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We propose a method for the implementation of one-way quantum computing in superconducting circuits.
Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster
state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the
quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing
alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum
algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that
quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover,
we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing
the required resources of one-way quantum computing protocols.
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I. INTRODUCTION

Quantum computation has experienced a fast and remark-
able development in recent decades [1–10]. This progress is
based on the astonishing development of quantum platforms
that currently allow for the manipulation and control of highly
coherent qubits. There are several equivalent quantum comput-
ing paradigms for the implementation of a quantum algorithm.
The quantum circuit or gate-based approach, which makes
use of single- and two-qubit gates for this implementation, is
currently the standard one. One-way quantum computing, also
known as measurement-based quantum computation [11–13],
is an alternative universal quantum computing paradigm, in
which a particular kind of entangled multiparticle state, namely
the cluster state, constitutes the initial quantum resource. Then,
the algorithm is encoded through a sequence of single-qubit
readouts and feedforward rotations based on the outcome of
these measurements. Cluster states show two relevant prop-
erties, namely, persistence of entanglement after single-qubit
projective measurements and maximal pairwise connectedness
between qubits of the multipartite system. The first property
refers to the minimal number of qubits that must be measured
such that the resulting state is separable. Cluster states have a
persistence of �N/2� [14]. The second property means that any
pair of qubits can be projected onto a Bell state by appropriate
local measurements on the rest of the qubits.

One-way quantum computing has been experimentally
demonstrated in quantum photonics for small systems [15–17].
However, these implementations are not scalable because of the
nondeterministic generation of the cluster state. Nonetheless,
there have been theoretical proposals to avoid these issues
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[18]. On the other hand, the proposals in trapped ions [19,20]
allow for scalable generation of cluster states, but the im-
plementation of quantum algorithms is limited by the long
qubit readout times. Indeed, measurements based on electron
shelving (∼10 ms [21]) take longer than the average coherence
time of the ions (∼3 ms [22]), which is a handicap for large
protocols.

There has been remarkable progress in technologies based
on superconducting circuits in recent years [23–27], which
has allowed the scalable generation of large entangled states
[8,28,29]. Additionally, fast feedforward protocols have also
been developed recently [30–32]. Although theoretical pro-
posals for the generation of cluster states in superconducting
circuits have been made over a decade ago [33–36], the state of
the technology at the time made the implementation of these
approaches difficult.

In this work, we propose an experimentally feasible im-
plementation of one-way quantum computing in supercon-
ducting circuits. First, we show how to efficiently generate
two-dimensional (2D) cluster states by using high-fidelity
controlled-Z gates, which are standard in this platform. We
study the implementation of feedforward protocols and apply
this to the generation of a universal C-NOT gate. Finally, we
propose an alternative initial state with maximal persistence
which can be straightforwardly generated in superconducting
circuits. We show that the implementation of quantum algo-
rithms with this multipartite state requires 25% fewer ancillary
qubits and measurements than with cluster states, substantially
improving the involved scalability aspects.

II. CLUSTER STATE AND C-NOT GATE GENERATION

First, we propose a digital generation of cluster states,
the quantum resource for measurement-based quantum com-
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puting. Our protocol is based on the controlled-Z gate (Cz)
implemented by Barends et. al. [7,37] in Xmon qubits [38]. The
Xmon is a tunable nonlinear system, which allows us to define
qubit states |1〉 and |0〉 in its ground and first excited states, re-
spectively, and an auxiliary state |a〉 in the second excited state.
As described in Ref. [7], in the implementation of the Cz gate
the Xmon qubits are capacitively coupled. Tuning the energy
gap between the states {|0〉,|a〉} of the first Xmon to match the
energy gap between the states {|1〉,|0〉} of the adjacent Xmon
it is possible to activate an exchange evolution between them
that is given by U = e− i

h̄
V t , with V = h̄g(|0〉|0〉〈1|〈a| + H.c.)

The Cz gate is realized for gt = π , that allows us to implement
the conditional change |0〉|0〉 → −|0〉|0〉.

The cluster state |CN 〉 of a lattice of N particles is written
as |CN 〉 = U⊗

j |+j 〉, where the operator U is given by the
time evolution operatorU = e−iHπ [39], with

H =
∑

〈j,k〉,k>j

(
1 + σ z

j

2

)(
1 − σ z

k

2

)
, |+j 〉 = |0j 〉 + |1j 〉√

2
,

(1)

with |0j 〉 and |1j 〉 being the eigenstates of σ z
j with eigenvalues

1 and −1 respectively, 〈j,k〉 denotes that the sites j and k are
nearest neighbors. The effect of U over each pair of adjacent
qubits is a controlled-Z gate, with |0j 1k〉 → −|0j 1k〉, where
j is the control and k the target qubit. Therefore, we can write
a cluster state as [39]

|CN 〉 = 1

2N/2

N−1⊗
�=1

⎡
⎣|0�〉

⎛
⎝∏

j

σ z
〈�j 〉

⎞
⎠ + |1�〉

⎤
⎦, (2)

where 〈�j 〉 refers to the j th nearest neighbor of �.
This effect can be simulated using a combination of Cz gates

over Xmon qubits. As described in Ref. [7], this gate changes
the state |0j 〉|0k〉 into −|0j 〉|0K〉, acting as the identity on the
remaining states, where |0〉 and |1〉 stand for the excited and
ground states of the Xmon qubit, respectively. Then, the gate
Cz performs a −σz on the target when the control qubit is in the
state |0〉. This differs slightly from the action of theU gate that
activates a σz gate on the target. Therefore, to obtain the state
given by Eq. (2), we change the initial state as follows: The sites
that act as a control for an even number of gates are initialized
in the |+〉 state, and the sites that act as a control for odd number
of gates are initialized in the state |−〉 = (−|0〉 + |1〉)/√2. In
Fig. 1, we show the initial state for the square lattice.

As an example, we write the cluster state for a h × l square
lattice. For this case, we define a convenient notation and
denote each point in the lattice by a vector 	p = (j,k), where
j and k denote the j th column and kth row respectively. In
Fig. 1, the site (1,1) represent the left lower corner. We also
define ı̂ = (1,0) and ĵ = (0,1), and obtain

∣∣Chl
N

〉 =
⎡
⎣ ∏

	p∈{L+Lx }
Cz

( 	p, 	p+ı̂)

⎤
⎦

⎡
⎣ ∏

	p∈{L+Ly }
Cz

( 	px, 	px+ĵ )

⎤
⎦

×
⎡
⎣⊗

	p∈L
|+ 	p〉

⎤
⎦

⎡
⎣⊗

	p∈Lx

|− 	p〉
⎤
⎦

⎡
⎣⊗

	p∈Ly

|− 	p〉
⎤
⎦ ⊗ |+(h,l)〉,

(3)
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FIG. 1. Square lattice for the generation of a cluster state. Each
link between sites indicates a Cz gate, where the dot indicates the
control site and the arrow the target site. The color of the links indicates
the gates that can be performed simultaneously; to perform the blue,
red, black, and green interactions it requires four steps overall. The
sites marked with “+” are initialized in the |+〉 state, an the sites
marked with “−” are initialized in the |−〉 state.

where L = {(j,k)},Lx = {(j,l)},Ly = {h,k}, with j = {1,2,

. . . ,h − 1} and k = {1,2, . . . ,l − 1}. In Fig. 1, L contains all
blue points, except the right upper corner, Lx contains the red
points in the right boundary, and Ly contains the red points in
the upper boundary.

The effect of Cz
j,k can be thought of as a time evolution given

by e−iH̄j,kπ , with H̄j,k = (1 + σ z
j )(1 + σ z

k )/4, and defining
H = ∑

〈j,k〉 H̄j,k , we rewrite Eq. (3) as

∣∣Chl
N

〉 = e−iHπ

⎡
⎣⊗

	p∈L
|+ 	p〉

⊗
	p∈Lx

|− 	p〉
⊗
	p∈Ly

|− 	p〉
⎤
⎦ ⊗ |+(h,l)〉.

(4)

Although all components H̄j,k of the Hamiltonian commute,
the physical implementation of Cz prohibits the simultaneous
realization of gates that share qubits [37]. Then, we separate
the Hamiltonian H in Eq. (4) into terms corresponding to the
gates that can be performed at the same time and write H =
Hx

1 +Hx
2 +Hy

1 +Hy

2 , where

Hx
� =

∑
	p∈Ax

�

(
1 + σ z

	p
)(

1 + σ z
	p+ı̂

)
,

(5)
Hy

� =
∑
	p∈A

y

�

(
1 + σ z

	p
)(

1 + σ z
	p+ĵ

)
,

with � = {1,2}. Ax
� and A

y

� correspond to the set of points of
the form (2nx + �,k) and (j,2ny + �), respectively, where k =
{1,2, . . . ,l}, j = {1,2, . . . ,h}, nx = {0,1, . . . ,h/2 − 2}, and
ny = {0,1, . . . ,l/2 − 2}. Therefore, we can simulate the evolu-
tion e−iHπ in four steps. In Fig. (1), the controlled-Z gates that
produce the evolutions e−iHx

1π , e−iHx
2π , e−iHy

1π , and e−iHy

2π are
represented by blue, red, black, and green links respectively. As
all Hamiltonians Hα

j commute, no digital error is committed.
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FIG. 2. Schematic protocol for the C-NOT gate. Qubits 1 and 4
are the target and control qubits, respectively, and the sites 2 and 3
are initialized in the states |−〉 and |+〉, respectively. The arrows in-
dicate the order in which the interaction is considered, where the
circles are attached to the control qubits for the CZ gate, and the arrow
end to the target. Finally we measure qubits 1 and 2, and with this
information we perform a feedback over the readout qubits (3 and 4).

Finally, the elapsed time reported for the Cz gate is around
tCZ ≈ 0.05 [μs] with average fidelity 99.5% [7], and then for
a 4 × 4 lattice, the protocol can generate a cluster state with
average fidelity of 88% in 0.2 [μs].

Consider now, as a specific example of a two-qubit gate,
the implementation of the C-NOT. Pedagogically, we will use
the previous developed gate as in Ref. [11]. Let us use the
protocol of Fig. 2, where qubit 1 is the target, qubit 4 is the
control, and the sites 2 and 3 are initialized in the states |−〉
and |+〉, respectively. The initial state reads

|�o〉 = |i1〉z|j4〉z|12〉x |03〉x, (6)

where the subindexes z and x indicate that we use the eigenba-
sis of σ z and σx , respectively. Now, we perform the entangling
gate U = Cz

(1,2)Cz
(4,2)Cz

(2,3), as represented by the arrow links
in Fig. 2, thus generating the initial resource state for the
implementation of the C-NOT gate. Afterward, we measure the
sites 1 and 2 in the σx basis with a respective feedforward over
the sites 3 and 4, obtaining the state

|�m〉 = F3,4|l1〉z|m2〉z|(i ⊕ j )3〉z|j4〉z, (7)

where F3,4 = (σ z
3 σ z

4 )
l
(σx

3 )
m

is the feedforward operator and l

and m are the output of the measurement of qubits 1 and 2,
respectively. The reported elapsed time for the measurement
and digital feedforward process is approximately 2 [μs] [40],
with an error of 1% for the measurement and 1% for the
feedforward process. Then, a rough estimation of the fidelity of
this protocol yields 95%, in a time smaller than 5 [μs], which
is significantly smaller than the average Xmon coherence time
[38]. The elapsed times and fidelity we mentioned before
correspond to an effective estimation taking into consideration
gate sequences, feedback delays, and readout times which have
been experimentally reported [40]. Based on our estimations,
we expect that, with current technology, it could be possible to
implement quantum algorithms of up to five two-qubit gates
and requiring approximately 20 qubits with a fidelity lower
bounded roughly by 80%.

zz

FIG. 3. Circuit to construct the UBell
j,k gate given in Eq. (8).

III. ALTERNATIVE ENTANGLING GATE

One of the limitations faced by measurement-based quan-
tum computing is the number of qubits required for the
implementation of quantum algorithms. In what follows, we
propose an alternative entangling gate, which we have termed
UBell, and show that it reduces the number of qubits needed
for one-way quantum computing. In addition, this gate enables
the generation of maximal persistence states, allowing, for
instance, the implementation of an efficient C-NOT protocol
for one-way quantum computing. We summarize the action of
this gate as follows:

UBell
j,k |0j 0k〉 =

√
1

2
(|0j 0k〉 + |1j 1k〉),

UBell
j,k |0j 1k〉 =

√
1

2
(|0j 1k〉 + |1j 0k〉),

(8)

UBell
j,k |1j 0k〉 =

√
1

2
(|1j 0k〉 − |0j 1k〉),

UBell
j,k |1j 1k〉 =

√
1

2
(|1j 1k〉 − |0j 0k〉).

Within the Xmon architecture discussed in the previous sec-
tion, this gate could be implemented using the circuit shown in
Fig. 3, which involves one- and two-qubit gates among adjacent
Xmons. However, it is worth mentioning that the UBell

j,k gate

could be implemented as the time evolution UBell
j,k = e− i

h̄
H

x,y

j,k τ ,
with the Hamiltonian H

x,y

j,k = h̄ξ (J1σ
x
j σ

y

k − J2σ
y

j σ x
k ), where

J1 = 5/4, J2 = 1, and ξτ = π . It is not clear whether it is
possible to implement this Hamiltonian in the Xmon qubit
architecture. Nevertheless, the Hamiltonian H

x,y

j,k can be imple-
mented using a chain of qubit-cavity systems in the ultrastrong
coupling regime, with variable coupling, as shown in a recent
theoretical work [41], which is summarized in the appendix.

In what follows, we show that by using the UBell
j,k entangling

gate it is possible to generate an entangled multiparticle state
that plays a similar role as the cluster state as a resource
for one-way quantum computing. This state allows us to
implement a C-NOT gate that only requires three qubits and
one measurement, which is an improvement over the four
qubits and two measurements needed for the usual cluster
state generated by the Cz

(j,k) gate, as was shown in the previous
section. The protocol is summarized in Fig. 4. The sites 1, 2,
and 3 correspond to target input, target output, and control
input qubit, respectively. The initial state is given by

|
o〉 = |i1〉z|02〉z|j3〉z. (9)

Now, we perform the UBell
1,2 gate which leads to

|
1〉 =
√

1

2
[|i1〉z|02〉z + (−1)i |(i ⊕ 1)1〉z|12〉z]|j3〉z. (10)
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1 Readout

Target

Control 3

2

FIG. 4. Schematic protocol for our efficient C-NOT gate, where
qubits 1 and 3 are the target and control, respectively, and site 2 is
initialized in the state |0〉. The blue arrow refers to the gate C3,2 and
the green arrow for the gate UBell

1,2 . Finally, we measure qubit 1, and
with this information we perform a feedback over the nonmeasured
qubits (2 and 3).

Next, we do the Cz
3,2 gate and obtain

|
2〉 =
√

1

2
[(−1)j+1|i1〉z|02〉z + (−1)i |(i ⊕ 1)1〉z|12〉z]|j3〉z.

(11)

This state will be the resource that plays a similar role as the
cluster state, with the improvement that it only requires a single
measurement to implement a C-NOT gate, as will be shown as
follows.

Measuring σx in qubit 1 yields

|
3〉 =
√

1

2
[(−1)j+1+i·s |s1〉x |02〉z + (−1)i+i·s+s |s1〉x |12〉z]

× |j3〉z, (12)

where s ∈ {0,1} is the outcome of the σx measurement. Then,
we perform a Hadamard gate over qubit 2, obtaining

|
4〉 = (−1)i·s

2
|s1〉x{[(−1)j+1 + (−1)i+s]|02〉z

+[(−1)j+1 − (−1)i+s]|12〉z}|j3〉z. (13)

If s = 0, we obtain |
4〉 = (−1)j+1|01〉x |j3〉z|(i ⊕ j ⊕ 1)2〉z,
and if s = 1, we obtain |
4〉 = (−1)i+j+1|11〉x |j3〉z|(i ⊕ j )2〉z.
Then, when s = 0 we need to activate the operator −σx

2 σ z
3 ,

and when s = 1 we need to activate the operator −σ z
2 in

order to recover the usual C-NOT gate, where qubit 2 becomes
the target qubit. Therefore, using feedforward operator F =
(−σx

2 σ z
3 )s+1(−σ z

2 )s , we have F|
4〉 = |s1〉x |j3〉z|(i ⊕ j )2〉z.
As UBell

1,2 and Cz
3,2 do not commute, the order in which the gates

are applied is important.
As is shown in Fig. 3, the gate UBell can be constructed

using three Hadamard gates, two CZ gates, and a σz gate. A
rough estimation of the fidelity yields 98.8% and requires
a time of less than 0.3 [μs]. As we have seen, the C-NOT

requires one UBell and one Cz gate. It can be done with
a fidelity around 96.5% in a time 2.5 [μs]. Therefore, the
implementation of quantum algorithms using this protocol
requires 25% less ancillary qubits, substantially improving
scalability. For example, an array of 16 qubits allows for four
C-NOT gates with the standard protocol, whereas it is possible
to implement five C-NOT gates with our protocol. Furthermore,

since the C-NOT and arbitrary qubit rotations form a universal
set [42], we can expect that the reduction in necessary resources
enabled by the UBell entangling gate will extend to more
complex quantum algorithms since any quantum algorithm can
be decomposed into C-NOT gates and single-qubit rotations.

Also, the UBell operator allows the generation of maximally
persistent and maximally connected (MPMC) states. We start
with the initial state |φo〉 = ⊗N

�=1|0�〉, to which we apply the
gate UBell

j,k simultaneously over qubit pairs in the sites (2� −
1,2�), followed by the same operation on qubit pairs in sites
(2�,2� + 1), obtaining

|CN 〉 =
[

N/2−1∏
�=1

UBell
2�,2�+1

][
N/2∏
�=1

UBell
2�−1,2�

]
N⊗

�=1

|0�〉

= 1

2N/4

[
N/2−1∏

�=1

UBell
2�,2�+1

]

×
N/2⊗
�=1

[|02�−1〉|02�〉 + |12�−1〉|12�〉]. (14)

As an example, for three and four particles, we have the state

|C3〉 = UBell
2,3 |C2〉|0〉 = 1√

2
(|C2〉|0〉 + |C⊥

2 〉|1〉), (15)

where |C2〉 = (|0〉|0〉 + |1〉|1〉)/√2 and |C⊥
2 〉 = (|0〉|1〉 −

|1〉|0〉)/√2 are orthogonal cluster states of two particles. And
we also have

|C4〉 = UBell
2,3 |C2〉|C2〉 = 1√

2
(|C3〉|0〉 + |C⊥

3 〉|1〉), (16)

where |C⊥
3 〉 = (|C2〉|1〉 + |C⊥

2 〉|0〉)/√2, is a MPMC state
of three particles orthogonal to |C3〉. Then, if |CN−2〉 =
(|CN−3〉|0〉 + |C⊥

N−3〉|1〉)/√2, we have

|CN 〉 = UBell
N−2,N−1|CN−2〉|C2〉

= 1√
2

[
1√
2

(|CN−2〉|0〉 + |C⊥
N−2〉|1〉)|0〉

+ 1√
2

(|CN−2〉|1〉 + |C⊥
N−2〉|0〉)|1〉

]

= 1√
2

(|CN−1〉|0〉 + |C⊥
N−1〉|1〉), (17)

where |CN−1〉 = (|CN−2〉|0〉 + |C⊥
N−2〉|1〉)/√2 and |C⊥

N−1〉 =
(|CN−2〉|1〉 + |C⊥

N−2〉|0〉)/√2 are orthogonal MPMC states. It
is straightforward to show that any two qubits can be projected
into a Bell state by measuring all the remaining qubits in the
σ z basis, which means that the |CN 〉 are maximally connected.
Now, to prove maximal entanglement persistence for these
states, we proceed as follows. Suppose that the state |CN−1〉
has a minimal product state decomposition (MPSD) of r terms
and, therefore, an entanglement persistence ofP = log2(r). As
|C⊥

N−1〉 is equal to |CN−1〉 under local rotations, then |C⊥
N−1〉

also has a MPSD of r terms. Thus, we see that the state |CN 〉
in Eq. (17) is a decomposition in 2r terms. Thus, |CN 〉 reads

|CN 〉 =
2r∑

k=1

(
λk

N⊗
�=1

∣∣α(k)
�

〉)
, (18)
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where |α(k)
� 〉 is the state of particle � and

∑2r
k=1 λ2

k = 1. If
Eq. (18) is not a MPSD, we can write

|CN 〉 =
2r−2∑
k=1

(
λk

N⊗
�=1

|α�〉
)

+ λ̄|ϕ〉(β0

∣∣α2r−1
a

〉 + β1

∣∣α2r
a

〉)
,

(19)

where λ̄2 = λ2
2r−1 + λ2

2r , β0 = λ2r−1/λ̄, β1 = λ2r/λ̄, and |ϕ〉
is a state involving every other particle except particle a. This
reduction is not possible because |CN−1〉 and |C⊥

N−1〉 do not
share any terms. Then, a �= N and, as |CN−1〉 and |C⊥

N−1〉
are in their MPSD, we conclude that a �= {1,2, . . . N − 1}.
Therefore, Eq. (18) is the MPSD with 2r terms and persistence
P = log2(2r). As the MPSD of |C2〉 is r = 2, for |CN 〉 it is
r = 2N−1, and its persistence P = N − 1 is maximal.

IV. CONCLUSIONS

We have shown that current technology in superconduct-
ing circuits enables the consideration of measurement-based
quantum computing algorithms, avoiding operational time
problems which affect scalability in other quantum computing
platforms. Initially, we generated a two-dimensional N × N

cluster state by making use of 2N (N − 1) experimentally
available controlled-phase gates. A quantum algorithm is
generated by using single-qubit measurements and coherent
feedforward. In particular, we applied this approach to the case
N = 2 to implement the universal C-NOT gate with an estimated
fidelity lower bounded by 95%. Rough calculations, based on
reported experimental parameters, allow us to estimate that
we can perform algorithms above 20 qubits. Additionally,
we propose an alternative and experimentally feasible entan-
gling gate, which reduces the number of required qubits in
a 25% per implemented C-NOT gate. This fact reduces the
number of measurements and feedforward processes, which
improves the fidelity of the protocol. Therefore, the perspective
toward scalability and quantum supremacy is open with steady
current improvements in midsized superconducting quantum
platforms.
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APPENDIX: POSSIBLE IMPLEMENTATION
OF UBell GATE

A recent theoretical work [41] has proposed a system in
which the UBell gate could be implemented. This system
consists of a chain of qubit-cavity systems in the ultrastrong
coupling regime named quantum Rabi systems (QRSs). In

this proposal, each QRS is coupled to its nearest-neighbor
trough grounded superconducting quantum interference de-
vices (SQUIDs). This chain is described by

H =
N∑

�=1

[
H

QRS
� + (

P
�,�+1
� + P

�−1,�
�

)
(a†

� + a�)2
]

−
N−1∑
�=1

[
2
√

P
�,�+1
� P

�,�+1
�+1 (a†

� + a�)(a†
�+1 + a�+1)

]

+
N∑

�=1

[(
Q

�,�+1
� �̄�,�+1(t) + Q

�,�−1
� �̄�,�−1(t)

)
(a†

� + a�)2
]

−
N−1∑
�=1

[
2
√

Q
�,�+1
� Q

�,�+1
�+1 �̄�,�+1(t)

× (a†
� + a�)(a†

�+1 + a�+1)
]
, (A1)

where P
�,�+1
� and Q

�,�+1
� are time-independent constants that

depend on the characteristics of each site � and coupling
between the QRSs � and � + 1, �̄�,�+1(t) are time-dependent
magnetic signals threading the SQUID that couple the sites
� and � + 1, and a� and a

†
� are the annihilation and creation

operators of the cavity corresponding to the �th QRS re-
spectively. Finally H

QRS
� is the Hamiltonian of the �th QRS

given by

H
QRS
� = h̄ω

q

�

2
σ z

� + h̄ωr
�a

†
�a� + h̄g�σ

x
� (a†

� + a�), (A2)

withω
q

� , ω
r
�, andg� being the qubit frequency, cavity frequency,

and coupling strength belonging to the � site respectively. Also,
σ k

� is the k-Pauli matrix of the qubit in the �th QRS. We define
the QRS basis by {|j 〉�} by H

QRS
� |j 〉� = λ�

j |j 〉�. As the QRS
has an anharmonic spectrum, we write the cavity operators in
the QRS basis and truncate to the first excited state in order
to obtain an effective two-level system per site; also we can
consider that P

�,�+1
� = P� and Q

�,�+1
� = Q� only depend on

the site, and the magnetic flux �̄�,�+1(t) = �̄(t) is the same
for all SQUIDs. Then, we obtain for adjacent QRSs

H(2) =
2∑

�=1

[(
λ�

0 + 2P�z
�
0,0

)|0〉�〈0| + (
λ�

1 + 2P�z
�
1,1

)|1〉�〈1|]

−2[
√

P�P�+1 +
√

Q�Q�+1�̄(t)]χ�
0,1χ

�+1
0,1 X̂�X̂�+1

+
2∑

�=1

2Q��̄(t)
[
z�

0,0|0〉�〈0| + z�
1,1|1〉�〈1|], (A3)

where X̂� = |0〉�〈1| + |1〉�〈0|, z�
j,j = �〈j |(a� + a

†
�)2|j 〉� and

χ�
0,1 = χ�

1,0 = �〈j |(a� + a
†
�)|j 〉�. As the first line in Eq. (A3)

is the diagonal time-independent part of the Hamiltonian,
we define the free Hamiltonian by Ho = ∑2

�=1 [η�
0|0〉�〈0| +

η�
1|1〉�〈1|], with η�

k = λ�
k + 2P�z

�
k,k . We can write the Hamil-

tonian (A3) in the interaction picture with respect to Ho as

H I
(2) = −2χ�

0,1χ
�+1
0,1 (

√
P�P�+1 +

√
Q�Q�+1�̄(t))

×(e−i�t |1〉�〈0| ⊗ |0〉�+1〈1| + e−iδt |1〉�〈0| ⊗ |1〉�+1〈0|
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+ei�t |0〉�〈1| ⊗ |1〉�+1〈0| + eiδt |0〉�〈1| ⊗ |0〉�+1〈1|)

+
2∑

�=1

2Q��̄(t)
[
z�

0,0|0〉�〈0| + z�
1,1|1〉�〈1|], (A4)

with � = (η�
0 − η�

1) − (η�+1
0 − η�+1

1 ) and δ = (η�
0 − η�

1) +
(η�+1

0 − η�+1
1 ). Finally, as �̄(t) is an external magnetic

flux, we can choose �̄(t) = γ+ cos(�t − π/2) + γ− cos(δt +
π/2), and defining γ± = (J1 ± J2)/(χ�

0,1χ
�+1
0,1

√
Q�Q�+1), we

can approximate Eq. (A4) using the rotating-wave approxima-

tion (RWA) with respect to the eigenenergies of Ho as

H I
(2) ≈ i(J1 + J2)(|0�1�+1〉〈1�0�+1| − |1�0�+1〉〈0�1�+1|)

+i(J1 − J2)(|1�1�+1〉〈0�0�+1| − |0�0�+1〉〈1�1�+1|)
= J1σ

x
� σ

y

�+1 − J2σ
y

� σ x
�+1 (A5)

for J1 and J2 small enough to ensure the RWA. The time
evolution of the Hamiltonian (A5) would result in the UBell

�,�+1
gate, as indicated in the main text.

More details can be found in Ref. [41].
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