or m-
photon-gain errors, or (m − 1)th-order dephasing errors using logical qudits that are encoded in O(N ) photons.
In comparison, other bosonic QEC codes require O(N2) photons to correct the same degree of bosonic errors. Such
improved photon efficiency underscores the additional error-correction power that can be provided by channel
monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with
the χ (2) parity-check code and the χ (2) embedded error-correcting code, and we prove that these codes saturate
their respective bounds. Our χ (2) QEC codes exhibit hardware efficiency in that they address the principal error
mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical
resources required for implementing their encoding, decoding, and error-correction operations, and their universal
encoded-basis gate sets.
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I. INTRODUCTION

Quantum error-correcting (QEC) codes are essential for
realizing large-scale quantum computation. QEC codes protect
quantum information by encoding each logical computational-
basis state into a higher-dimensional physical subspace in
a manner that permits errors to be detected and corrected.
The first QEC codes were generic codes, i.e., they made no
assumptions about the underlying hardware [1–5], hence their
error models do not exploit hardware-specific biases towards
particular errors. The achievable code rates of generic QEC
codes are therefore constrained by fundamental limits, such
as the quantum Hamming bound and the quantum singleton
bound [5]. Consequently, a generic QEC code demands more
encoding overhead than would be necessary when the quantum
computation is run on hardware with a small set of dominant
errors, rather than the full error set assumed by that code. This
overhead excess impedes implementation of large-scale quan-
tum computation as compared to what could be accomplished
with a hardware-efficient QEC code, viz., one that is matched
to the chosen physical implementation.

Compared to generic QEC codes, hardware-efficient QEC
codes offer a quicker route to the break-even point [6], at
which encoded quantum information is retained beyond the
coherence time of its physical constituents. To do so they
exploit the available physical interactions to correct system-
specific errors in a low-encoding-overhead manner that does

not lavish resources on correction capability for unlikely
errors [6–8]. Hardware-efficient codes that protect the same
amount of quantum information as generic codes thus use
fewer controlled-Hamiltonian evolutions, measurements, and
classical controls in their encoding, decoding, and error cor-
recting of quantum information, and in their universal gate-set
constructions. They also introduce fewer error mechanisms and
offer higher code rates than generic QEC codes.

Hardware-efficient QEC codes are especially relevant for
bosonic quantum computation, in which photons are the
information carriers. Examples include quantum optical com-
putation using Kerr nonlinearities [9], linear-optical quantum
computation [10], and continuous-variable quantum computa-
tion [11,12], among others. Because photons are prone to loss
and photon-photon interactions are extremely weak, bosonic
QEC codes focus on correcting photon-loss errors using very
limited forms of photon-photon interactions while striving to
be hardware efficient. The bosonic codes from Refs. [9,13]
correct up to N -photon-loss errors by using linear optics and
Kerr nonlinearities (four-wave mixing) to encode each logical
qubit into two bosonic modes with up to N2 photons in each
mode. The quantum parity-check codes [14–16] use N2 single
photons distributed over 2N2 modes to correct N -photon-loss
errors with measurement-induced universal gates. The GKP
codes [17] use Kerr nonlinearities and atom-photon coupling
to encode logical qudits into superpositions of squeezed states
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that approximately correct for lowest-order photon-loss errors,
which are regarded as that architecture’s likely errors.

The development of cat codes [6,7,12,18–22] represents
an important step toward hardware efficiency. Cat codes
are bosonic QEC codes tailored to the promising quantum-
computing architecture whose physical qubits are microwave
photons stored in superconducting resonators. Cat codes’
universal gate set relies on induced four-wave-mixing in-
teractions in Josephson junctions, which are much stronger
than optical four-wave mixing in Kerr media. Cat codes
have lower encoding overhead than generic QEC codes, be-
cause they introduce fewer error mechanisms. In addition,
their requiring fewer physical resources than generic QEC
codes makes it easier for them to reach the break-even
point [6].

The cat codes’ success invites the following question:
can we design hardware-efficient bosonic QEC codes for the
quantum computation scheme based on three-wave mixing?
Langford et al. [23] were the first to point out the pos-
sibility of realizing universal quantum computation in the
single-photon qubit basis using χ (2) interactions for coherent
photon conversion together with linear-optics transformations.
Quantum computation using only these resources is of interest
because the χ (2) interaction is a lower-order nonlinearity, hence
potentially stronger than four-wave mixing. Furthermore, ex-
citing new technologies—such as solid-state circuits [24],
flux-driven Josephson-junction parametric amplifiers [25–28],
superconducting resonator arrays [29,30], ring resonators [31],
and frequency-degenerate double-lambda systems [32]—have
been expanding the platforms for and increasing the effi-
ciencies of χ (2) interactions. Hardware-efficient QEC codes
for Langford’s protocol [23] would establish the feasibility
of this emerging quantum computing scheme. Such codes
would also add to existing toolkits for some four-wave-mixing
approaches to quantum computation, because χ (2) interactions
can be realized by means of four-wave mixing with a strong,
nondepleting pump [23,33,34].

Unfortunately, the single-photon qubit basis used in
Ref. [23] is not closed under χ (2) Hamiltonian evolutions, nor
is it suitable for error correction, because any single-photon-
loss error will destroy the quantum information carried by
the qubit. Moreover, existing single-photon, multimode, QEC
codes—such as the bosonic code [9], the quantum parity-check
code [19], and the NOON code [35]—are not designed for
hardware-efficient operation on an underlying architecture
composed of χ (2) interactions and linear optics.

We took a first step toward overcoming the preceding
difficulties in Ref. [36] by showing that universal quantum
computation using only χ (2) interactions and linear optics
could be realized with a multimode Fock basis in an irreducible
subspace of the χ (2) Hamiltonian, i.e., the closed subspace
HN of quantized single-mode signal (s), idler (i), and pump
(p) states spanned by multimode Fock states whose photon
numbers {nk : k = s,i,p} satisfy (ns + ni)/2 + np = N .

In the present paper we take a new step, by proposing the
first QEC codes for χ (2)-based universal quantum computation
and then demonstrating their hardware efficiency. To do so
we establish a symmetry-operator framework that leverages
the symmetry of the physical subspace supporting the logical
codewords and the symmetry of the measurable syndromes.

We choose a multimode Fock basis spanning an irreducible
subspace of χ (2) Hamiltonian evolutions [36] as our physical
qudit basis. This choice ensures closed dynamics during
quantum computation, and hence avoids leakage errors in the
absence of photon loss or gain. The measurable syndromes
include the photon-number parity measurements and gener-
alized photon-number parity measurements. For each code,
symmetry operators shared by both the physical code subspace
and the measurable syndromes are carefully chosen to stabilize
the logical basis states. Error operators that do not commute
with the logical basis’s symmetry operators can thus be de-
tected through appropriate syndrome measurements. Our use
of symmetry operators affords a systematic procedure to find
QEC codes that are not conventional stabilizer codes, and also
enables the extension of our χ (2) QEC codes to arbitrary qudit
dimensionalities and different numbers of bosonic modes.
Our approach differs from previous work on bosonic QEC
codes [9,13] in that we focus on the available computational
primitives, instead of merely the error-correction condition,
when defining the code subspace.

We expect photon loss or gain to be the dominant error
mechanisms for our χ (2) architecture, so our three hardware-
efficient codes—the χ (2) parity-check code (χ (2) PCC), the
χ (2) embedded error-correcting code (χ (2) EECC), and the
χ (2) binomial code (χ (2) BC)—are tuned for such errors.
The χ (2) PCC is so named because its second physical qudit
provides a parity check on the first qudit; the EECC is so
named because we embed an N -dimensional logical qudit
into a 2N − 1 dimensional physical qudit; and the χ (2) BC
is so named because it uses conjugated binomial symmetry
in its construction. Each code has its own merit in regards to
hardware efficiency. The χ (2) PCC has a constant code rate
for logical qudits of any dimension. It corrects single-photon
loss or gain errors. The χ (2) EECC corrects single-photon
loss or gain errors and has the highest code rate of our three
codes. The χ (2) BC is our most powerful code, when sufficient
resources are available. Using O(N ) photons for its encoding,
it corrects m-photon-loss errors, m-photon-gain errors, and
dephasing errors up to the (m − 1)th order—but not mixtures
of these errors—given an m � N value identified from channel
monitoring that identifies the error order but not its type [37].
In comparison, the binomial code proposed in Ref. [38] does
not require channel monitoring, but it needs O(N2) photons
to correct up to N -photon-loss errors. We suspect that channel
monitoring—like that used by our χ (2) BC—may be neces-
sary for achieving O(N )-photon protection for N -photon-loss
errors, but we have yet to prove this conjecture. At present,
there is no method for realizing such channel monitoring with
microwave quantum computation’s Josephson-junction gates.
Note, however, that without channel monitoring the χ (2) BC
can still correct all single-photon-loss errors, which are the
most likely errors in that setting. That said, the χ (2) PCC
and the χ (2) EECC are stronger candidates than the χ (2) BC
for near-term demonstration of single-photon-loss correction,
because they have explicit universal gate-set implementations
and error-correction procedures.

It is worth emphasizing that the χ (2) BC is the first Fock-
basis bosonic QEC code that can correct N -photon-loss errors
usingO(N ) photons for its encoding; all previous bosonic QEC
codes with that error-correction capability require encoding
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with O(N2) photons [9,14,16–19,35,38,39]. Being able to
correct the loss of a constant fraction of the total photons for
any code size is of great advantage for both large-scale quantum
computation and long-range quantum communication. How-
ever, the χ (2) BC requires channel-monitoring resources—
which our other codes do not—that it uses to determine the
number of photons that have been lost or gained. Our result thus
highlights the importance of channel monitoring for the extra
error-correction power it can provide by obviating a constraint
from the error-correction condition [40], and it alerts us to the
need for resource-efficient channel monitoring.

Assuming the universal gates realized through χ (2) in-
teractions have no errors in themselves, correctable photon
loss or gain errors do not induce additional logical errors
(physical-qudit rotation errors) in our multimode Fock-basis
encoding. Moreover, the encoding, decoding, error correction,
and universal gates are all realizable with just χ (2) interactions
and linear optics.

To establish the optimalities of the χ (2) PCC and the χ (2)

EECC with respect to their code rates, we develop generalized
quantum Hamming bounds for any [[n log2(q),k log2(b),2t +
1]] code, i.e., one that encodes k logical qudits of dimension
b into n physical qudits of dimension q and corrects either
t-physical-qudit rotation errors or t-photon-loss errors. Then
we show that the χ (2) PCC and the χ (2) EECC saturate their
respective bounds for photon-loss errors. In doing so, we find
that the quantum Hamming bounds for photon-loss errors
give much higher code rates than those for physical-qudit
rotation errors. This disparity arises from our use of three-mode
Fock states, for which certain photon-loss errors move the
original code subspace to a higher-dimensional subspace. That
increased subspace dimension facilitates a more efficient error-
correction procedure, leading to qubit-basis code rates of 1/2
for the χ (2) PCC and 1/ log2(3) for the χ (2) EECC, as opposed
to the 1/5 code rate of the generic qubit-basis QEC code for
qubit rotation errors. Furthermore, our multimode encodings
do not require all bosonic modes to have the same loss
rate, something that is necessary for other multimode bosonic
codes.

We begin in Sec. II by presenting a performance comparison
between our three hardware-specific bosonic codes, and the
bosonic (but otherwise generic) GKP codes, establishing a
quantitative rationale for hardware efficiency. We develop in
Sec. III a symmetry-operator framework—inspired by the
familiar stabilizer codes—and use it to define the χ (2) PCC,
EECC, and BC codes in the context of the full-quantum χ (2)

physical model. Because these codes reside in subspaces of the
physical model’s full Hilbert space, it is important for quantum

computation to still have universality within the encoded bases,
and we show how this can be done in Sec. IV. Finally, for
perspective on our codes’ performance relative to ultimate
limits, we present quantum Hamming bounds, generalized
to accommodate our codes’ qudit bases, in Sec. V, before
concluding in Sec. VI.

II. HARDWARE EFFICIENCY

A hardware-efficient QEC code [6,7] for a given physical
architecture should minimize the physical resources employed
for its encoding, decoding, and error-correction operations, and
for its universal gate sets in the encoded basis. At the same
time, it should avoid introducing additional error mechanisms,
and it should have a high code rate. The physical resources
of concern in this regard include controlled Hamiltonian
evolutions, measurements, and classical controls. Thus we
shall quantify a QEC code’s hardware efficiency in terms of
six metrics: the physical resources it requires for encoding,
decoding, error correction, and universal computation; its
dominant error mechanisms; and its code rate. Below, after
some additional information about our three χ (2) QEC codes,
we compare their hardware-efficiency metrics against those of
the widely studied GKP code.

The hardware efficiency of χ (2) QEC codes is facilitated
by their code subspaces being irreducible subspaces of χ (2)

Hamiltonian evolutions; viz., they are closed under such
evolutions. This choice conserves photon-number parity, and
enables universal gate sets to be realized with just χ (2) inter-
actions and linear optics. It follows that all χ (2) QEC codes
require just generalized photon-number parity measurements
[12,22] for their error-detection operations.

Table I compares code dimensions, correctable error
sets, and average total photon numbers of the χ (2) PCC,
the χ (2) EECC, and the χ (2) BC. For all three codes,
the required total number of photons scales linearly with
the physical basis dimension q because they use constant
photon-number spacing within their three-mode Fock-state
bases.

We define the code rate of an [[n log2(q),k log2(b),2t +
1]] code to be k log2(b)/n log2(q), which reduces to the
familiar k/n code rate for qubit encoding (b = 2) into
physical qubits (q = 2) [5]. Thus, because the χ (2) PCC
is a [[2 log2(N ), log2(N ),3]] code, its code rate is 1/2
and it corrects single-photon loss or gain errors. The χ (2)

EECC is a [[log2(2N − 1), log2(N ),3]] code, so it too cor-
rects single-photon loss or gain errors, but its code rate,
log2(N )/ log2(2N − 1), is higher than that of the χ (2) PCC
and approaches unity as N grows without bound. The χ (2)

TABLE I. Comparison of the correctable error sets and total number of photons required for our χ (2) QEC codes, all of which encode 1
logical qudit of dimension b into n physical qudits of dimension q.

n q b Correctablea Total photons

χ (2) PCC 2 N N single-photon loss single-photon gain 3(N − 1)
χ (2) EECC 1 (2N − 1) N single-photon loss single-photon gain 3(N − 1)
χ (2) BC 1 2N 2 m-photon loss m-photon gain dephasingb 3(N − 1/2)

aNone of these codes can correct mixtures of their correctable errors.
b(m − 1)th-order dephasing errors. m � N .
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TABLE II. Hardware-efficiency metrics for the GKP code [17], the χ (2) PCC, the χ (2) EECC, and the χ (2) BC when all four encode a single
logical qubit. GEE: Gaussian embedded error. PNR: Photon-number-resolving detection. PNP: Photon-number parity measurement. GPNP:
Generalized photon-number parity measurement [22]. CM: Channel monitoring.

GKP code χ (2) PC χ (2) EECC χ (2) BC
error mechanisms GEE photon loss dephasing errors photon loss dephasing errors photon loss dephasing errors
encoding resources χ (3) linear optics χ (2)a linear optics χ (2) linear optics χ (2)

decoding resources homodyne linear optics χ (2) linear optics χ (2)PNR PNR
error-correction resources ancilla stateb homodynecχ (2) linear optics χ (2) GPNP CM linear optics χ (2) GPNP
encoded universality resources PNP χ (2) feed-forward control linear optics χ (2) linear optics χ (2)

code rate NAd 1/2e 1/ log2(3)f 1/ log2(2N )

aThe GKP code’s χ (2) resources are all pumped χ (2) interactions (see text).
bAncilla state is the equal superposition of the logical computational-basis states, (|0̃〉 + |1̃〉)/√2, whose generation requires an additional
GKP-encoding resource.
cOnly realizes approximate error correction.
dCode rate is not applicable (NA) for infinite-dimensional basis encoding.
eχ (2) PCC’s code rate.
fχ (2) EECC’s code rate.

BC has the lowest code rate, 1/ log2(2N ), of our three codes.
With channel monitoring that identifies m � N , it can correct
m-photon loss or gain errors or (m − 1)th-order dephasing
errors.

Table II compares our hardware-efficiency metrics for the
GKP code [17], the χ (2) PCC, the χ (2) EECC, and the χ (2) BC
when all four encode a single logical qubit. The salient points
of this comparison are as follows.

A. Error mechanisms

Each logical-basis state in the GKP code [17] is encoded into
a superposition of squeezed states. Ideally, these states should
have infinite squeezing, but a practical GKP-code realization
must have finite energy, and hence finite squeezing. Conse-
quently, its logical-bases states are not orthogonal, causing
what are known as Gaussian embedded errors (GEEs). GEEs,
in turn, induce logical errors through the GKP code’s use of
SUM gates. GKP codes are also susceptible to photon-loss and
dephasing errors.

For our χ (2) QEC codes, on the other hand, the dominant
error mechanisms are photon-loss and dephasing errors. Low-
order photon-loss errors do not cause additional logical errors,
which greatly eases the resource burden on error correction for
χ (2) QEC codes.

B. Resources for encoding and decoding

The GKP code’s encoding operation requires χ (2) and χ (3)

interactions plus linear optics. The χ (2) interactions, which
are used to generate squeezing, are not full quantum; i.e.,
they have a strong, nondepleting pump (treated as a classical
resource) and weak (quantum-mechanical) signal and idler
modes.

Our χ (2) QEC codes’ encoding requires only χ (2) inter-
actions and linear optics. Here, however, the principal χ (2)

interactions needed are full quantum; i.e., the signal, idler,
and pump modes are all quantum mechanical. (See Sec. III A
for more information about full-quantum χ (2) interactions.)
Note that our χ (2) codes’ dominant error mechanisms should

be distinguished from their correctable error sets, which were
shown in Table I.

The decoding resources required by the four codes in
Table II are comparable.

C. Resources for error correction

The GKP code realizes approximate error correction us-
ing ancilla states prepared in the equal superposition of the
logical-basis states, homodyne measurements, and pumped
χ (2) interactions. Ancilla preparation requires χ (3) interac-
tions that add to the GKP code’s error-correction resource
burden.

In comparison, the χ (2) PCC and χ (2) EECC perform
exact error correction using full-quantum and pumped χ (2)

interactions, linear optics, and generalized photon-number
parity measurements. We provide the error correction circuits
for qutrit-basis χ (2) PCC and the qubit-basis χ (2) EECC using
just these resources in Appendices A and B, respectively.

The χ (2) BC, on the other hand, requires additional channel
monitoring, which makes it only applicable to architectures in
which it is possible to monitor the total number of photons lost
to the environment. Thus it will not be hardware efficient when
channel monitoring poses a major implementation burden.

D. Resources for encoded universality

The GKP code requires photon-number parity measure-
ments, pumped χ (2) interactions, and feed-forward controls
to implement a universal gate set in its encoded basis. As
shown in [41], conventional χ (2) crystals cannot be pumped
hard enough to get GKP-code gates of fidelity sufficient to
exceed the error-correction threshold.

The universal encoded-basis gate sets for our χ (2) QEC
codes employ full-quantum χ (2) interactions and linear optics;
thus they too are currently precluded by the limited nonlinearity
of conventional χ (2) crystals. However, as noted earlier, new
technologies are emerging [24–32] that may afford the strong
nonlinearity required for full-quantum χ (2) interactions, and
these may also enable the strong squeezing that the GKP code
needs for its universal encoded-basis gate set.
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E. Code rate

The code rates of the χ (2) PCC and the χ (2) EECC that
encode a single logical qubit are constant, whereas the code
rate of the χ (2) BC decreases as its error-correction capability
increases. Because the GKP code encodes in an infinite-
dimensional basis, it is not meaningful to assign it a code rate.
A comparison between these codes’ Shannon-theory capacities
has yet to be obtained, as it requires analysis of their channel
fidelities under the same error model [42,43].

F. Hardware-efficiency summary

Overall, as compared to the GKP code, our χ (2) QEC
codes reduce the amount of physical resources necessary for
the encoding, decoding, error correction, and universal gate
implementations without introducing new error mechanisms.
These resource reductions are natural consequences of our
having customized the χ (2) QEC codes to the underlying
χ (2)-interaction computational hardware.

III. χ (2) QUANTUM ERROR-CORRECTING CODES

We define and present in detail our three hardware-efficient
bosonic quantum error-correction codes in this section, be-
ginning in Sec. III A with a brief elaboration of the hardware
primitives and the full-quantum χ (2) interactions employed.
Our codes are not traditional stabilizer QEC codes; instead,
they rely on a different—but stabilizer-inspired—method of
symmetry operators, which takes advantage of natural sym-
metries available in the physical model. The formalism for
this symmetry-operator method is detailed in Sec. III B. These
foundations then enable us to present, in increasing order
of complexity and capability, the χ (2) parity-check code
(in Sec. III C), the χ (2) embedded error-correcting code (in
Sec. III D), and the χ (2) binomial code (in Sec. III E).

The presentation of each code focuses on the code’s sym-
metry operators, defining the code basis states, explaining what
errors are corrected, and giving the mathematical and physical
rationale for why the errors are detectable and correctable.
Details giving physical procedures, employing full-quantum
χ (2) interactions, for encoding, decoding, detecting errors, and
correcting errors, are deferred to Appendices A and B.

A. Full-quantum χ (2) interactions

Before embarking on QEC code designs for χ (2) quantum
computation, it behooves us to elaborate on the hardware
primitives with which their encoding, decoding, and error-
correction operations and their universal logical-basis gate
sets are implemented. These consist of full-quantum and
pumped χ (2) interactions and linear-optics transformations.
The necessary linear-optics transformations are phase shifters,
dichroic mirrors, and ordinary and polarizing beam splitters.
The pumped χ (2) interactions we need are nondepleting-pump,
frequency-degenerate, type-II phase-matched spontaneous
parametric down-conversion (SPDC), and quantum-state fre-
quency conversion (QFC) [44–46]. Full-quantum χ (2) in-
teractions are the core, however, of our architectures [36]
for multimode Fock basis quantum computation and hence
also for our χ (2) QEC codes. The particular full-quantum

χ (2) interactions we will require are as follows: frequency-
degenerate, type-0 and type-I phase-matched SPDC, in which
a single-photon Fock state at pump frequency ωp = 2ω is
converted into a two-photon Fock state at frequency ω; second-
harmonic generation (SHG), in which a two-photon Fock state
at frequency ω is converted to a single-photon Fock state at
frequency 2ω; and sum-frequency generation (SFG), in which
orthogonally polarized, single-photon Fock states at frequency
ω are converted into a single-photon Fock state at frequency
2ω. More importantly, for this paper’s purposes, the inherent
symmetry properties of full-quantum χ (2) interactions provide
easy routes for embedding a lower-dimensional logical basis
into a higher-dimensional physical basis as discussed later in
this section.

Specifically, the χ (2) Hamiltonians for full-quantum inter-
actions between single-mode signal, idler, and pump fields are
linear combinations of Ĝ1 and Ĝ2 terms given by

Ĝ1 = iκ

2
[â†

s â
†
i âp − âs âi â

†
p], (1)

Ĝ2 = κ

2
[â†

s â
†
i âp + âs âi â

†
p], (2)

with {â†
k : k = s,i,p} being the photon-creation operators of

the signal, idler, and pump, and the real-valued κ being the
interaction strength. For our purposes, the signal and idler
will always be taken to have frequency ω and the pump
will always be assumed to have frequency 2ω, but their
polarizations will depend on what computational primitive
is being implemented; i.e., we may use SPDC with type-0
(copolarized signal, idler, and pump) or type-I (orthogonally
polarized signal and idler, pump copolarized with the idler)
phase matching. The support of the χ (2) Hamiltonian’s ir-
reducible representation is H = ⊕∞

N=0HN , where the direct
sum is over the Hamiltonian’s N -pump-photon irreducible
subspaces, HN ≡ Span{|0,0,N〉,|1,1,N − 1〉, . . . ,|N,N,0〉},
with |ns,ni,np〉 denoting a Fock state having ns photons in
the signal mode, ni photons in the idler mode, and np photons
in the pump mode [36].

B. Symmetry operators

Crucial to our χ (2) QEC codes’ ability to detect and correct
photon-loss and photon-gain errors is the symmetry properties
of each N -pump-photon subspace, HN . Specifically, every
state |ψ〉 = ∑N

n=0 cn|n,n,N − n〉 in HN obeys the following
eigenvalue-eigenstate relations:

(n̂s + n̂p)|ψ〉 = N |ψ〉, (3)

(n̂i + n̂p)|ψ〉 = N |ψ〉, (4)

(n̂s − n̂i)|ψ〉 = 0, (5)

where n̂k ≡ â
†
kâk , for k = s,i,p. Consequently, the photon-

number parity vector,

p ≡ [〈n̂s + n̂i〉,〈n̂s + n̂p〉,〈n̂i + n̂p〉]mod 2 (6)

= [2N,N,N ]mod 2, (7)
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TABLE III. Symmetry operators used for constructing our three χ (2) QEC codes.

χ (2) PCC Ẑ(N)
s�,p�

, Ẑ
(N)
i�,p�

, V̂
(N−1)

1 ⊗ V̂
(N−1)

2 , X̂
(N)
1,2

χ (2) EECC Ẑ(2N−1)
s,p , Ẑ

(2N−1)
i,p , V̂ (2N−2)

χ (2) BC Ẑ(2N)
s,p , Ẑ

(2N)
i,p , �̂sÛBSV̂

(2N−1)Û
†
BS

is constant for any |ψ〉 ∈ HN . Such symmetry derives from
energy conservation within HN .

To establish a deeper understanding of the preceding
symmetry properties, we introduce symmetry operators for
HN . The three-mode Fock-state basis, {|n,n,N − n〉 : 0 �
n � N}, for HN is characterized by these basis states’ invari-
ance under the application of symmetry operators Ẑ(N+1)

s,p =
ei2π/(N+1)Ẑ(N+1)

s ⊗ Ẑ(N+1)
p and Ẑ

(N+1)
i,p = ei2π/(N+1)Ẑ

(N+1)
i ⊗

Ẑ(N+1)
p . Here,

Ẑ
(N+1)
k ≡

N∑
n=0

ei2πn/(N+1)|n〉k k〈n|, (8)

where |n〉k for n = 0,1, . . . ,N is an n-photon Fock state
of mode k, for k = s,i,p. If N + 1 is a prime number,
Ẑ

(N+1)
k is the mode-k Pauli Z operator for the qudit basis

{|0〉k,|1〉k, . . . ,|N〉k}. We, however, do not require N + 1 to
be prime, because our χ (2) QEC codes are not stabilizer
codes [47]. So, we refer to Ẑ(N+1)

s,p and Ẑ
(N+1)
i,p as physical-

subspace symmetry operators inHN . Where unambiguous, we
do employ some stabilizer terminology in our explanations, but
we also make it clear below how our codes are distinct from
traditional stabilizer codes.

In order to redundantly encode a lower-dimensional log-
ical basis into a higher-dimensional physical basis, we need
additional symmetry operators to stabilize the logical state:
within the code’s physical subspace, only the simultaneous
unity-eigenvalue eigenstates of all symmetry operators in the
given set will be selected as logical-basis states.

The χ (2) PCC, which encodes an N -dimensional logical
qudit into two N -dimensional physical qudits, first imposes the
{Ẑ(N)

s�,p�
,Ẑ

(N)
i�,p�

: � = 1,2} symmetries to restrict its code space

to H⊗2
N−1 = H(1)

N−1 ⊗ H(2)
N−1. It then requires two additional

symmetry operators for its construction. The first additional
symmetry operator is the photon-number inversion-symmetry
operator V̂

(N−1)
1 ⊗ V̂

(N−1)
2 , where

V̂
(N−1)
� ≡ V̂ (N−1)

s�
⊗ V̂

(N−1)
i�

⊗ V̂ (N−1)
p�

, (9)

with

V̂
(N−1)
k�

≡
N−1∑
n=0

|N − 1 − n〉k� k�
〈n|, (10)

for k = s,i,p, inverting mode k�’s qudit basis, viz.,

V̂
(N−1)
� |n,n,N − 1 − n〉� = |N − 1 − n,N − 1 − n,n〉�.

(11)

The second additional symmetry operator we need for the χ (2)

PCC is the swap operator X̂
(N)
1,2 . In H⊗2

N−1 it swaps three-mode
basis states between the two subspaces, i.e., for 0 � nk,n

′
k �

N − 1 and k = s,i,p,

X̂
(N)
1,2 |ns,ni,np〉1|n′

s ,n
′
i ,n

′
p〉

2
= |n′

s ,n
′
i ,n

′
p〉

1
|ns,ni,np〉2. (12)

The χ (2) EECC encodes a single logical qudit of dimen-
sion N into a single physical qudit of dimension 2N − 1.
It only requires three symmetry operators for its encoding:
Ẑ(2N−1)

s,p ,Ẑ
(2N−1)
i,p , and V̂ (2N−2). The χ (2) BC encodes a single

logical qubit into a single physical qudit of dimension 2N . It
also requires only three symmetry operators for its encoding:
Ẑ(2N)

s,p ,Ẑ
(2N)
i,p , and �̂sÛBSV̂

(2N−1)Û
†
BS, where ÛBS is a pseudo-

beam-splitter operator, to be described later, that operates on
the physical-qudit subspace H2N−1, and

�̂s ≡
∞∑

n=0

(−1)n|n〉s s〈n| (13)

is the signal mode’s parity operator.
Table III summarizes the symmetry operators used for our

χ (2) QEC codes. All three codes require the Ẑ(M)
s,p and Ẑ

(M)
i,p

operators, for appropriate M values, to stabilize their logical
states to their physical code subspace: H⊗2

N−1 for the χ (2) PCC,
H2N−2 for the χ (2) EECC, and H2N−1 for the χ (2) BC. All
three also require V̂ (M) operators, with appropriate M values,
for photon-number inversion symmetry. However, because it
uses two physical qudits for encoding, the χ (2) PCC also
requires the swap-symmetry operator, X̂

(N)
1,2 , between its two

N -dimensional physical-basis subspaces.
Note that Ẑ

(M)
k is diagonal in the physical qudit ba-

sis {|n,n,M − 1 − n〉k : 0 � n � M − 1}, so it does not
commute with the photon-annihilation operators {âk}, or
with the photon-creation operators {â†

k}. Although V̂
(M)
k

is not diagonal in the {|n,n,M − n〉k : 0 � n � M} ba-
sis, it too fails to commute with the {âk} and the {â†

k}.
Likewise, the X̂

(N)
1,2 operator, which is not diagonal in

the {|n1,n1,N − 1 − n1〉1|n2,n2,N − 1 − n2〉2 : 0 � n1,n2 �
N − 1} basis, also fails to commute with the photon-
annihilation and photon-creation operators. These commuta-
tion failures will lead to the χ (2) PCC and χ (2) EECC’s being
able to correct single-photon loss or gain errors, and the χ (2)

BC’s being able to correct m-photon loss or gain errors or
(m − 1)th-order dephasing errors when m � N is identified
by channel monitoring.

Since the majority of our symmetry operators lie outside
the qudit Pauli group, χ (2) QEC codes are not stabilizer
codes. Similarly to what was shown in Ref. [47], however,
error operators that do not commute with all the symmetry
operators nonetheless can be detected by nondemolition mea-
surements of the symmetry operators with additional ancilla
states. Hence, the error-detection procedures for our χ (2) QEC
codes resemble those for stabilizer codes. Nondemolition
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measurements of the photon-number parities

P̂
(N+1)
j,k ≡

∞∑
nj =0

∞∑
nk=0

(−1)nj +nk |nj 〉j j
〈nj | ⊗ |nk〉k k〈nk|, (14)

where j �= k are indices for different bosonic modes, have
been realized with superconducting-resonator technology [22].
Equations (3)–(5) show that our χ (2) QEC codes obey photon-
number parity symmetry. So, nondemolition measurements of
the {P̂ (M)

j,k } for each code’s appropriate M value will provide a
practical route to error detection.

In general, symmetry properties are not obligatory for
constructing QEC codes [13], but our symmetry-operator
formalism establishes a systematic framework for finding new
QEC codes for available measurement schemes and physical
subspace choices, and it offers a path for extending codes to
arbitrary qudit bases. Indeed, it is that pathway that motivates
our exhibiting the use of symmetry properties to establish high-
dimensional versions of the χ (2) PCC and the χ (2) EECC. But,
because these codes can only correct single-photon loss or gain
errors, their practical utility degrades as their dimensionality
increases with fixed photon-loss and photon-gain probabilities,
which motivates our development of the χ (2) BC. Note that
the binomial symmetry operator in Table III is a nonmonomial
matrix; hence the χ (2) BC’s logical basis states are not stabilizer
states.

Our findings thus call for a more general code-construction
framework that generalizes the Pauli-stabilizer formalism to
a larger class of error-correcting codes constructed by com-
muting monomial matrices and conjugated monomial matrices
with analytically simple expressions for the quantum error-
correction conditions.

C. χ (2) parity-check code

For the χ (2) PCC we draw inspiration from previous
work [13,16,48], and encode one N -dimensional logical qu-
dit into two N -dimensional physical qudits for correcting
single-photon loss or gain errors. The χ (2) PCC thus has
code rate 1/2 regardless of the encoded qudit’s dimen-
sion, and it has minimum encoding overhead because it
saturates the corresponding quantum Hamming bound; see
Sec. V. The resources needed for these functions are full-
quantum and pumped χ (2) interactions, linear optics, and
photon-number parity measurements, implying that there is
a clear route to implementing the χ (2) PCC given nonlinear-
ity sufficient for the full-quantum χ (2) interaction’s second-
harmonic generation (SHG), sum-frequency generation
(SFG), and spontaneous parametric down-conversion (SPDC)
primitives.

To encode an N -dimensional logical qudit into two N -
dimensional physical qudits, we first require that the logical
qudits obey physical-subspace symmetry; i.e., they are unity-
eigenvalue eigenstates of {Ẑ(N)

s�,p�
,Ẑ

(N)
i�,p�

: � = 1,2} and hence lie

inH⊗2
N−1. Next we impose photon-number inversion symmetry,

by requiring the logical-basis states to also be unity-eigenvalue
eigenstates of ⊗2

�=1V̂
(N−1)
� . Finally, we require that the logical-

basis states be invariant under the swap-symmetry operation,
viz., under application of X̂

(N)
1,2 .

As a simple example, we now show how the qutrit-basis
χ (2) PCC is obtained by the preceding procedure. In the qutrit
χ (2) PCC, each logical-qutrit basis state is encoded into two
physical qutrits. Imposing the physical-subspace symmetry
characterized by {Ẑ(3)

s�,p�
,Ẑ

(3)
i�,p�

: � = 1,2} constrains the code
to the subspace spanned by the nine unity-eigenvalue eigen-
states of these operators, {|n1,n1,2 − n1〉1|n2,n2,2 − n2〉2 :
0 � n1,n2 � 2}; i.e., it constrains the code to H⊗2

2 . Enforc-
ing the photon-number inversion symmetry ⊗2

�=1V̂
(N−1)
� then

reduces the symmetry subspace to the five-dimensional space
spanned by

{(|0,0,2〉1|0,0,2〉2 + |2,2,0〉1|2,2,0〉2)/
√

2,

(|2,2,0〉1|0,0,2〉2 + |0,0,2〉1|2,2,0〉2)/
√

2,

|1,1,1〉1|1,1,1〉2,

[(|0,0,2〉1 + |2,2,0〉1)|1,1,1〉2]/
√

2,

[|1,1,1〉1(|0,0,2〉2 + |2,2,0〉2)]/
√

2}.

Imposing the swap symmetry X̂
(N)
1,2 reduces the symmetry

subspace dimension to three, yielding the logical qutrit basis:

|2̃〉 = (|2,2,0〉1|0,0,2〉2 + |0,0,2〉1|2,2,0〉2)/
√

2, (15)

|1̃〉 = (|2,2,0〉1|2,2,0〉2 + |0,0,2〉1|0,0,2〉2)/
√

2, (16)

|0̃〉 = |1,1,1〉1|1,1,1〉2. (17)

It is straightforward to verify that the qubit-basis χ (2) PCC’s
logical-basis states,

|1̃〉 = (|1,1,0〉1|0,0,1〉2 + |0,0,1〉1|1,1,0〉2)/
√

2, (18)

|0̃〉 = (|1,1,0〉1|1,1,0〉2 + |0,0,1〉1|0,0,1〉2)/
√

2, (19)

satisfy the physical-subspace, photon-number inversion, and
swap symmetries.

To show that the χ (s) PCC is capable of correcting single-
photon loss errors, we will test the error-correction condition
for such errors under the assumption that the photon-loss
probability γ is the same for all six modes. (This assumption
entails no loss of generality as the only consequence of
allowing unequal loss probabilities is the appearance of more
complicated expressions in evaluating the error-correction
condition.) To lowest order in γ , the Kraus operators for
single-photon-loss errors are [38]

Ê0 ≈ Î −
6∑

�=1

γ â
†
k�
âk�

/2, (20)

Ê� ≈ √
γ âk�

, 1 � � � 6, (21)

6∑
�=0

Ê
†
�Ê� = Î , (22)

where {âk1 ,âk2 , . . . ,âk6} ≡ {âs1 ,âi1 ,âp1 ,âs2 ,âi2 ,âp2}, and Î is
the identity operator. The error-correction condition [40] for
the single-photon-loss errors associated with {Ê0,Ê1, . . . ,Ê6}
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is

〈ã|Ê†
hÊj |b̃〉 = αhj δab, for 0 � h,j � 6, (23)

where δab is the Kronecker delta function, |ã〉,|b̃〉 are arbi-
trary logical-basis states, and the matrix elements {αhj } are
independent of the ã and b̃ values. Equation (23) guarantees
that no single-photon-loss error distorts the code subspace; thus
all of them are correctable.

For the qubit-encoded χ (2) PCC from Eqs. (18) and (19),
we find that Eq. (23) holds with

α00 = 〈ã|
(

Î −
6∑

�=1

γ â
†
k�
âk�

)
|ã〉 = 1 − 3γ, (24)

αhh = 〈ã|γ â
†
kh

âkh
|ã〉 = γ /2, 1 � h � 6, (25)

αhj = 0, for h �= j. (26)

Similarly, the qutrit-encoded χ (2) PCC from Eqs. (15)–(17)
obeys Eq. (23) with

α00 = 〈ã|
(

Î −
6∑

�=1

γ â
†
k�
âk�

)
|ã〉 = 1 − 6γ, (27)

αhh = 〈ã|γ â
†
kh

âkh
|ã〉 = γ, 1 � h � 6, (28)

αhj = 0, for h �= j. (29)

The preceding encodings both satisfy the error-correction
condition because in each code the average photon number
is the same for each of that code’s six bosonic modes.

The qubit and qutrit χ (2) PCC’s also correct single-photon
gain errors. Specifically, using the photon-creation operators
{â†

kh
} in lieu of the photon-loss Kraus operators {Êh}, we

satisfy the following error-correction conditions for photon-
gain errors:

〈ã|âkh
â
†
kj

|b̃〉 = δhj δab, for a,b = 0,1 and 1 � h,j � 6,

for the qubit case; and

〈ã|âkh
â
†
kj

|b̃〉 = 2δhj δab, for a,b = 0,1,2 and 1 � h,j � 6,

for the qutrit case.
At this juncture we can sketch how the photon-number

parity symmetry of each N -pump-photon subspace enables
the χ (2) PCC of dimension N + 1 to detect single-photon (loss
or gain) errors. Let |ã〉 be an arbitrary logical basis state of
a χ (2) PCC, and n̂k�

≡ â
†
k�
âk�

be the photon-number operator
associated with the âk�

mode. We know that the photon-number
parity vector,

p12 ≡ [〈
n̂s1 + n̂i1

〉
,
〈
n̂s1 + n̂p1

〉
,
〈
n̂i1 + n̂p1

〉
,〈

n̂s2 + n̂i2

〉
,
〈
n̂s2 + n̂p2

〉
,
〈
n̂i2 + n̂p2

〉]
mod 2, (30)

will satisfy

p12 = [2N,N,N,2N,N,N ]mod 2 (31)

for all logical-basis states. Assuming that loss of a single
photon is the only error that has occurred, then, as shown in
Appendix A, a nondemolition measurement of p12 [22] yields
a syndrome that identifies the mode which has lost a photon.

If, however, the loss or gain of a single photon is the only error
that has occurred, then measurement of p12 and the generalized
photon-number parity vector,

q12 ≡ [〈
n̂s1 + n̂p1

〉
,
〈
n̂i1 + n̂p1

〉
,〈

n̂s2 + n̂p2

〉
,
〈
n̂i2 + n̂p2

〉]
mod 3, (32)

provides syndromes that identify which mode has suffered
an error and whether that mode lost or gained a photon. See
Appendix A for the details.

Thus far we have limited our attention to the qubit and
qutrit χ (2) PCCs. To encode an N -dimensional logical qu-
dit in a χ (2) PCC to protect against single-photon loss or
gain errors, we employ the N -dimensional physical-subspace
symmetry operators {Ẑ(N)

s�,p�
,Ẑ

(N)
i�,p�

: � = 1,2} together with the

photon-number inversion-symmetry operator ⊗2
�=1V̂

(N−1)
� and

the swap operator X̂
(N)
1,2 . For N = 2m an even integer, this

procedure yields the following logical-qudit basis states in
terms of the three-mode physical-qudit basis states:

|0̃〉 = (|m,m,m − 1〉1|m − 1,m − 1,m〉2

+ |m − 1,m − 1,m〉1|m,m,m − 1〉2)/
√

2, (33)

|1̃〉 = (|m,m,m − 1〉1|m,m,m − 1〉2

+ |m − 1,m − 1,m〉1|m − 1,m − 1,m〉2)/
√

2,

(34)

|2̃〉 = (|m + 1,m + 1,m − 2〉1|m − 2,m − 2,m + 1〉2

+ |m − 2,m − 2,m + 1〉1|m + 1,m + 1,m − 2〉2)/
√

2,

(35)

|3̃〉 = (|m + 1,m + 1,m − 2〉1|m + 1,m + 1,m − 2〉2

+ |m − 2,m − 2,m + 1〉1|m − 2,m − 2,m + 1〉2)/
√

2,

(36)

...
|˜N − 2〉 = (|2m − 1,2m − 1,0〉1|0,0,2m − 1〉2

+ |0,0,2m − 1〉1|2m − 1,2m − 1,0〉2)/
√

2,

(37)

|˜N − 1〉 = (|2m − 1,2m − 1,0〉1|2m − 1,2m − 1,0〉2

+ |0,0,2m − 1〉1|0,0,2m − 1〉2)/
√

2. (38)

For N = 2m + 1 an odd integer, the same approach leads to
the encoding

|0̃〉 = |m,m,m〉1|m,m,m〉2, (39)

|1̃〉 = (|m + 1,m + 1,m − 1〉1|m + 1,m + 1,m − 1〉2

+ |m − 1,m − 1,m + 1〉1|m − 1,m − 1,m + 1〉2)/
√

2,

(40)

|2̃〉 = (|m + 1,m + 1,m − 1〉1|m − 1,m − 1,m + 1〉2

+ |m − 1,m − 1,m + 1〉1|m + 1,m + 1,m − 1〉2)/
√

2,

(41)
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...

|˜N − 2〉 = (|2m,2m,0〉1|2m,2m,0〉2

+ |0,0,2m〉1|0,0,2m〉2)/
√

2, (42)

|˜N − 1〉 = (|2m,2m,0〉1|0,0,2m〉2

+ |0,0,2m〉1|2m,2m,0〉2)/
√

2. (43)

On average, the χ (2) PCC uses 3(N − 1) photons to encode
each N -dimensional logical qudit into two N -dimensional
physical qudits for protection against single-photon loss or gain
errors.

D. χ (2) embedded error-correcting code

The χ (2) EECC encodes a single logical qudit of dimension
N into a single physical qudit of dimension 2N − 1 for protec-
tion against single-photon loss or gain errors. Its basis states
for N -dimensional logical qudits are the simultaneous unity-
eigenvalue eigenstates of Ẑ(2N−1)

s,p , Ẑ
(2N−1)
i,p , and ⊗2

�=1V̂
(2N−2)
� ;

i.e., they lie in H2N−2 and obey photon-number inversion
symmetry. Consider the N = 2 case, in which a logical qubit is
encoded into a physical qutrit. Letting |ψ〉 = ∑2

n=0 vn|n,n,2 −
n〉 be an arbitrary state in H2, we have that V̂ (2)|ψ〉 = |ψ ′〉,
where |ψ ′〉 = ∑2

n=0 v′
n|n,n,2 − n〉 with⎡

⎣v′
0

v′
1

v′
2

⎤
⎦ =

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦

⎡
⎣v0

v1

v2

⎤
⎦. (44)

Simple linear algebra then gives this relation’s only unity-
eigenvalue eigenstates,

|0̃〉 = (|2,2,0〉 + |0,0,2〉)/
√

2, (45)

|1̃〉 = |1,1,1〉, (46)

which are thus the logical-basis states for the qubit χ (2) EECC.
As is the case for the NOON code and other bosonic

codes [16,38], our qubit χ (2) EECC’s encoding ensures that all
three of its modes have the same average photon number. The
principal difference from previous bosonic codes is that the
physical-basis states used here span the irreducible subspace
of the χ (2) Hamiltonian used for universal gate constructions.
This property greatly simplifies the error-correction procedure
and universal transformations in the encoded basis, as will be
seen in Appendix B.

Paralleling our development for the qutrit χ (2) PCC, we have
that, to lowest order in the photon-loss probability γ , the qubit
χ (2) EECC’s Kraus operators for photon-loss errors are

Ê0 ≈ Î −
3∑

�=1

γ â
†
k�
âk�

/2, (47)

Ê� ≈ √
γ âk�

, 1 � � � 3, (48)

3∑
�=0

Ê
†
�Ê� = Î , (49)

where {âk1 ,âk2 ,âk3} ≡ {âs ,âi ,âp}. The resulting quantum error-
correction condition [40] is therefore

〈ã|Ê†
hÊj |b̃〉 = αhj δab, for 0 � h,j � 3, (50)

where |ã〉, |b̃〉 are arbitrary logical-basis states and the {αhj } are
independent of the ã and b̃ values. For our qubit χ (2) EECC’s
logical-basis states, we find that Eq. (50) is satisfied, because
direct evaluation leads to

α00 = 〈ã|
(

Î −
3∑

�=1

γ â
†
k�
âk�

)
|ã〉 = 1 − 3γ, (51)

αhh = 〈ã|γ â
†
kh

âkh
|ã〉 = γ, 1 � h � 3, (52)

αhj = 0, for h �= j. (53)

Equations (45) and (46) obey the code-space nondistortion
conditions, Eqs. (51)–(53), because the average photon number
in all three modes of each logical-basis state is identical. Our
qubit χ (2) EECC also obeys the error-correction condition for
single-photon-gain errors,

〈ã|âkh
â
†
kj

|b̃〉 = 2δhj δab. (54)

Because its logical-basis states lie in H2, our qubit χ (2)

EECC’s photon-number parity vector, p from Eq. (6), is con-
stant, p = [0,0,0], for all states in the code space. Assuming
that loss of a single photon is the only error that has occurred,
then, as shown in Appendix B, a nondemolition measurement
of p [22] yields a syndrome that uniquely identifies the mode
which has lost a photon. If, however, the loss or gain of a single
photon is the only error that has occurred, then measurement
of p and the generalized photon-number parity vector,

qEECC ≡ [〈n̂s + n̂p〉,〈n̂i + n̂p〉]mod 3, (55)

provides syndromes that identify which mode has suffered an
error and whether that mode lost or gained a photon. Details
of the qubit χ (2) EECC’s error detection and error correction
appear in Appendix B.

The χ (2) EECC’s logical-basis states for encoding an N -
dimensional logical qudit into a physical qudit of 2N − 1
dimensions—found by applying the physical subspace and
photon-number inversion symmetries—are easily shown to be

|0̃〉 = (|2N − 2,2N − 2,0〉 + |0,0,2N − 2〉)/
√

2, (56)

|1̃〉 = (|2N − 3,2N − 3,1〉 + |1,1,2N − 3〉/
√

2, (57)

...

|˜N − 1〉 = |N − 1,N − 1,N − 1〉. (58)

Once again, each optical mode’s having the same average
photon number across all logical-basis states ensures that
the error-correction condition for single-photon loss or gain
errors are obeyed. This encoding uses a total of 3(N − 1)
photons.

E. χ (2) binomial code

Inspired by previous work [13,35,38], our χ (2) BC encodes
a logical qubit into a 2N -dimensional physical qudit. First,
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we enforce the physical-subspace symmetry characterized
by {Ẑ(2N)

s,p ,Ẑ
(2N)
i,p } to restrict the logical-basis states to the

physical-qudit subspace H2N−1. Next, to leverage binomial
symmetry that will protect the code subspace from distortion
by photon loss or gain errors, we introduce the symmetry de-
scribed by conjugating the photon-number inversion operator
V̂ (2N−1),with the pseudo-beam-splitter operator ÛBS given by

ÛBS ≡ |0̃〉〈+| + |1̃〉〈−| +
2N−2∑
j=1

|j̃〉〈j,j,2N − 1 − j |, (59)

where {|j̃〉 : 0 � j � 2N − 1} is an orthonormal basis for
H2N−1,

|±〉 ≡ (|0,0,2N − 1〉 ± |2N − 1,2N − 1,0〉)/
√

2, (60)

and

|0̃〉 ≡
N−1∑
j=0

√(
2N − 1

2j

) |2j,2j,2N − 1 − 2j 〉
2N−1

, (61)

|1̃〉 ≡
N−1∑
j=0

√(
2N − 1

2j + 1

) |2j + 1,2j + 1,2(N − 1 − j )〉
2N−1

(62)

will soon be seen to be the χ (2) BC’s logical basis.
Recall that the χ (2) BC’s logical-basis states are the si-

multaneous unity-eigenvalue eigenstates of Ẑ(2N)
s,p ,Ẑ

(2N)
i,p , and

�̂sÛBSV̂
(2N−1)Û

†
BS. The simultaneous unity-eigenvalue eigen-

states of Ẑ(2N)
s,p and Ẑ

(2N)
i,p comprise H2N−1, so we only

need concern ourselves with finding the unity-eigenvalue
eigenstates of �̂sÛBSV̂

(2N−1)Û
†
BS. Because 2N − 1 is an odd

number, |+〉,|−〉 are V̂ (2N−1)’s only two eigenstates and their
eigenvalues are 1 and −1, respectively. To show that |0̃〉,|1̃〉
from Eqs. (61) and (62) are the χ (2) BC’s logical-basis states
we first note that these states both lie in H2N−1. Then we use
our definition of ÛBS to write

�̂sÛBSV̂
(2N−1)Û

†
BS|0̃〉 = �̂sÛBSV̂

(2N−1)Û
†
BSÛBS|+〉

(63)

= �̂sÛBSV̂
(2N−1)|+〉 = �̂sÛBS|+〉 (64)

= �̂s |0̃〉 = |0̃〉, (65)

which proves that |0̃〉 is a χ (2) BC logical-basis state. A similar
calculation for |1̃〉,

�̂sÛBSV̂
(2N−1)Û

†
BS|1̃〉 = �̂sÛBSV̂

(2N−1)Û
†
BSÛBS|−〉

(66)

= �̂sÛBSV̂
(2N−1)|−〉 = −�̂sÛBS|−〉 (67)

= −�̂s |1̃〉 = |1̃〉, (68)

proves that it is the χ (2) BC’s other logical-basis state.
With the logical-basis states in hand, we can proceed to the

error-correction conditions. The Kraus operator for there being
h photons lost from the signal mode, g photons lost from the

idler mode, and � photons lost from the pump mode is âh
s â

g

i â�
p.

Likewise, the Kraus operator for there being h photons gained
by the signal mode, g photons gained by the idler mode, and �

photons gained by the pump mode is â
†h
s â

†g
i â

†�
p . Dephasing on

mode k = s,i,p caused by δt-duration dispersive propagation
with dephasing rate φ̇ can be represented by the unitary
operator

Ûk(δt) = e−iδt φ̇ n̂k ≈ Îk − iδt φ̇ n̂k − (δt φ̇ n̂k)2/2 + · · · ,

(69)

where the Taylor-series expansion shows that mth-order
dephasing on mode k has error operator n̂m

k ; hence n̂h
s n̂

g

i n̂
�
p

is the error operator for hth-order dephasing of the signal
mode, gth-order dephasing of the idler mode, and �th-order
dephasing of the pump mode.

Suppose we are given channel-monitoring information
indicating that an error of degree m has occurred, i.e.,
m photons have been lost, or m photons have been
gained, or (m − 1)th-order dephasing has occurred, but
there was no combination of photon-loss, photon-gain, or
dephasing errors. The relevant error-operator set is then
ξm = {âh

s â
g

i â�
p,â

†h
s â

†g
i â

†�
p ,n̂h′

s n̂
g′
i n̂�′

p : h,g,� � 0,h + g + � =
m,h′,g′,�′ � 0,h′ + g′ + �′ = m − 1}. Using {Ê(m)

u } as
shorthand for the error operators in ξm, the Knill-Laflamme
condition for all of these errors to be correctable is thus〈

ã
∣∣Ê(m)†

u Ê(m)
v

∣∣b̃〉 = αuuδabδuv, (70)

for a,b = 0,1 and all Ê(m)
u ,Ê(m)

v in ξm.
To verify that χ (2) BC satisfies the preceding error-

correction condition, let us start with the simplest case, the
N = 2 code in which each logical qubit is encoded as

|0̃〉 = (|0,0,3〉 +
√

3 |2,2,1〉)/2, (71)

|1̃〉 = (|3,3,0〉 +
√

3 |1,1,2〉)/2. (72)

It is straightforward to verify that the N = 2 encoding satisfies
the error correction condition given in Eq. (70) against the
following error sets:

ξ0 = {Î }, (73)

ξ1 = {âs ,âi ,âp,â†
s ,â

†
i ,â

†
p}, (74)

ξ2 = {
âs âi ,âs âp,âi âp,â†

s â
†
i ,â

†
s â

†
p,â

†
i â

†
p,

â2
s ,â

2
i ,â

2
p,â†2

s ,â
†2
i ,â†2

p ,n̂s,n̂i ,n̂p

}
. (75)

Note that the annihilation-operator elements in ξ2 correspond
to discrete photon-number jumps [38,39] that are not the
Kraus operators commonly used for the amplitude-damping
channel. As shown in Ref. [38], however, correction of such
discrete errors can nevertheless handle the amplitude-damping
channel’s lowest-order errors.

The χ (2) BC with N = 3 corrects up to three-photon-loss
errors, three-photon-gain errors, and second-order dephasing
errors. Its logical qubits are

|0̃〉 = (|0,0,5〉 +
√

10 |2,2,3〉 +
√

5 |4,4,1〉)/4, (76)

|1̃〉 = (|5,5,0〉 +
√

10 |3,3,2〉 +
√

5 |1,1,4〉)/4. (77)
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In addition to satisfying the error-correction conditions for
{ξm : 0 � m � 2}, this encoding satisfies that condition for

ξ3 = {
âs âi âp,â†

s â
†
i â

†
p,â2

s âi ,â
2
s âp,âs â

2
i ,âs â

2
p,â2

i âp,âi â
2
p,

â†2
s â

†
i ,â

†2
s â†

p,â†
s â

†2
i ,â†

s â
†2
p ,â

†2
i â†

p,â
†
i â

†2
p ,â3

s ,â
3
i ,â

3
p,

â†3
s ,â

†3
i ,â†3

p ,n̂s n̂i ,n̂s n̂p,n̂i n̂p,n̂2
s ,n̂

2
i ,n̂

2
p

}
. (78)

In general, the χ (2) BC on H2N−1 protects a logical qubit
against errors in {ξm : 1 � m � N}, by means of the encoding
from Eqs. (61) and (62).

Let us now verify that the χ (2) BC’s encoding, Eqs. (61)
and (62), satisfies the error-correction conditions for {ξm :
0 � m � N}, starting with the orthogonality condition. Or-
thogonality here means that any correctable error applied to
the logical-basis states |0̃〉 and |1̃〉 will result in orthogonal
states. For photon-loss or photon-gain errors, orthogonality is
satisfied by the χ (2) BC because the photon-number parities of
the signal, idler, and pump modes in its |0̃〉 state are opposite
those of its |1̃〉 state. Consequently, photon-loss or photon-gain

errors of order m � N do not disturb orthogonality, because
any such error’s modal-parity flips are the same for |0̃〉 and |1̃〉.

The χ (2) BC’s encoding also leads to orthogonality between
the error syndromes—obtained from photon-number parity
measurements—for photon-loss and photon-gain errors. For
such an error to transform one physical-basis state to another
requires pump-mode photon losses (gains) to be matched by
identical gains (losses) in the signal and idler modes. As a
result, photon-loss or photon-gain errors of order m acting
on a logical-basis state lead to orthogonal error syndromes.
Note, however, that the error syndromes for different dephasing
errors are not orthogonal. But, because all dephasing errors can
be corrected by projecting the state onto the code subspace
[38], orthogonality is not required for dephasing errors to be
correctable.

Now let us turn to verifying the nondistortion condition in
Eq. (70) for the mth-order (m � N ) photon-loss error, repre-
sented by the error operator Êu ≡ âh

s â
g

i â
m−g−h
p . Without loss

of generality we will assume g � h, owing to the symmetry
between signal and idler modes. Using this error operator,
together with Eqs. (61) and (62), in Eq. (70) we get

〈0̃|Ê†
uÊu|0̃〉 = 〈0̃|

h−1∏
�1=0

(n̂s − �1)
g−1∏
�2=0

(n̂i − �2)
m−h−g−1∏

�3=0

(n̂p − �3)|0̃〉

= 1

22N−2


N− m−g−h+1
2 �∑

j=� g

2 �

(
2N − 1

2j

) h−1∏
�1=0

(2j − �1)
g−1∏
�2=0

(2j − �2)
m−g−h−1∏

�3=0

(2N − 2j − 1 − �3)

= 1

22N−2


N− m−g−h+1
2 �∑

j=� g

2 �

(2N − 1)!(2j )!

(2j − h)!(2j − g)!(2N − 2j − 1 − m + h + g)!
, (79)

〈1̃|Ê†
uÊu|1̃〉 = 〈1̃|

h−1∏
�1=0

(n̂s − �1)
g−1∏
�2=0

(n̂i − �2)
m−h−g−1∏

�3=0

(n̂p − �3)|1̃〉

= 1

22N−2


N− g+1
2 �∑

j ′=� m−h−g

2 �

(
2N − 1

2j

) h−1∏
�1=0

(2N − 2j ′ − 1 − �1)
g−1∏
�2=0

(2N − 2j ′ − 1 − �2)
m−g−h−1∏

�3=0

(2j ′ − �3),

= 1

22N−2


N− g+1
2 �∑

j ′=� m−h−g

2 �

(2N − 1)!(2N − 2j ′ − 1)!

(2N − 2j ′ − 1 − h)!(2N − 2j ′ − 1 − g)!(2j ′ − m + h + g)!
. (80)

Under the change of variable j = (N − 1)/2 − j ′, it is
straightforward to see that the right-hand sides of Eqs. (79)
and (80) are equal. Because this result applies for all m � N ,
and because we have already shown orthogonality, we have that
the encoding in Eqs. (61) and (62) satisfies the error-correction
condition for m � N photon-loss errors.

Given channel-monitoring information indicating that an
mth-order photon-loss error has occurred, we can identify the
exact type of that error by measuring the photon-number parity
vector [12]

pBC ≡ [〈n̂s − n̂i〉,〈n̂s + n̂p〉,〈n̂i + n̂p〉]mod(2N − 1). (81)

If, however, that monitoring does not distinguish
between photon-loss and photon-gain errors, then we
also need to measure the generalized photon-number
parity,

qBC ≡ [〈n̂s + n̂i + n̂p〉]mod (6N − 3), (82)

to know whether the mth-order error that occurred was a loss
error or a gain error. Assuming it was an mth-order (m � N )
photon-loss error, the number of configurations for distributing
the loss of m photons across the signal, idler, and pump modes
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is
m∑

h=0

m−h∑
g=0

1 = (m + 2)(m + 1)

2
� (N + 2)(N + 1)

2
. (83)

ForN � 2, this number of configurations is less than the (2N −
1)3 possible parity vectors pBC. Thus, for m � N our parity-
measurement scheme uniquely identifies the photon-loss error
that has occurred from the error set ξm.

Now consider the mth-order (m � N ) photon-gain er-
ror, represented by the error operator Êu ≡ â

†h
s â

†g
i â

†m−g−h
p .

Because any error-correcting code that satisfies the error-
correction condition against photon-loss errors will also satisfy
the same condition against photon-gain errors under normal or-
dering, our χ (2) code is thus also capable of correcting photon-
gain errors. Moreover, given channel-monitoring information
indicating that an mth-order photon-gain error has occurred,
the exact type of that error is revealed by measuring the
photon-number parity vector pBC. If, however, that monitoring
does not distinguish between photon-gain and photon-loss
errors, then, as was the case earlier, we also need to measure
the generalized photon-number parity, qBC, to know whether
the mth-order error that occurred was a gain error or a loss
error.

Finally, we demonstrate the error-correction condition for
any mth-order (m + 1 � N ) dephasing error n̂h

s n̂
g

i n̂
m−g−h
p . We

have that

〈0̃|n̂2h
s n̂

2g

i n̂2(m−g−h)
p |0̃〉 = 1

22N−2

N−1∑
j=0

(
2N − 1

2j

)

× (2j )2(g+h)(2N − 2j − 1)2(m−g−h),

(84)

〈1̃|n̂2h
s n̂

2g

i n̂2(m−g−h)
p |1̃〉 = 1

22N−2

N−1∑
j ′=0

(
2N − 1

2N − 2j ′ − 1

)

× (2j ′ − 1)2(g+h)(2j ′)2(m−g−h).

(85)

Making the change of variable j = (N − 1)/2 − j ′ shows that
Eqs. (84) and (85) agree; thus the error-correction condition is
satisfied. The encoding, decoding, error-correction, and uni-
versal logical-basis gate sets for the χ (2) BC are all realizable
with linear optics and χ (2) Hamiltonian evolutions, but their
detailed construction is beyond the scope of the current work.

Now let us return to the issue—raised briefly earlier—of the
χ (2) BC’s behavior with respect to the exact Kraus operators
for the amplitude-damping channel’s m-photon-loss error on
the �th bosonic mode. These Kraus operators are [9]

Â�(m) =
√

γ m

m!
(1 − γ )â

†
� â�/2âm

� (86)

=
∞∑

n=m

√(
n

m

)√
γ m

√
(1 − γ )n−m |n − m〉〈n|, (87)

and they satisfy
∑∞

m=0 Â
†
�(m)Â�(m) = Î�. The factor of (1 −

γ )â
†
� â�/2 in Â�(m) implies that all bosonic modes must share a

common photon-number sum if m-photon-loss errors are to be
correctable, and our χ (2) BC’s encoding, Eqs. (61) and (62),
fails to obey this condition.

To circumvent the preceding difficulty with the amplitude-
damping channel, we generalize our three-mode encoding to
the following two-mode encoding:

|0̃′〉 = 1

2N−1

N∑
j=1

√(
2N − 1

2j − 1

)
|2j,2N − 2j − 1〉, (88)

|1̃′〉 = 1

2N−1

N−1∑
j=0

√(
2N − 1

2j

)
|2N − 2j − 1,2j 〉, (89)

whose physical-basis states are {|ns,np〉 : 0 � ns,np; ns +
np = 2N − 1} with |ns,np〉 denoting a Fock state containing
ns signal photons and np pump photons. These physical-basis
states no longer lie in an irreducible subspace of the χ (2)

Hamiltonian; hence they cannot be prepared with just linear
optics and χ (2) Hamiltonian evolutions as is the case for
our other χ (2) QEC codes. They are stabilized instead by
the symmetry operators Ẑ

(2N+1)
1,2 and �̂s

ˆ̃UBS
ˆ̃V (2N) ˆ̃U ′†

BS , where
ˆ̃V (2N) and ˆ̃UBS and are two-mode generalizations of Eqs. (9)

and (59) obtained by treating signal and idler as a single mode.
The preceding two-mode encoding can be straightforwardly

prepared by sending a NOON state through a beam splitter [35].
This encoding obeys the error-correction condition

〈ã|Ê†
h(m−h)(m)Ê†

g(g−h)(m)|b̃〉 = αhhδabδhg (90)

for a,b = 0,1, 0 � h,g � m, and m � N , where Êhk(m) ≡
Âs(h)Âp(m − h). So, given channel monitoring that identifies
the occurrence of an mth-order (m � N ) photon-loss error
produced by the amplitude-damping channel, the two-mode
encoding in Eqs. (88) and (89) can correct that error. This
capability derives from the photon-number sum of the signal
and idler modes being the same for the two logical-basis states.

Compared to the binomial code proposed in Ref. [38],
our encodings in Eqs. (61), (62) and Eqs. (88), (89) have a
constant photon-number spacing in their physical-basis states,
instead of the linearly growing photon-number spacing in
Ref. [38]. Also, we require only a constant number of bosonic
modes to correct N th-order photon-loss errors, instead of
the O(N ) bosonic modes used by the NOON code for this
purpose [35]. As a result, our binomial codes need on average
3(N − 1/2) photons to encode a logical qubit in a manner
capable of correcting N th-order photon-loss errors, whereas
O(N2) photons are required for other QEC codes that have
this error-correction power [9,14,16,35,38,39]. This advantage
arises because our encodings are designed to work with channel
monitoring that identifies the error order, while codes that use
many more photons handle all m � N orders without any such
monitoring.

The physical fault tolerance of our χ (2) QEC codes is
based on the low likelihood of the environment inducing a
χ (2)-Hamiltonian evolution, something that is necessary to
create a logical error. That said, we have yet to consider
over/under-rotation errors in the gate implementation itself.
Thus a full treatment of our χ (2) QEC codes’ fault tolerance
remains to be supplied.
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IV. UNIVERSAL GATE SETS IN THE ENCODED BASIS

Our bosonic codes attain their hardware efficiency by virtue
of acting within a carefully crafted subspace, with well-defined
symmetry properties. A notable cost of employing such protec-
tive symmetries is a substantial rise in the number of primitive
operations needed to realize logical gates on the encoded
states for quantum computation. Moreover, the full-quantum
χ (2) interaction Hamiltonian by itself is clearly not universal
on all bosonic quantum states, at the least because of its
symmetries. Thus, it is important to consider the following:
how universal quantum computation can be achieved, in
principle, on encoded states of our χ (2) QEC codes; what the
implementation cost is to realize basic logical-gate primitives
such as the controlled-NOT operation; and what interaction
and control Hamiltonians are needed to attain universality.

Below, in this section, we construct and elaborate on
universal gate sets for the qutrit χ (2) PCC (in Sec. IV A) and the
qubit χ (2) EECC (in Sec. IV B). We find that it is sufficient to
solely employ full-quantum χ (2) interactions and linear optics
(e.g., phase shifters and beam splitters). And although these
constructions are not fault-tolerant, our explicit circuits give
practical lower bounds on the complexity required for logical
operations on the encoded states.

A. Qutrit χ (2) parity-check code

The qutrit χ (2) PCC, defined in Eqs. (15)–(17), encodes each
logical qutrit into two physical qutrits. Since χ (2) interactions
and linear optics are sufficient for universal computation in the
physical-qutrit basis [36], they are also universal in the logical
qutrit basis supported in the two-qutrit subspace:

H⊗2
2 = Span{|0,0,2〉1|0,0,2〉2,|0,0,2〉1|1,1,1〉2,

|0,0,2〉1|2,2,0〉2, . . . ,|2,2,0〉1|0,0,2〉2,

|2,2,0〉1|1,1,1〉2,|2,2,0〉1|2,2,0〉2}. (91)

We specify the detailed construction of the CZ gate below using
a quantum Fredkin gate defined as

F̂ = (|0,0,2〉1 1〈0,0,2| + |1,1,1〉1 1〈1,1,1|) ⊗ Î2

+ |2,2,0〉1 1〈2,2,0| ⊗ (|2,2,0〉2 2〈0,0,2|
+ |0,0,2〉2 2〈2,2,0|),

(92)

which realizes a controlled swap between the |0,0,2〉2 and
|2,2,0〉2 states conditioned on the first qutrit being in the state
|2,2,0〉1. In the encoded basis, Eqs. (15)–(17), the CZ gate can
now be realized as follows. First, apply the quantum Fredkin
gate from Eq. (92) separately to the encoded control and target
states to transform each of their logical-qutrit basis states into

|2̃′〉 = (|2,2,0〉1 + |0,0,2〉1)|2,2,0〉2/
√

2, (93)

|1̃′〉 = (|2,2,0〉1 + |0,0,2〉1)|0,0,2〉2/
√

2, (94)

|0̃′〉 = |1,1,1〉1|1,1,1〉2. (95)

Next, because the logical-basis states’ second qutrits are in
the computational basis, we apply a physical-basis CZ gate
to the second qutrit of the control and target’s encoded states.

Finally we apply the adjoint of the quantum Fredkin gate from
Eq. (92) separately to the control and target states to return
their logical-qutrit basis states to those from Eqs. (15)–(17).
The overall operation then realizes CZc,t , the CZ gate between
the control and target qutrit’s logical-basis states, as follows:

CZc,t = (F̂c ⊗ F̂t )
†CZ2,2(F̂c ⊗ F̂t ), (96)

where F̂k denotes the Eq. (92) gate applied to the control (k =
c) or target (k = t) states, and CZ2,2 denotes the CZ gate in the
qutrit basis between the second physical qutrit of the control
and target’s encoded states.

B. Qubit χ (2) embedded error-correcting code

Using only χ (2) interactions and linear optics, we now show
how to construct the strictly universal gate set for the qubit
χ (2) EECC’s logical-basis states that consists of the controlled
phase gate �(S) and the Hadamard gate Ĥ . First we introduce
the X̂P gate, which rotates the logical-basis state in Eq. (45)
back to a three-mode Fock state while leaving the three-mode
Fock state in Eq. (46) unchanged:

X̂P = |2,2,0〉〈0̃| + |1,1,1〉〈1̃|
+ |0,0,2〉(〈0,0,2| − 〈2,2,0|)/

√
2. (97)

The X̂P gate is realizable with χ (2) interactions (see
Appendix B), and it serves as a computational primitive
for implementing the qubit χ (2) EECC’s �(S) gate and its
Hadamard gate, as well as its encoding and error-correction
operations, as explained in Appendix B.

The Hadamard gate in the encoded qubit basis corresponds
to the transformation

Ĥ = [(|2,2,0〉 + |0,0,2〉)/2 + |1,1,1〉/
√

2]〈0̃|
+ [(|2,2,0〉 + |0,0,2〉)/2 − |1,1,1〉/

√
2]〈1̃|

+ (|0,0,2〉 − |2,2,0〉)(〈0,0,2| − 〈2,2,0|)/2. (98)

Using the X̂P gate and its inverse, we can rewrite the Hadamard
gate as Ĥ = X̂−1

P Ĥ ′X̂P , where

Ĥ ′|1,1,1〉 = (|2,2,0〉 − |1,1,1〉)〈1,1,1|/
√

2 + (|2,2,0〉
+ |1,1,1〉)〈2,2,0|/

√
2 + |0,0,2〉〈0,0,2|

(99)

is the Hadamard gate in the {|2,2,0〉,|1,1,1〉} qubit basis. We
show in Appendix B that Ĥ ′ can also be implemented with just
χ (2) interactions.

To complete the universal gate set in the logical basis,
we can implement the controlled phase gate �(S) with the
optical circuit shown in Fig. 1, in which |φ〉c and |φ〉t represent
the control and target qubit’s logical-basis states [49]. In this
circuit, the initial X̂P gates rotate those logical qubits’ bases
back to Fock states. Then the first set of DM2 dichroic mirrors
direct the pump-mode photons into the first beam splitter (BS),
while leaving the signal and idler photons propagating on their
original rails toward the second set of DM2 dichroic mirrors.
If and only if the control and target qubits are in their |1̃〉 states
does Hong-Ou-Mandel interference occur at the first BS block.
When that interference occurs, illumination of a subsequent
SHG block by a frequency-ωp two-photon Fock state—if
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FIG. 1. �(S) gate implementation for the qubit χ (2) EECC in
the logical basis. |φC〉 and |φS〉: Control and target qubits. DM2,
DM1: Dichroic mirrors. BS: Beam splitters. SHG: Second-harmonic
generation. π/2: Quarter-wave phase shifter. SPDC: Type-I phase-
matched spontaneous parametric down-conversion.

present—results in its conversion to a frequency-2ωp single-
photon Fock state that is directed (by a DM1 dichroic mirror)
to a wave plate that imparts a π/2 phase shift. The remaining
BS, DM, and (type-I phase-matched) SPDC stages complete
the �(S) gate by restoring the pump-photon frequencies on
the target and control rail’s |1̃〉 states to ωp. The �(S) gate is
completed by the final X̂P gates that rotate the logical qubits’
bases back to the χ (2) EECC’s {|0̃〉,|1̃〉}.

V. GENERALIZED QUANTUM HAMMING BOUNDS

New quantum Hamming bounds are essential for estab-
lishing the code-rate optimalities of our χ (2) PCC and χ (2)

EECC, because the conventional quantum Hamming bound
presumes that the physical and logical bases have the same
dimensionality, whereas such is not the case for our χ (2) PCC
and χ (2) EECC. Furthermore, the dominant errors for our codes
are photon-loss errors, not physical-qudit rotation errors. Thus
in this section we develop generalized quantum Hamming
bounds to account for both of these discrepancies.

First, in Sec. V A, we establish the generalized quantum
Hamming bound for physical-qudit rotation errors. Then, in
Sec. V B, we derive the generalized quantum Hamming bound
for an [[n log2(q),k log2(b),3]] code that corrects all single-
photon-loss errors, and we show that the χ (2) PCC and the χ (2)

EECC saturate this bound with N = 2. Before proceeding,
there is the following important point to be made about the
photon-loss quantum Hamming bounds.

Our physical-subspace definition for photon-loss errors
differs from that for physical-qudit rotation errors, which leads
to differences in these errors’ quantum Hamming bounds. We
make that physical-subspace distinction because χ (2) quantum
computation has a direct-sum structure, rather than a tensor-
product structure. More specifically, the direct-sum structure
is dictated by the irreducible representation of the Lie group
generated by the χ (2) Hamiltonian. Take the χ (2) EECC with
N = 2 as an example. This code’s physical subspace is H2 =
Span{|0,0,2〉,|1,1,1〉,|2,2,0〉}. Although one might argue that
this code’s physical subspace has the 33 dimensionality of
the tensor-product space H⊗3

2 , this choice ignores our focus

on quantum computation using χ (2) interactions as the com-
putational primitives. With these primitives, the accessible
Hilbert space for the qubit χ (2) EECC is H2, not H⊗3

2 . In our
view, because the state preparation and computation required
to encode and decode the qubit χ (2) EECC are executed
with unitaries generated by χ (2) interactions, it is therefore
appropriate to take H2 as the physical subspace for that code’s
photon-loss quantum Hamming bound.

A. Generalized quantum Hamming bound
for qudit-rotation errors

The generalized quantum Hamming bound for qudit-
rotation errors is established in the following theorem.

Theorem 1. The [[n log2(q),k log2(b),2t + 1]] code has a
quantum Hamming bound given by

t∑
j=0

(
n

j

)
(q2 − 1)j bk � qn. (100)

Proof. Suppose that there are j � t physical qudits with
errors. Their (nj) possible locations within the length-n code-
word can be determined completely by that weight-j error’s
decomposition into (q2 − 1)j independent error operators. The
dimensionality of all weight-j errors for each logical codeword
is therefore (nj)(q2 − 1)j . So, because there are bk codewords,
the total number of possible errors is

t∑
j=0

(
n

j

)
(q2 − 1)j bk,

and for them to be correctable that total should no larger than
the subspace dimensionality for n physical qudits of dimension
q; i.e., we require

t∑
j=0

(
n

j

)
(q2 − 1)j bk � qn, (101)

which completes the proof.
Our generalized quantum Hamming bound reduces to the

conventional Hamming bound for qubit encoding of qubits
codes by choosing b = q = 2. The advantage of adopting
different dimensions for the logical and physical bases can
now be illustrated. If we use n physical qutrits to protect one
logical qubit against physical qutrit-rotation errors Theorem 1
implies that

2(1 + 8n) � 3n, (102)

which is satisfied by n � 4, which is less than the n = 5
required for encoding a logical qubit in the qubit basis. This
example makes it natural to ask what is the maximum k/n for
either the same-basis or different-bases encoding. Theorems 2
and 3 answer this question for k = t = 1.

Theorem 2. For nondegenerate [[n log2(q), log2(q),3]] QEC
codes, maxq(1/n) = 1/4 is achieved for q � 4.

Proof. When b = q and k = t = 1 our generalized quantum
Hamming bound from Eq. (100) simplifies to

1 + n(q2 − 1) � qn−1. (103)
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For n = 2 and n = 3 and all q � 2, this condition is never
satisfied, but for n = 4 it is satisfied for all q � 4, and the
theorem is proved.

Theorem 3. For nondegenerate [[n log2(q), log2(b),3]] QEC
codes, maxb(1/n) = 1/3 is achieved with b = 2 for all q � 6.

Proof. When k = t = 1 our generalized quantum Hamming
bound becomes

[1 + n(q2 − 1)]b � qn. (104)

For n = 2 this condition is equivalent to (2b − 1)q2 − 1 � 0,
which cannot be satisfied for b � 2 and q � 2. Direct evalu-
ation of (104) for b = 2, however, verifies that it is violated
for 2 � q � 5, but satisfied for q � 6, hence completing the
proof.

The preceding theorems address code efficiency for sit-
uations in which the physical qudits have unlimited dimen-
sionality but their number is fixed. In this case, using higher-
dimensional physical qudits to encode lower-dimensional log-
ical qudits is advantageous. On the other hand, if codeword
dimensionality, qn, is fixed, a more appropriate code-efficiency
metric for a QEC code is its volume ratio, r ≡ bk/qn. Theorem
4 shows that b = q = 2 is optimum for maximizing r .

Theorem 4. For nondegenerate [[n log2(q),k log2(b),3]]
QEC codes, maxb,q (r) is attained at b = q = 2 for all values
of k.

Proof. When t = 1 our generalized quantum Hamming
bound is

[1 + n(q2 − 1)]bk � qn, (105)

which immediately gives us

r � 1/[1 + n(q2 − 1)]. (106)

The right-hand side of this inequality is maximized by q = 2.
For q = 2 and any k, choosing b = 2 then minimizes the n

value needed to satisfy (105), hence maximizing r . Indeed,
ignoring the integer constraint on k, we have that k = n −
ln(1 + 3n) achieves r = 1/(1 + 3n) when b = q = 2.

Theorem 4 shows the inherent volume-efficiency advantage
of choosing the physical and logical bases to be qubit bases
when physical-qudit rotation errors are the errors of interest.
The situation is different, however, when qudit-rotation errors
are much less likely to occur than photon-loss errors, as we
will now show.

B. Generalized quantum Hamming bounds
for photon-loss errors

The generalized quantum Hamming bound from Sec. V A
can potentially be violated when protection against photon-
loss errors, rather than qudit-rotation errors, accounts for the
primary error mechanism. Our QEC codes are designed to take
advantage of this possibility.

Consider encoding k logical qubits in n physical qutrits
when loss of a single photon is the dominant error mechanism.
There are three possible single-photon-loss errors for each
qutrit: a single photon may be lost from either the signal, idler,
or pump modes. For a single-photon loss from any one of the
3n bosonic modes to be correctable, then the total dimension

of photon-loss errors,

Derr =
1∑

j=0

(
3n

j

)
2k, (107)

cannot exceed the dimension, Dloss, of the resulting corrupted
code subspace. Take the χ (2) EECC code with N = 2 as an
example. Its code subspace lies in H2 = Span{|j,j,2 − j 〉 :
0 � j � 2}; hence its corrupted code subspace—after loss of
a single photon—lies in

H′
2 = Span{|0,0,2〉,|1,1,1〉,|2,2,0〉,|0,0,1〉,

|0,1,1〉,|1,0,1〉,|1,1,0〉,|1,2,0〉,|2,1,0〉}, (108)

implying Dloss � 9n and the following photon-loss quantum
Hamming bound for qutrit-qubit χ (2) QEC codes:

1∑
j=0

(
3n

j

)
2k = 2(1 + 3n) � 9n. (109)

This bound beats the corresponding generalized quantum
Hamming bound, (102), for physical-qudit rotation errors as
(109) is satisfied for all n � 1, whereas (102) requires n �
4. So, because only one physical qutrit is required by the
quantum Hamming bound to protect a logical qubit against
single-photon-loss errors, we have shown that our qutrit-qubit
χ (2) EECC saturates (109). The following theorem provides
the photon-loss generalized quantum Hamming bound on χ (2)

QEC codes that use n physical qudits of dimension q to encode
k logical qudits of dimension b.

Theorem 5. The generalized quantum Hamming bound for
single-photon-loss errors is (1 + 3n)bk � (4q − 3)n.

Proof. Paralleling the derivation of the photon-loss dimen-
sion, Derr, for encoding of qubits, we have that

Derr =
1∑

j=0

(
3n

j

)
bk = (1 + 3n)bk. (110)

For all of these errors to be correctable by the χ (2) QEC
code, Derr cannot exceed the dimension, Dloss, of the cor-
rupted code subspace. Prior to a photon loss, each physical
qudit comes from a code subspace that lies within Hq−1 =
Span{|j,j,q − 1 − j 〉 : 0 � j � q − 1}. For 1 � j � q − 2,
loss of a single photon from |j,j,q − 1 − j 〉 corrupts Hq−1 by
adding three new dimensions, whereas loss of a single photon
from |0,0,q − 1〉 corruptsHq−1 by adding one new dimension,
and loss of a single photon from |q − 1,q − 1,0〉 corruptsHq−1

by adding two new dimensions. Thus we get Dloss � (4q − 3)n

and our proof is complete.
The χ (2) PCC has k = 1, q = b � 2, and n = 2. It satisfies

the photon-loss quantum Hamming bound, as it must, because
we have already shown that it can correct all single-photon loss
errors. Moreover, the photon-loss quantum Hamming bound
for all q = b � 2 is violated when n = 1, so our χ (2) PCC
saturates this bound.

Likewise, the χ (2) EECC, which has k = 1, q = 2b − 1 �
3, and n = 1, satisfies the quantum Hamming bound, as it must,
because we have shown that it can correct all single-photon-
loss errors. Indeed, it saturates this bound.

Now, having seen how our quantum Hamming bound for
photon-loss errors differs from that for qudit-rotation errors,
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let us elaborate on the origin of this difference for the χ (2)

EECC with N = 2. Qudit-rotation errors conserve this code’s
physical subspace, and can transform an encoded state to
any state in the 27-dimensional space H⊗3

2 . In contrast, when
the χ (2) EECC with N = 2 loses a photon, its 3-dimensional
physical subspace H2 is transformed to the 6-dimensional
physical subspace spanned by

{|0,0,1〉,|0,1,1〉,|1,0,1〉,|1,1,0〉,|1,2,0〉,|2,1,0〉}.
So, as we see it, this code’s photon-loss quantum Hamming
bound should take into account this limited subspace di-
mensionality. Nevertheless, it is instructive to consider the
following alternative code-rate definition for the photon-loss
channel: the ratio between the logical subspace’s dimension
and that of the physical subspace which includes both the
code states and the photon-loss-corrupted states. With this
alternative definition and arbitrary N � 2, the [[log2(2N −
1), log2(N ),3]] EECC’s physical subspace has dimensionality
3(2N − 3) + 4 = 6N − 5 for the single-photon-loss channel,
leading to a log2(6N − 5)/ log2(N ) code rate. Comparing
the new rate to what our preferred definition yields, i.e.,
log2(2N − 1)/ log2(N ) from Table I, we see that their ratio
is approximately 1 for N � 1 with both rates approaching 1
as N → ∞. The full utilities of different code-rate definitions,
however, may await a deeper understanding of bosonic error-
correcting codes’ fundamental properties.

VI. CONCLUSIONS

We have used a stabilizer-inspired symmetry-operator anal-
ysis to design three hardware-efficient QEC codes for χ (2)

quantum computation: the χ (2) PCC, the χ (2) EECC, and
the χ (2) BC. All three codes need only full-quantum χ (2)

interactions and linear-optics transformations for their en-
coding, decoding, and error-correction operations, and their
universal encoded-basis gate sets. For both the χ (2) PCC
and the χ (2) EECC, we provide exact implementations for
their error-correction procedures and universal gate sets,
things that are commonly lacking for existing bosonic QEC
codes. Full-quantum three-wave mixing in superconducting
resonators, together with its nondemolition photon-number
parity measurements [22,25,50], provides what is currently
the most promising experimental platform for implementing
the χ (2) PCC and χ (2) EECC in either the qubit or qutrit bases.
Our χ (2) BC encodes each logical qubit using an average of
3(N − 1/2) photons and can correct m-photon (m � N ) loss
or gain errors, or (m − 1)th-order (m � N ) dephasing errors.
It is the first known bosonic code with O(N ) scaling for the
number of photons needed to correct such errors. This scaling
advantage comes with a price: the χ (2) BC requires channel
monitoring that identifies m. Our results thus establish a route
to breaking the existing ceiling on encoding efficiency by
including new measurement strategies. We have also derived
generalized quantum Hamming bounds for χ (2) QEC codes
and for nondegenerate codes that correct photon-loss errors.
The χ (2) PCC and the χ (2) EECC were shown to saturate their
respective photon-loss quantum Hamming bounds. Notably,
our symmetry-operator framework provides a systematic way
for constructing bosonic QEC codes based on properties of the
underlying system dynamics. It also provides a straightforward

generalization from qubit-basis three-mode encoding to qudit-
basis multimode encoding.
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APPENDIX A: ENCODING, DECODING, AND ERROR
CORRECTION FOR QUTRIT-BASIS χ (2) PARITY-CHECK

CODE

In this Appendix, we present the encoding, decoding, error-
detection, and error-correction procedures for the qutrit-basis
χ (2) PCC given in Eqs. (15)–(17); Appendix B provides a
similar development for the qubit-basis χ (2) EECC.

Encoding. Encoding of the qutrit-basis χ (2) PCC amounts to
preparation of the code’s logical-zero state |0̃〉 = |111〉1|111〉2,
because any quantum computation can be decomposed into a
sequence of universal gates acting on the all-zero logical state.
The χ (2) PCC’s logical-zero state contains a single photon
in each of its six bosonic modes, which can be prepared by
combining the heralded single photons—of the appropriate
frequencies and polarizations—generated by pumped SPDC
processes into one spatial mode by means of dichroic mirrors
and polarizing beam splitters.

Decoding. Decoding for the qutrit-basis χ (2) PCC can be
realized as follows. First, we apply the qutrit-CNOT gate:

CNOT3
1,2 = |1,1,1〉1 1〈1,1,1| ⊗ Î2 + |0,0,2〉1 1〈0,0,2|

⊗ (|2,2,0〉2 2〈1,1,1| + |1,1,1〉2 2〈0,0,2|
+ |0,0,2〉2 2〈2,2,0|) + |2,2,0〉1 1〈2,2,0|
⊗ (|0,0,2〉2 2〈1,1,1| + |1,1,1〉2 2〈2,2,0|
+ |2,2,0〉2 2〈0,0,2|), (A1)

where the superscript 3 denotes a qutrit-basis gate and the
subscripts 1, 2 indicate that the first physical-basis state is the
control and while the second is the target. This gate transforms
the logical basis states {|j̃〉,j = 0,1,2} into {|j̃ ′〉,j = 0,1,2}
given by

|2̃′〉 = (|2,2,0〉1|2,2,0〉2 + |0,0,2〉1|0,0,2〉2)/
√

2, (A2)

|1̃′〉 = (|2,2,0〉1 + |0,0,2〉1)|1,1,1〉2/
√

2, (A3)

|0̃′〉 = |1,1,1〉1|1,1,1〉2. (A4)

Next, we apply the CNOT3
2,1 gate to transform the {|j̃ ′〉} into

{|j̃ ′′〉} given by

|2̃′′〉 = |1,1,1〉1(|2,2,0〉2 + |0,0,2〉2)/
√

2, (A5)

|1̃′′〉 = (|2,2,0〉1 + |0,0,2〉1)|1,1,1〉2/
√

2, (A6)
|0̃′′〉 = |1,1,1〉1|1,1,1〉2. (A7)
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Computational-basis measurements can now be completed by
making photon-number resolving measurements on the six
bosonic modes: |0̃〉 is identified by every mode containing a
single photon; |1̃〉 is identified by only the second physical
qutrit having modes containing single photons; and |2̃〉 is
identified by only the first physical qutrit having modes
containing single photons.

Error detection. Error detection for the χ (2) PCC uses non-
demolition measurements of the χ (2) PCC’s photon-number
parity vector, p12 from Eq. (30), and its generalized photon-
number parity vector, q12 from Eq. (32), to obtain the unique
syndromes

âs1 → p12 = (1,1,0,0,0,0), q12 = (1,2,2,2), (A8)

âi1 → p12 = (1,0,1,0,0,0), q12 = (2,1,2,2), (A9)

âp1 → p12 = (0,1,1,0,0,0), q12 = (1,1,2,2), (A10)

âs2 → p12 = (0,0,0,1,1,0), q12 = (2,2,1,2), (A11)

âi2 → p12 = (0,0,0,1,0,1), q12 = (2,2,2,1), (A12)

âp2 → p12 = (0,0,0,0,1,1), q12 = (2,2,1,1), (A13)

for photon-loss errors, and

â†
s1

→ p12 = (1,1,0,0,0,0), q12 = (0,2,2,2), (A14)

â
†
i1

→ p12 = (1,0,1,0,0,0), q12 = (2,0,2,2), (A15)

â†
p1

→ p12 = (0,1,1,0,0,0), q12 = (0,0,2,2), (A16)

â†
s2

→ p12 = (0,0,0,1,1,0), q12 = (2,2,0,2), (A17)

â
†
i2

→ p12 = (0,0,0,1,0,1), q12 = (2,2,2,0), (A18)

â†
p2

→ p12 = (0,0,0,0,1,1), q12 = (2,2,0,0), (A19)

for photon-gain errors.
Error correction. Single-photon-loss errors can be corrected

using just linear optics and χ (2) computational primitives, as
we now explain. To correct a single-photon-loss error, we must
increase the photon number of the corrupted mode by 1, while
to correct a single-photon-gain error, we must decrease the
photon number of the corrupted mode by 1. Because single-
photon-gain errors are much less likely to occur than single-
photon loss errors in χ (2) media and linear-optical circuits, we
will only provide a specific error-correction circuit for single-
photon-loss errors. Without loss of generality, we will assume
that the single-photon-loss error is in one of the first physical
qutrit’s modes.

Our error-correction procedure presumes that the χ (2)

PCC’s first and second qutrits are single-rail encoded on
different rails. For both qutrits, the signal and idler photons
are frequency degenerate (ωs = ωi = ω) and orthogonally
polarized, while the pump photons have frequency ωp = 2ω

and are copolarized with those of the idler. Consequently,
signal, idler, and pump photons that are propagating on a single
rail can be directed to separate rails—using a polarizing beam
splitter (PBS) and a dichroic mirror (DM)—for individual

FIG. 2. Circuit for restoring the two-pump-photon subspace after
loss of a single signal-mode photon from the χ (2) PCC’s first qutrit.
Input is the encoded state’s first qutrit, which has suffered a signal-
photon loss; output is the encoded state’s first qutrit restored to
the two-pump-photon subspace. DM1, DM2, DM3, DM4: Dichroic
mirrors. PBS: Polarizing beam splitter. SHG: Second-harmonic gen-
eration. QFC1, QFC2: Quantum-state frequency conversion. SFG:
Sum-frequency generation. SPDC1, SPDC2, SPDC3: Frequency-
degenerate, type-I phase-matched spontaneous parametric down-
conversion. See text for details.

processing, after which they can be recombined on a single
rail using those same linear-optics resources. We now present
the error-correction steps for single-photon loss error on the
first qutrit’s signal mode (case A) and the first qutrit’s pump
mode (case B).

1. Case A: Correction of a first-qutrit signal-photon loss

Loss of a signal photon from the χ (2) PCC’s first qutrit
converts the encoded qutrit |ψ0〉 = α|2̃〉 + β|1̃〉 + γ |0̃〉 to

|ψ ′
0〉 = α|1,2,0〉1|0,0,2〉2 + β|1,2,0〉1|2,2,0〉2

+ γ |0,1,1〉1|1,1,1〉2, (A20)

which shows that first physical basis is no longer in the
two-pump-photon subspace. Error correction is accomplished
by transforming |1,2,0〉1 to |2,2,0〉1 and |0,1,1〉1 to |0,0,2〉1, to
restore the qutrit to the two-pump-photon subspace, and then
applying a sequence of gates realized with χ (2) computational
primitives, to restore the encoded basis back to that defined in
Eqs. (15)–(17). We restore the physical basis to the two-pump-
photon subspace using the optical circuit shown in Fig. 2,
whose three steps are described below.

Step 1. Dichroic mirror DM1 directs the first qutrit’s pump
photons from the input rail to the bottom rail in Fig. 2.
Polarizing beam splitter PBS then directs signal photons from
the original rail to the top rail in Fig. 2. There, a quantum-
state frequency conversion (QFC1) converts a frequency-ω
single-photon Fock-state signal, if present, to a frequency-
2ω single-photon Fock state. Meanwhile, a second-harmonic
generation (SHG1) in the middle rail converts a two-photon
Fock-state idler, if present, to a frequency-2ω single-photon
Fock state that is copolarized with the signal. Until this point,
the |0,1,1〉1 component of |ψ ′

0〉 has been unaffected, but its
|1,2,0〉1 component has been transformed to |0,0,1〉1|1〉s ,
where |1〉s to denote a frequency-2ω single-photon Fock state
that is copolarized with the signal. Dichroic mirror DM2
then directs the frequency-2ω photon from the middle rail,
if present, to the upper rail through a PBS. Thus, at the end
of step 1, the |0,0,1〉1|1〉s state component is confined to the
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top rail, while the idler photon of the |0,1,1〉1 state component
resides in the middle rail, and that state component’s pump
photon occupies the bottom rail.

Step 2. In step 2, a sum-frequency generation (SFG) stage
in the top rail first converts |0,0,1〉1|1〉s into a frequency-4ω

single-photon Fock state that is copolarized with the signal,
after which the frequency-degenerate, type-I phase-matched
SPDC1 transforms that single-photon Fock state to |0,0,2〉1.
In step 2’s middle rail, the quantum-state frequency conversion
QFC2 coherently converts the frequency-ω idler photon to
frequency 2ω, from which the frequency-degenerate, type-I
phase-matched SPDC2 produces a two-photon Fock state in the
idler mode. SPDC2’s output is then combined with the bottom
rail’s pump photon via dichroic mirror DM3, thus completing
conversion of |0,1,1〉1—which had been distributed between
the middle and bottom rails—to |0,2,1〉1 residing on the middle
rail.

Step 3. Step 3 completes restoration of the two-pump-
photon subspace as follows. It first uses the frequency-
degenerate, type-I phase-matched SPDC3 in the middle rail to
convert a single pump-mode photon into a pair of signal-mode
photons, realizing the transformation of |0,2,1〉1 to |2,2,0〉1.
Then it employs dichroic mirror DM4 to recombine the top-
rail’s |0,0,2〉1 contribution with the middle rail’s |2,2,0〉1
contribution so that when |ψ ′

0〉 from Eq. (A20) is the input
to the Fig. 2 circuit, the output state that results is

|ψ1〉 = α|0,0,2〉1|0,0,2〉2 + β|0,0,2〉1|2,2,0〉2

+ γ |2,2,0〉1|1,1,1〉2. (A21)

Having restored the χ (2) PCC’s first qutrit to the two-pump-
photon subspace, correcting for that qutrit’s loss of a single
signal-mode photon is completed by applying the following
gates.

Gate 1. The first gate we apply is the qubit CNOT gate,

CNOT2
2,1 = Î1 ⊗ (|0,0,2〉2 2〈0,0,2| + |2,2,0〉2 2〈2,2,0|)

+ (|0,0,2〉1 1〈0,0,2| + |1,1,1〉1 1〈2,2,0|
+ |2,2,0〉1 1〈1,1,1|) ⊗ |1,1,1〉2 2〈1,1,1|/

√
2,

(A22)

which gives

|ψ2〉 = CNOT2
2,1|ψ1〉 = α|0,0,2〉1|0,0,2〉2

+β|0,0,2〉1|2,2,0〉2 + γ |1,1,1〉1|1,1,1〉2. (A23)

Gate 2. The second gate we need is the controlled-
Hadamard gate,

�21(H ) = Î1 ⊗ (|0,0,2〉2 2〈0,0,2| + |1,1,1〉1 1〈1,1,1|)
+ (|+〉1 1〈0,0,2| + |−〉1 1〈2,2,0|)
⊗ |2,2,0〉2 2〈2,2,0|, (A24)

where |±〉1 ≡ (|0,0,2〉1 ± |2,2,0〉1)/
√

2, which gives

|ψ3〉 = �21(H )|ψ2〉 = α|0,0,2〉1|0,0,2〉2

+ β|+〉1|2,2,0〉2 + γ |1,1,1〉1|1,1,1〉2. (A25)

Gate 3. The third gate we use is the not-controlled
Hadamard gate,

�̄21(H ) = Î1 ⊗ (|1,1,1〉1 1〈1,1,1| + |2,2,0〉2 2〈2,2,0|)
+ (|+〉1 1〈0,0,2| + |−〉1 1〈2,2,0|)
⊗ |0,0,2〉2 2〈0,0,2|, (A26)

which gives

|ψ4〉 = �̄21(H )|ψ3〉 = α|+〉1|0,0,2〉2

+ β|+〉1|2,2,0〉2 + γ |1,1,1〉1|1,1,1〉2. (A27)

Gate 4. The final gate we need is the qubit-CNOT gate,

CNOT2′
1,2 = (|1,1,1〉1 1〈1,1,1| + |2,2,0〉1 1〈2,2,0|) ⊗ Î2

+ |0,0,2〉1 1〈0,0,2| ⊗ (|2,2,0〉2 2〈0,0,2|
+ |0,0,2〉2 2〈2,2,0|). (A28)

We then get

|ψ5〉 = CNOT2′
1,2|ψ4〉 (A29)

= α(|2,2,0〉1|0,0,2〉2 + |0,0,2〉1|2,2,0〉2)/
√

2

+β(|2,2,0〉1|2,2,0〉2 + |0,0,2〉1|0,0,2〉2)/
√

2

+ γ |1,1,1〉1|1,1,1〉2, (A30)

which completes recovery from loss of a first-qutrit signal
photon, because |ψ5〉 = |ψ0〉.

2. Case B: Correction of a first-qutrit pump-photon loss

We correct loss of a pump photon in the χ (2) PCC’s first
qutrit by a procedure similar to that in case A; i.e., we first
coherently increase the photon number in the corrupted pump
mode by 1, to restore the physical basis to the two-pump-
photon subspace, and then apply a sequence of gates realized
with χ (2) computational primitives, to restore the encoded basis
back to that defined in Eqs. (15)–(17).

Loss of a first-qutrit pump photon from the encoded qutrit
|ψ0〉 = α|2̃〉 + β|1̃〉 + γ |0̃〉 results in

|ψ ′
0〉 = α|0,0,1〉1|2,2,0〉2 + β|0,0,1〉1|0,0,2〉2

+ γ |1,1,0〉1|1,1,1〉2. (A31)

The optical circuit shown in Fig. 3, which restores the physical
basis to the two-pump-photon subspace, works as follows.
Dichroic mirror DM1 directs the pump photon to the top rail
in Fig. 3 leaving the signal and idler photons on the original
rail, after which the |0,0,1〉1 component of the first qutrit
resides on the top rail, while the |1,1,0〉1 component remains
on the original rail. Quantum-state frequency conversion QFC1
coherently converts the frequency-2ω pump photon on the top
rail to frequency 4ω from which the frequency-degenerate,
type-0 phase-matched SPDC1 produces a two-photon Fock
state in the pump mode. At this point, the top rail contains the
|0,0,2〉1 component of the overall state.

On the original rail, quantum-state frequency conversions
QFC2 and QFC3 are phase matched so that QFC2 coherently
converts a frequency-ω signal photon to frequency 2ω and
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FIG. 3. Circuit for restoring the two-pump-photon subspace after
loss of a single pump-mode photon from the χ (2) PCC’s first
qutrit. Input is the encoded state’s first qutrit, which has suffered a
pump-photon loss; output is the encoded state’s first qutrit restored
to the two-pump-photon subspace. DM1, DM2: Dichroic mirrors.
QFC1, QFC2, QFC3: Quantum-state frequency conversion. SPDC1,
SPDC2: Frequency-degenerate, type-0 phase-matched spontaneous
parametric down-conversion. SPDC3: Frequency-degenerate, type-I
phase-matched spontaneous parametric down-conversion. See text for
details.

QFC3 coherently converts a frequency-ω idler photon to fre-
quency 2ω. The frequency-degenerate, type-0 phase-matched
SPDC2 transforms the frequency-2ω signal-polarization pho-
ton into a signal-mode two-photon Fock state. Likewise, the
frequency-degenerate, type-I phase-matched SPDC3 trans-
forms the frequency-2ω idler-polarization photon into an idler-
mode two-photon Fock state. After these transformations the
original rail contains the |2,2,0〉1 component of the overall
state.

After dichroic mirror DM2 combines the outputs of SPDC1
and SPDC3 on the original rail, we see that when |ψ ′

0〉 from
Eq. (A31) is the input to the Fig. 3 circuit, the resulting output
state is

|ψ1〉 = α|0,0,2〉1|2,2,0〉2 + β|0,0,2〉1|0,0,2〉2

+ γ |2,2,0〉1|1,1,1〉2, (A32)

which lies in the two-pump-photon subspace.
Error correction for loss of a first qutrit’s pump photon is

completed by applying the following four-gate sequence.
Gate 1. The first gate we apply is the controlled Hadamard

from Eq. (A24), which gives

|ψ2〉 = �21(H )|ψ1〉 = α|+〉1|2,2,0〉2

+ β|0,0,2〉1|0,0,2〉2 + γ |2,2,0〉1|1,1,1〉2. (A33)

Gate 2. The second gate we use is the not-controlled
Hadamard from Eq. (A26), which gives

|ψ3〉 = �̄21(H )|ψ2〉 = α|+〉1|2,2,0〉2

+ β|+〉1|0,0,2〉2 + γ |2,2,0〉1|1,1,1〉2. (A34)

Gate 3. The third gate we employ is CNOT2
2,1 from

Eq. (A22), which gives

|ψ4〉 = CNOT2
2,1|ψ3〉 = α|+〉1|2,2,0〉2

+ β|+〉1|0,0,2〉2 + γ |1,1,1〉1|1,1,1〉2. (A35)

Gate 4. The last gate we employ is

CNOT2′′
1,2 = (|0,0,2〉1 1〈0,0,2| + |1,1,1〉1 1〈1,1,1|) ⊗ Î2

+ |2,2,0〉1 1〈2,2,0| ⊗ (|2,2,0〉2 2〈0,0,2|
+ |0,0,2〉2 2〈2,2,0|), (A36)

which gives

|ψ5〉 = CNOT2′′
1,2|ψ4〉 (A37)

= α(|2,2,0〉1|0,0,2〉2 + |0,0,2〉1|2,2,0〉2)/
√

2

+β(|2,2,0〉1|2,2,0〉2 + |0,0,2〉1|0,0,2〉2)/
√

2

+ γ |1,1,1〉1|1,1,1〉2, (A38)

and completes the recovery from loss of a first-qutrit pump
photon.

APPENDIX B: ENCODING, DECODING, AND ERROR
CORRECTION FOR THE QUBIT-BASIS χ (2) EMBEDDED

ERROR-CORRECTING CODE

Below, we present encoding, decoding, and error correction
procedures for the qubit-basis χ (2) EECC. We also give an
explicit procedure—using full-quantum χ (2) interactions—for
constructing the logical rotation (X̂P ) and Hadamard (Ĥ ) gates
for this encoded qubit, as these gates are used in the error-
correction procedures.

Encoding. To prepare the qubit-basis χ (2) EECC’s logical-
zero state, |1,1,1〉, we follow the procedure given earlier for
the qutrit-basis χ (2) PCC’s encoding of one of its logical-zero
state’s qutrits.

Decoding. Decoding of the qubit-basis χ (2) EECC is
realized by making a photon-number parity measurement
on any one of the encoded state’s three bosonic modes:
the photon-number parity of every mode in |0̃〉 is even,
whereas the photon-number parity of every mode in |1̃〉
is odd.

Error detection. Error detection for the qubit-basis
χ (2) EECC employs nondemolition measurements [22]
of the photon-number parity vector, p from Eq. (6),
and the generalized photon-number parity, qEECC from
Eq. (55). These measurements provide the following unique
syndromes,

âs → p = (1,1,0), qEECC = (1,2), (B1)

âi → p = (1,0,1), qEECC = (2,1), (B2)

âp → p = (0,1,1), qEECC = (1,1), (B3)

for photon-loss errors, and

â†
s → p = (1,1,0), qEECC = (0,2), (B4)

â
†
i → p = (1,0,1), qEECC = (2,0), (B5)

â†
p → p = (0,1,1), qEECC = (0,0), (B6)

for photon-gain errors.
Logical rotation and Hadamard gates. Here we show that

the X̂P and Ĥ gates, defined in Eqs. (97) and (98), are realizable
with unitary transformations generated by χ (2) Hamiltonians.
For that purpose, we augment the χ (2) Hamiltonians Ĝ1,Ĝ2,
from Eqs. (1) and (2), with five additional χ (2) generators,
{Ĝk : 3 � k � 7}, from the u(3) Lie algebra in the two-pump-
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photon subspaceH2 = Span{|0,0,2〉,|1,1,1〉,|2,2,0〉} [36] that
are obtained as follows:

Ĝ3 = i[Ĝ1,Ĝ2] =
⎡
⎣1 0 0

0 −2 0
0 0 1

⎤
⎦, (B7)

Ĝ4 = i[Ĝ2,Ĝ3] = 3

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦, (B8)

Ĝ5 = i[Ĝ3,Ĝ1] = 3i

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦, (B9)

Ĝ6 = 1

2
(i[Ĝ1,Ĝ4] + i[Ĝ5,Ĝ2]) = 3

4

⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦, (B10)

Ĝ7 = i[Ĝ4,Ĝ2] = 3i

4

⎡
⎣0 0 0

0 0 −1
0 1 0

⎤
⎦. (B11)

Here, we have set κ = 1 in Eqs. (1) and (2), and the matrix
representations, which only apply in the two-pump-photon
subspace H2, employ the vT = [v1 v2, v3] representation
for elements of H2, in which an arbitrary pure-state qutrit is
|ψ〉 = v1|1,1,1〉 + v2|2,2,0〉 + v3|0,0,2〉.

Using the preceding generators, the X̂P gate can be imple-
mented by the unitary evolution up to a global phase,

X̂P = ei2πĜ6/3eiπĜ7/3, (B12)

and the Ĥ ′ gate can be realized via

Ĥ ′ = eiπĜ4/6e−iπĜ5/12 (B13)

up to a global phase. Together with Eq. (B12) and Ĥ =
X̂−1

P Ĥ ′X̂P , our Ĥ ′ result now gives the decomposition of the
Hadamard gate in the encoded basis as

Ĥ = e−iπĜ7/3e−i2πĜ6/3eiπĜ4/6e−iπĜ5/12ei2πĜ6/3eiπĜ7/3.

(B14)

Error correction. Similarly to what we showed for the
qutrit-basis χ (2) PCC, the qubit-basis χ (2) EECC’s error-

correction procedure can be categorized into two cases: single-
photon loss in either the signal or idler mode, and single-photon
loss in the pump mode. Because of the symmetry between the
signal and idler modes, we shall only exhibit error-correction
for signal-mode and pump-mode photon losses.

1. Case A: Correction of a signal-photon loss

After a single-photon loss in its signal mode, the pure state
|ψ0〉 = α|0̃〉 + β|1̃〉 in the qubit-basis χ (2) EECC becomes

|ψ ′
0〉 = α|1,2,0〉 + β|0,1,1〉. (B15)

To restore the original encoded state, we first bring the
corrupted state back to the two-pump-photon subspace using
the optical circuit shown in Fig. 2, which yields

|ψ1〉 = α|0,0,2〉 + β|2,2,0〉. (B16)
Then we apply a unitary gate generated by Ĝ4 to obtain the
state

|ψ2〉 = eiπĜ5/6|ψ1〉 = α|0,0,2〉 + β|1,1,1〉. (B17)

Finally, we employ a unitary gate generated by Ĝ7 to recover
the original state,

|ψ3〉 = eiπĜ7/3|ψ2〉 = α(|0,0,2〉 + |2,2,0〉)/
√

2

+ β|1,1,1〉 = |ψ0〉. (B18)

2. Case B: Correction of a pump-photon loss

After a single-photon loss in its pump mode, the pure state
|ψ0〉 = α|0̃〉 + β|1̃〉 in the qubit-basis χ (2) EECC becomes

|ψ ′
0〉 = α|0,0,1〉 + β|1,1,0〉. (B19)

To restore the original encoded state, we first bring the
corrupted state back to the two-pump-photon subspace using
the optical circuit shown in Fig. 3, which produces

|ψ1〉 = α|0,0,2〉 + β|2,2,0〉. (B20)

Finally, applying the gate sequence defined in Eqs. (B17) and
(B18) restores the original qubit-basis encoded state.
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