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We provide a class of entanglement witnesses constructed in terms of mutually unbiased bases (MUBs). This
construction reproduces many well-known examples such as the celebrated reduction map and the Choi map
together with its generalizations. We illustrate our construction by a detailed analysis of the three-dimensional
case: In this case, one obtains a family of entanglement witnesses parametrized by an L-dimensional torus
(L = 2,3,4 being a number of MUBs used in the construction).
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I. INTRODUCTION

Quantum entanglement is one of the most fundamental
resources for modern quantum technologies and quantum
information processing [1-3]. It is therefore clear that the char-
acterization of entanglement and other quantum correlations
[4] is of great importance for quantum information science
(actually, the problem of determining whether or not a given
state is entangled is NP-hard [5]). For low-dimensional C2xC?
(qubit-qubit) and C2®C? (qubit-qutrit) systems the problem is
solved due to the celebrated Peres-Horodecki partial transposi-
tion criterion [6,7]. However, for more complex systems there
are states passing the partial transposition criterion [so-called
positive partial transposition (PPT) states] which are entangled
as was first shown in [8] for a qutrit-qutrit system. Hence,
one needs more refined methods to check for separable or
entanglement.

The most general approach to the separability problem is
based on the concept of a positive map [9-12] and the directly
related concept of an entanglement witness [13]: A linear map
® : B(H) — B(H,)ispositiveif X > Oforany X > 0.In
what follows B(#) denotes a vector space (even a C* algebra)
of bounded operators in . In this paper we consider only the
finite-dimensional case and hence B(#) may be viewed as a
matrix algebra M;(C) with d = dim#. A bipartite state p is
separable if and only if (1Q®)p > O for all positive maps [2].
A Hermitian operator W acting on H; ®H is an entanglement
witness if and only if (Y1 @y | WY ®@yrn) = 0, but W is not
a positive operator. The property (1 Q| Wy Qvyrn) = 0is
much weaker than the standard positivity of W, which is
equivalent to (y|W|y) > 0 for all ¥ € H1®H,. One often
calls such operators block positive. Hence, an entanglement
witness (EW) is a block-positive operator but not a pos-
itive operator (actually, block positivity implies that W is
Hermitian). A bipartite state o is separable if and only if
Tr(pW) > 0 for all entanglement witnesses. Any entangled
state may be detected by an appropriate positive (but not
completely positive) map or by an appropriate entanglement
witness [2] (see also [14] for a review on entanglement
witnesses).
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An entanglement witness W is called decomposable if W =
A + BT, where BT = (1®T)B defines partial transposition
and A,B > 0. Such witnesses, however, cannot detect PPT
entangled states, that is, entangled states with positive partial
transposition p' > 0. To deal with PPT entangled states one
needs nondecomposable witnesses, which are much harder to
construct. Actually, there is no general construction of such
objects. Moreover, given an EW, it is in general very hard to
check whether it is decomposable or not.

Another important issue is how effective a given witness
is in detecting entangled states. One calls W an optimal EW
[15,16] if W — A is no longer block positive for arbitrary
A > 0, thatis, W cannot be improved by subtracting a positive
operator. A witness W is called nd-optimal [15]if W — D isno
longer block positive for an arbitrary decomposable operator
D. Clearly, an nd-optimal witness is necessarily optimal. It
turns out [15,16] that W is nd-optimal if W and WT are optimal
[Ha and Kye [17] call W (i) cooptimal if WT is optimal and
(i) bioptimal if both W and W' are optimal]. An EW has
a spanning property if there exists a set of product vectors
| V1) ®| i) such that (Y, @k | W ¥ @) = 0spans the Hilbert
space H®@H,. Lewenstein et al. [15] proved that any witness
with a spanning property is optimal. It should be stressed,
however, that there are optimal witnesses which do not have a
spanning property.

Finally, since the set of block-positive operators is convex,
one may consider its extremal elements. The witness W
is extremal if it satisfies the following property: If W — A
is block positive for some block-positive operator A, then
A =aW with a < 1. Among extremal elements there is a
dense set of so-called exposed elements. An extremal W is
exposed if it satisfies the following property: Suppose there
exists a separable state ps, such that Tr(Wpgp) = 0 and let
Tr(W'psep) = 0 for some block-positive operator W'; then
W’ = aW, with a > 0. Interestingly, the spanning property is
sufficient (but not necessary) for optimality and necessary (but
not sufficient) for exposedness (cf. Kye’s review [18] devoted
to geometric structures related to the set of entanglement
witnesses and the work of Hansen et al. [19] for a review of
extremal entanglement witnesses).
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In this paper we analyze a class of EWs constructed in terms
of mutually unbiased bases (MUBs). It turns out that our con-
struction reproduces many well-known examples of witnesses
or equivalently positive maps such as the celebrated reduction
map and the Choi map together with its generalizations. We
discuss the issue of optimality and extremality. This problem
is very hard and only partial results are presented.

II. POSITIVE MAPS FROM MUBS

Let us recall that two orthonormal bases |{) and |¢;) in
C? define MUBs if and only if for any k and / the following
condition is satisfied:

1
|mw&3 (1)

Moreover, it is well known [20] that the number N(d) of
MUBs in C? is bounded by N(d) <d+1 [21] (see [22]
for the review). If d = p” with p being a prime number,
one has N(d) = d + 1. In this case, explicit constructions are
known [20,21]. If d = d1d>, then N(d) > min{N(d,),N(d,)}
[23]. Moreover, Grassl [24] provided a construction of three
MUBs in an arbitrary dimension. Mutually unbiased bases
have already found many important applications in quantum
tomography [20,25,26], quantum cryptography [27,28], the
mean king’s problem [29,30], and entropic uncertainty re-
lations [31-33]. They have been used to witness entangled
quantum states in [34,35] as well as in [36] (the result in
the latter work was recently generalized to the multipartite
scenario [37]).

J

L d
2
2 (o) (@) ple)
Tr(®P)  =Tr —dz}l - 12 kEZ IOH Tr P )Pk +
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&I'd

a=1 k,l=1

L
d(d—l) ;

1 k,l,m,n=

Now let us observe that

d
> OpTH(PrY) =0
k=1

due to O@n, = +n,, and hence

~

d

TH(®P)* = l (d—1)2 S [T(PA)]

a=1 =1

where we have used ", OO = 5,,,. Now
— o 1 2 o
[1:(PP)] = [Te(PP)] + 5 = STe(PP).

and using the inequality [33,34]

L d
S (e <1 B )

a=1 =1

Now we provide the construction of a large class of trace-
preserving positive maps in M;(C). Let {|1//f“)), . ,|1pff‘))},
witha = 1,...,L,denote L MUBs [clearly L < N(d) < d +
1]. Let us define the corresponding rank-1 projectors as P,(D’) =
19 (y(*|. Moreover, let O® be a set of orthogonal rotation
in R? around the axis n, = (1,1, ...,1)/+/d, that is, O@
n, = n,.

Theorem 1. The map

L S S @ (5 @) p(@)
q>x:¢*x—ﬁ;k;(9k, Tr(XP) P, (2

where X = X — @, X defines the traceless partof X (¥, X =
ﬁ]IdTrX defines the completely depolarizing channel) is posi-
tive and trace preserving.

Proof. Denote by D(d) the space of d x d density matrices.
Recall that in D(d) one may inscribe a maximal ball B, center
at the maximally mixed state p, = 21 [38]: p € B, C D(d) if
and only if

Trp? € —— 3)
ST

To prove positivity of ® we show that for any rank-1 projector

= |¥)(y| one has

1
S — “4)

Tr(® P)? ,
(P P) 71

that is, @ maps any rank-1 projector into the ball B,. One finds

L
(d—1)3 Z Z Oli‘;OTr( P(a))P(a)O(ﬂ)Tr( P(ﬁ))P(ﬂ)
o,B=1k,l,m,n=1

1
2 K 1
ST L GRG0 S OO R TH(F )5

a=1 k,l,m,n=1

d
Z O OB T (P P)Tr(PPP).

(

we finally arrive at

) _ L-1 L 2L 1
Tr(®P)? <

1
1 =
(d 1)2< + d +d a) " d-r

which ends the proof of positivity. The proof of trace preser-

vation is elementary. ]
Note that the formula for ® may be rewritten as
1 d+L—1
DX = + ITrX
d—1 d

L d
=33 0P Te(x P P,f"‘)} (6)

a=1k,/=1

and hence it simplifies for L =d + 1 to

1 d+1 d y y .
@X:E{NITrX—Z > OPTH(XP@) P (D)

a=1 k,I=1
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Recall that if L =d + 1, then one may perform complete
tomography of p,

d+1 d

- —Hd +Y > P, (8)

a=1 k=1

with real parameters

. 1
a,(("‘) = Tr(,oPk(o’)) = Tr(pPk(a)) - 9)
Hence, foreacha =1, ...,d + 1 one has
Z a® = (10)

which means that the vector a®@ = (aga), ... ,afla)) is orthogo-

nal to the vector n,. Having performed complete tomography
of p, one may simplify the proof of Theorem 1. Note that the
map & may be rewritten in terms of a(a)

d+l d d
(Ol) (Ot) (o)
Dp = D,p — ﬁ >3 0 a™ P, (1)
a=1 k=1 I=1
Now using Trp? < 1 one finds
d+1 d d+1
Trp? = _+ZZ| (@)2 +Z|a<a>| 1, (12

a=1 k=1

which implies Y97} |a@ 2 < <1 Finally, using (12) and

|O@a@| = |a®)|, one finds

d+1
Tr@pY = L+ Y P < L 3)
PTaT a1 & Sa-r

which proves that ®p € B,, C D(d). Finally, the corresponding
entanglement witness

d
Wo =(d—1) ) li)(jl@®li){jl

ij=1

reads

L d
d =+ L—1 (a)—(a) (@)
W = —— [0, — E E Oy P, 14
® p 4Rl 2 & (14)

a=1
which simplifies for L =d 4 1 to

d+1
Wo =210 — ) Z O“P P,
a=1 k,I=1

15)

Remark 1. For the maximal set of MUBs, thatis, L =d + 1,
the inequality (16) is replaced by [39,40]

d+1 d

S [m(PR)] =2

a=1 I=1

(16)

and hence any rank-1 projector P is mapped via  onto the
sphere S,, being the boundary of B,.

II1. SPECIAL CLASSES: PERMUTATIONS

The special class of orthogonal dxd matrices with the
additional property On, = n, is provided by permutations:
If I1 is a permutation matrix then clearly ITn, = n,. Taking
the simplest case corresponding to O@ = 1, one finds

d+1 d
D[X] = D, [X] — —ZZT (XPEYPE. a7y
a=1 k=1
Now, one easily proves
d+1 d
> Tr(AP)PE = A+ do,[A]
a=1 k=1
and hence
1
D[X] = 1(}IdTrX - X), (18)

which is the well-known reduction map.
Consider now OV = §, where S is the permutation defined
by Sli) =i +1). Let O® = ... = 0Y*+D =] ;. One finds

d—1
d[X] = <28[X]+ZS[S’XST']— ) (19)
=2

where
d

Z P(l)XP(l)

i=1

e[X] =

Z|l (I Xi){

The map (19) belongs to the family of positive maps

1 - iy ot
X = —— ((d ke[ X1+ ;s[s Xt X)
(20)
developed by Ando [41,42]. Actually, (19) is dual to 74 4_>.
This construction may be immediately generalized if one
considers d + 1 permutations 77® and defines the correspond-
ing entanglement witnesses by

d+1 d
@
Wo =21i®Li = 3 > Prow®F"-
a=1 k=1

These witnesses and

Rutkowski [43].

were analyzed by Hiesmayr

IV. CASE STUDY:d =3

For d = 3 one has four MUBs By, ...,B4 defined as B; =
(" =11),9" = 12),9i" = |3)}, where [1),]2),|3) define a
computatlonal basis in (C3 The remaining three MUBs are
defined as

v = @

where the unitary matrices U, read

Ua k)

€ = =
e & -
*

1
1 w ol, Us=
1

S
S*
Sl -
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and Uy = U5 (with = €*7/3). One finds, for B,, B3, and By,

1) +12) + 13) 1) + 0*|2) + |3) |1) + »|2) + ©¥|3)
V3 ’ V3 ’ V3 ’

1) +12) + 0*|3) 1) + 0|2) + w|3) [1) + »*[2) + |3)
V3 ’ V3 V3 ’

1)+ 12) + wl3) 1) + «*2) + «*|3) |1) + ol2) + |3)
NE] ’ V3 ’ V3

A general proper rotation in R? preserving the direction n = (n;,n5,n3), with |n| = 1, is given by the Rodrigues formula

cosgo—i—n%(l — COS @)
niny(l — cos @) + n3 sin g
n3ni(l —cos @) —ny sing

R(n,p) =

Hence, takingn = n, = (1,1,1)/\/5, one finds

ci(p) cp) c3(p)
O(p) := R(n,,p) = | c3(p)  ci(ep) c2(p) |, (23)
o(p) alep) ci(p)
where
2 1
ci(p) = 3 cos¢ + 3
()—% <—2—7T>+l (24)
cap) = S cos |9 — = 3
0 =2 ( ¥ 2—”) i1
c3(p) = 3 cos| o 3 3

One has O(0) = [5. Note that ¢1(¢) + c2(p) + c3(¢) = 1.

In what follows we consider our construction corresponding
to L = 4,3,2 (the case L = 1 is trivial since one always gets
W > 0; actually, in this case there is no sense to use the term
MUBSs). Interestingly, the corresponding class of maps and
witnesses is parametrized by the L-dimensional torus.

A. The case L =4

One finds, for the corresponding entanglement witness
parametrized by four angles {¢1,¢2,¢3,¢4},

a P : P
b . . q* q
r* . r
r c r* .
N p . a . p*
W= g ] b | g* )
q° - qg | b
. . r* r . C
P : P - a
(25)

niny(l — cos @) — n3 sing
cos @ + n3(1 — cos ¢)
n3ny(l — cos @) + ny sing

nin3(1 — cos @) + ny sing
nyn3(l —cosg@) —nysing |. (22)
cos @ + n3(1 — cos p)

(
where to make the figure more transparent we replaced all 0

by dots. The parameters {a,b,c, p,q,r} are defined as

2
a=3(1 —cosg),

2 (/3 1
b= —<£sin(p1 +§cos¢1 +l>,

3\ 2
2 3 1
c= §<—§ sing; + zcosgol + 1),
p 1 1 1 1 el
gl=—|1 o o]|ei®]. (26)
r 3\ 0 o)\ e

Example 1. Taking ¢, = @3 = ¢4 = 0 one finds

p=—-1, ¢g=0, r=0.

This reproduces the family of maps analyzed in [44], being
a generalization of the celebrated Choi positive nondecom-
posable extremal maps [45] (see also [46]). It is well known
[47-49] that in this case (i) W is decomposable if and
only if b = ¢, which means that ¢; =0 or ¢; = m; (i) W
is nd-optimal if and only if ¢; € [-27/3,27/3] (for ¢, =
427 /3 one recovers the celebrated Choi maps); (iii) W has
a bispanning property if and only if ¢; € (—27/3,27/3); (iv)
W is extremal if and only if ¢; € [-27/3,0) U (0,27 /3]; and
(v) W is exposed if and only if it is extremal and ¢; # 0. For
further analysis see also [50,51].

Example 2. Taking ¢» = —¢@3 = @4 = 6, one arrives at
a . . . _ei9 . . . _e_ie
b
- c
. . . c . . . . .
_e—i9 . . . a . . . _eia
W= . b - ’
- | b
. . . . . C
_ei0 . . . _e_ia . . . a
27

which was analyzed in [52].
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B. Thecase L =3

Now one has three orthogonal rotations parametrized by
{@1,92,03}. The corresponding operator W has again the struc-
ture (25) with the same parameters a,b,c and the remaining
off-diagonal parameters p’,q’,r’ read

(28)

Note that in this case taking

__ 4 o
a=3, b=c=

W=

one finds W > 0, which means that the map @ is completely
positive and hence cannot be used to detect quantum entangle-
ment.

C. Thecase L =2

Now one has two orthogonal rotations parametrized by
{o1,92}. Again, W is given by (25) with the same parameters
a,b,c and the remaining off-diagonal parameters p”,q”,r” read

p// — q// — r// =7 = _%eiwzl (29)
One finds
a z* z
b . - Mz
c | z* . Z
7z | c F 4
Z . a . . Z*
W= , (30
Z . . b Z* . . ( )
FAE z | b
. Z* Z . C
z* -z a

which is an analog of (27). Now, depending upon ¢;, one may
have W > 0 or W is a proper entanglement witness.

D. The PPT entangled state detected by W
Consider the 3®3 state

1. . A . .1
) . R T O
2 -1 -1
-1 2 . -1
11 S 1
=715 -1 . A N R |
1 . . 11 2
-1{-1 - 2
1 . 1 1

€2y

One easily checks that p is a PPT. Now taking ¢; = ¢ =7
and ¢3 = ¢4 = 0, one finds, from (25),

4 P I e - |
. 1 - . 212 . .
12 : 2
21T - 2
-t - 4 ~1
W=z ) L (32)
2 : 2|1
202 - 1
-1 -1 4
and
Tr(pW) = —& <0, (33)

which proves that p being a PPT is entangled. Interestingly,
entanglement of this state is not detected by witnesses from the
well-known family corresponding to ¢, = @3 = ¢4 = 0 (cf.
Example 1). Similarly, one easily checks that p is not detected
by the other three families of witnesses corresponding to
pr=¢3=01=0, 01 =02 =094 =0, and ¢, = = 93 =
0. These are direct generalizations of [44] obtained by per-
muting MUBs. Finally, the realignment test is not conclusive,
giving the value of realignment R = 1 (recall that if R > 1,
then a state is entangled [53]). To conclude, one cannot detect
entanglement of (31) using either partial transposition and
realignment tests or previously known entanglement witnesses.

V. PRIME DIMENSIONS AND WEYL OPERATORS
AND SPECTRA

Let us recall the construction of Weyl operators [54—56]

d—1

Ua =Y oMm)(m+1l,
k,i=0

which satisfy the well-known relations
UnUys = @ Ui s, U;jl = U_ .
Bertlmann and Krammer [56] provided the following theorem.
Theorem 2. Let W be a Hermitian operator defined by

d—1

W=a Z crUnu®U_y ,
k=0

(34)

witha > Oand cop = d — 1. If the remaining c; satisfy |cy| <
1, then W is a block-positive operator, that is, (x@y|W|xQy)
for arbitrary x,y € C9.

It is well known that if d is prime then d + 1 MUBs are
directly related to Weyl operators. In this case the set of d> — 1
Weyl operators Uy; with (k,l) 7~ (0,0) splits into d + 1 sets of
mutually commuting operators, that is, [Uy,U;;] = 0 if and
only if kj =il (mod d). These d 4 1 families correspond to
d 4+ 1 MUBSs. Consider as anexample d = 3. One has Uy = I3
and

0 1
Uy = 0 0 , Up=
1 0

(=N ]
S = O
—_ o O
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1 0 O 0 1 0
U]O =10 w 0 , U11 = 0 0 w |,
0 0 o? w* 0 0
0O 0 1 1 0 0
U12 = |w 0 0 s U20 =10 (1)2 0 ,
0 0 0 0 0 w
0O 1 O 0 0 1
U21 = 0 0 0)2 y U22 = 0)2 0 0 .
wo 0 0 0 w 0
with @ = €?"/3. One has d + 1 = 4 families of commuting
operators
{U10,Ux}, {U11,Un}, {Ui2,Un}, {Uo1,Un2}.

One finds that (34) and (25) have the same structure and they
are related via a = 1/3 together with

a 1 1 1 1 Coo
bl==-|1 o o C1o 35)
c 3 1 o of 20
and
P 1 1 1 1 Co1
q =——11 w* w c11 |- (36)
r 3 1 o of Ca1

Note that Hermiticity of W implies that ¢}, = c_; _; and hence
co2 = €}y, €11 = C3,, and ¢j» = ¢3;. One has therefore

clo=¢€"", cop =—€7, cp=—e c=—e%,

that is, |cx| = 1 for all pairs (k,1) # (0,0).

VI. CONCLUSION

We provided a class of entanglement witnesses and positive
maps constructed in terms of mutually unbiased bases. Interest-
ingly, this construction reproduces many well-known examples
such as the celebrated reduction map and the Choi map together
with its generalizations but also gives rise to completely differ-
ent witnesses and maps. In the three-dimensional case we ob-
tain a family of witnesses parametrized by a four-dimensional
torus. As an example we provided a 3®3 entangled state (31)
such that one cannot detect its entanglement either using partial
transposition and realignment tests or using previously known
entanglement witnesses.

It is clear that further analysis is needed in order to inves-
tigate the issues of optimality and extremality. Such analysis
is known only for the special class of Choi-like witnesses (cf.
Example 1). Also the problem of a spanning property deserves
further studies.

Note that if d = d;d, we may consider ® as a positive map
acting on the matrix algebra of a composite system M;(C) =
M4, (C)®M 4, (C). Interestingly, all density matrices satisfying

1
did, — 1

are separable [57] (actually, they are superseparable, i.e.,
separable with respect to an arbitrary partition of C%“% into
a tensor product of C% and C%). Hence, they belong to a class
of maps analyzed in [58] that have the additional property that
when applied to any state (or a given entanglement class) result
in a separable state or, more generally, a state of another certain
entanglement class (e.g., Schmidt number less than or equal
to k). Another interesting research program may be devoted
to further analysis of a more general construction of maps in
terms of MUBs in the spirit of [58].

Trp® <
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