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Perfect coding for dephased quantum state transfer
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We develop a family of perfect quantum error correcting codes that correct for phase errors that arise on any
qubit, at any time, during a perfect state transfer experiment. These ensure that we find the optimal operating
regime for corrected state transfer. For a specific class of system, we further show that while dephasing noise can
be corrected depolarizing noise cannot.
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I. INTRODUCTION

Near-future realizations of quantum technologies, from
simple state-generation tasks [1–3] to analog quantum simula-
tion [4], will be small scale and will rely on intrinsic properties
of the system to facilitate as much of their functionality as
possible, rather than trying to impose error-prone operations
to strong-arm the system into performing tasks. For example,
existing quantum simulators such as [5], while scaling to
larger numbers of qubits, are not universal computational
devices; they are Hamiltonian-based systems with some ability
to tune their parameters. Other systems similarly sacrifice
computational universality to achieve their ends, from quantum
key distribution systems [6] to the DWave quantum computer
[7], being tuned to do precisely what they need to with
minimal controls. The difficulty is that Hamiltonian evolution
is not obviously compatible with future scaling ambitions.
Error correction is a particular challenge given that noise, the
initial action of which may be well localized, rapidly evolves
into potentially destructive correlated errors across an entire
device. Can we guard against these effects? The question
is especially pertinent when we recognize that interest in
quantum computers was largely spurred on by the development
of a theory of error correction [8,9]. It had previously been
suggested that the continuum of possible errors would make
quantum error correction vastly more challenging, if not
impossible, compared to the discrete errors of classical theory.
Implementation of Hamiltonian-based technologies might be
similarly inhibited.

In this paper, we study the error correction of one particular
protocol, perfect state transfer [10–12], which is well suited
to this scenario since the relevant observables will be well
localized at particular times. We show that error correction
is possible with remarkable efficiency by specifying perfect
quantum codes, those which are maximally efficient in that
every element in the state space is involved in detecting errors,
massively improving the operating regime compared to the
preliminary results in [13]. Perfect quantum state transfer is
the process whereby an unknown quantum state is transported
perfectly from one node of a network to another simply via

*alastair.kay@rhul.ac.uk

the evolution of a time-invariant Hamiltonian, often across a
one-dimensional spin chain in order to maximize the transfer
distance. By suitably engineering the Hamiltonian, this transfer
can in principle be achieved over arbitrary distances. In the
real world, including the recent experimental demonstrations
[14,15], there are always errors, whether these are the result
of manufacturing imperfections or noise. Perhaps more worry-
ingly, while these errors might manifest as local Pauli errors,
their time-evolved versions, as observed on output from the
state transfer, are far from being well localized.

There are a number of techniques that can compensate for
manufacturing imperfections. One option is to make multiple
chains and test which is the best before using that one and
discarding the others. Alternatively, we encode a state across
multiple spins. Optimal encodings can be found across a set
of input spins on a single chain [16], or multiple chains can
be used in parallel [17]. We are interested in the case where
one uses a single chain, encodes in an encoding region which
should be a small fraction of the total chain length, and decodes
in a similar sized decoding region at the opposite end of the
chain at the end of the evolution.

The challenge of how to deal with noise during the transfer
has largely been neglected, perhaps aside from some toy
models that have sufficient symmetries that the decoherence
is easily avoided [18]. Some early steps were taken in [19],
showing how an encoding can help ensure a transferring
state “misses” being at a particular position on the chain at
a particular time, but still needed an identification of when
and where errors were likely to occur. Then [13] recently
showed that a certain class of standard error correcting code
can be adapted to correct for many of the types of error that
do arise—dephasing noise, manufacturing imperfections, and
timing errors. The codes were unable to tolerate bit-flip noise,
and thus relied on the assumption that noise has a dominant
direction (the Z direction), which is often reasonable since
the T2 decoherence times, corresponding to dephasing noise,
respectively, can be the dominant one [20–22].

An important feature of the previous study is whether the
system outside the encoding area can be initialized in some
specific state, such as the all-zeros state (which should be easier
to prepare than any arbitrary state). If so, [13] constructed codes
of just 15 qubits. If not, the smallest construction given was
36 qubits. Continuing to assume the presence of dephasing
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noise, we improve the analysis, enabling massive efficiency
savings. We provide the smallest possible codes, utilizing just
13 or 15 qubits, respectively. These codes can also be applied to
compensate for Hamiltonian perturbations and timing errors.
Moreover, by specializing slightly more to a class of state
transfer chains and just dephasing noise, we find a family
of perfect codes in Sec. IV, the simplest of which encodes a
single logical qubit into just seven qubits and protects against
a single dephasing error. Such efficiency savings provide an
opportunity for radically changing the operating regime for
error correction and perfect state transfer. There is only one
previously known perfect quantum code [23], in spite of
their potential utility. Certainly their classical counterparts, the
Hamming and Golay codes, have become ubiquitous.

Following [13], this paper relies on there being a dominant
noise direction. In Sec. VI, we show that a single bit-flip event
occurring at an arbitrary time and position during the state
transfer process cannot be corrected, making the assumption
unavoidable.

II. SETTING

We consider one-dimensional Hamiltonians of the form

H = −1

2

N∑
n=1

BnZn + 1

2

N−1∑
n=1

Jn(XnXn+1 + YnYn+1),

where the couplings Jn and magnetic fields Bn are selected
such that the quantum state |1〉|0〉⊗(N−1) evolves in a fixed
time t0 into the state |0〉⊗(N−1)|1〉 (up to a known phase
factor), as this ensures that an arbitrary state transfers from
one end of the chain to the other. It also implies perfect
mirroring of any arbitrary state on the whole chain [12,24],
up to a sequence of controlled-phase gates applied between
every pair of qubits. There are many such solutions, with the
necessary and sufficient conditions being well understood [12],
but a particularly favorable choice is given by Bn = 0 and
Jn = λ

√
n(N − n) for any positive value λ, giving t0 = π/(2λ)

[11,25,26]. We will refer to this solution as the “standard” state
transfer solution.

Of particular relevance to these calculations is the represen-
tation of H in the single excitation subspace:

h1 =
N∑

n=1

Bn|n〉〈n| +
N−1∑
n=1

Jn(|n〉〈n + 1| + |n + 1〉〈n|).

The Majorana fermions, defined as

cn = Xn

n−1∏
m=1

Zm, cn+N = Yn

n−1∏
m=1

Zm,

each evolve independently under the action of H as

cn(t) =
2N∑

m=1

〈m|e−2iY⊗h1t |n〉cm.

If a dephasing event, described by Zn, occurs at some time
t this is equivalent to cncn+N (we ignore phase factors for
clarity), and after the end of the state transfer this is the same as
cn(t0 − t)cn+N (t0 − t) acting on the final state. Thus, any single
dephasing event may be described as pairs of Majorana fermion

errors. Similarly, timing errors or Hamiltonian perturbations
will manifest as a small number of Majorana fermions. We
thus aim to find error correcting codes for these errors, when
an initial encoding is restricted to a small block of M qubits at
the start of the chain, and decoding removes the same M qubits
from the opposite end of the chain a time t0 later. In particular,
we aim to construct error correcting codes that are distance 5
for Majorana errors.

A. Stabilizer codes

We refer to the standard quantum error correcting codes
as “Pauli codes” to represent the fact that they can correct a
certain distance of Pauli errors. Instead, we need to work with
Majorana errors in order to tolerate dephasing noise during a
state transfer.

Let S be an (M − k) × (2M) binary matrix that describes
the stabilizers of the [[M,k,d]] code—each row i specifies a
stabilizer Si via the binary vector (z,x) for z,x ∈ {0,1}M , by
composing terms

Si =
M∏

n=1

Zzn

n Xxn

n .

For S to be a stabilizer, the Si must mutually commute:

S · � · ST ≡ 0 mod 2, where � =
(

0 1
1 0

)
.

In the case of Pauli errors, S reduces to a standard form [27]
via a combination of row reduction (a product of stabilizers is
also a stabilizer) and permutation of qubits. Permutation of
qubits is straightforward for Pauli errors because swapping a
pair of qubits just exchanges error terms, Xn ↔ Xm and Zn ↔
Zm. However, permutations do not preserve Majorana errors,
meaning that this standard form does not apply for Majorana
errors. Searches for good error correcting codes consequently
span far too large a space to be practical, and we must therefore
look at simplified situations.

B. Initial state

Although we control the first M qubits of the chain, what
about initialization of the rest of the qubits? Here we categorize
three options.

(i) The state of the system can be initialized to some fixed
state, such as |0〉⊗(N−M), or any density matrix that commutes
with Z⊗(N−M).

(ii) The initial state is arbitrary, but we prepare the system
suitably by acting only on the encoding and decoding regions.

(iii) The initial state is entirely arbitrary, and we have no
ability or desire to prepare it.

Case (i) is not unreasonable as preparing such a state may
be significantly easier than preparing an arbitrary state of
the rest of the chain. By setting an appropriate (uniform)
magnetic field as part of the Hamiltonian, the all-zero state is
the ground state, so some form of cooling should be sufficient
preparation. Alternatively, measurement of the magnetic field
projects into an eigenstate of fixed excitation number which,
again, is sufficient.

However, no matter how strong the magnetic field,
there will always be some thermal fluctuations, introducing
excitations on the chain. Clearly, then, case (iii) is the safest
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option provided its overheads are not too large. Operation
in regime (iii) requires that all stabilizers and codewords of
the code commute with Z⊗M , i.e., all stabilizers and logical
operators contain an even number of bit flips. So, the action
of the pairwise controlled phase gates during perfect state
transfer corresponds to an even number of phase gates on each
site, i.e., nothing happens, and no entanglement is generated
between the two blocks. Since Z⊗M commutes with all logical
operators, and the stabilizers, it must itself be a stabilizer
(were it to be a logical operator, it would have to anticommute
with another logical operator in order to generate the algebra
of a qubit). This is a feature that is easy to impose when
searching for candidate codes.

Case (ii) is intermediate between cases (i) and (iii), and
prepares the initial state of the system for state transfer without
having to control anything outside the encoding and decoding
regions (this is not the standard method that is described in [12]
for achieving this feat). Here, we take one of the logical opera-
tors to be Z⊗M . All the stabilizers commute with it, but the log-
ical X operator does not. To demonstrate, consider no errors,
and no error correction. We first prepare a state |+〉 = |0〉 + |1〉
on the last qubit of the chain, wait the perfect state transfer time,
and measure the first qubit in the X basis. If the rest of the chain
is in the +1 eigenstate ofZ⊗(N−1), the |+〉 state arrives perfectly.
If it is in the opposite state, it arrives as |−〉. Hence projection
in the X basis acts to project the rest of the chain into an
eigenstate of Z⊗(N−1). That means an unknown state can now
be placed on the encoding region and sent perfectly, no matter
what the initial state of the whole system was. In practice, we
would have to use the error correcting itself. Given ZL = Z⊗M

is a logical operator of the code, we prepare an eigenstate of
the other logical operator, XL, on the decoding region, await
the perfect transfer time, and then perform error correction
on the encoding region, ultimately projecting onto XL, exactly
mirroring the unencoded case. The codes in Sec. IV are an
example of this.

III. DEPHASING CODES FROM PAULI CODES

If the matrix S̃ describes the stabilizers of some code, how
do we know what distance the code has for a particular set of
errors? Let us use the binary matrix E to describe these errors,
each of which is a product of Paulis. Each column of length
2M is a different error. The first M bits specify the locations
of the Z errors, while the second set conveys the locations of
the X errors. For example, the E corresponding to the X and
Z Pauli errors on the M qubits is just a 2M × 2M identity
matrix. Each column of S̃ · � · E (all arithmetic is calculated
modulo 2) tells us which stabilizers give a violation for that
error (the +1 values). If the code is distance d then all sets of
(d − 1) columns are linearly independent.

A convenient way to explore the possible S̃ when E corre-
sponds to the Majorana errors is to look at possible matrices
S = S̃ · � · E, and then invert the relation. Moreover, we
already know a useful set of possible matrices—the Pauli error
correcting codes of distance d—because these are matrices
such that their columns are (d − 1)-wise linearly independent
by definition. Of course they satisfy extra properties that we
may not need (S · � · ST ≡ 0), and they do not automatically
give back the commutation S̃ · � · S̃T ≡ 0.

For Majorana errors, the most natural way of writing down
E makes the mapping

Xn ↔ cn Zn ↔ cN+n,

perhaps up to different labelings. This means that

E =
(

JU JU + 1
1 1

)
P

where P is a permutation matrix that controls those labelings,
and JU denotes a matrix the upper triangular elements of
which (not including the diagonal) are all ones, and zero
otherwise. In [13], we implicitly chose a different mapping
between Pauli errors and the Majorana fermions: cn ↔ Xn and
Zn = cncN+n ↔ Zn, giving

E′ =
(
1 JU

0 1

)
P.

The different choices may be best situated for different in-
stances. For example, if we wish to correct for a generic
two-fermion error, the code associated with E would have to
be distance 5. However, with the types of error described by E′,
we will show in Sec. III that it is sufficient to have a distance
5 code for X-type errors, but only a distance 3 code for the Z

errors in spite of the fact that there can be pairs of Z errors.
This permits the design of a smaller code. Nevertheless, there
are further simplifications that can be made in certain special
cases for which E is optimal (once the required code distance
has been updated appropriately) by virtue of constructing a
perfect code (see Sec. IV).

We will now prove that if S is a CSS code it has the same
distance for Majorana errors as it does for Pauli errors. Let us
therefore consider a CSS form for S wherein

S =
(

H1 0
0 G2

)
.

H1 represents the parity check matrix for a code C1 of distance
d1, while G2 represents the generator matrix for a code C2

that satisfies C2 ⊆ C1 (i.e., H1 · GT
2 ≡ 0). G2 is also the parity

check matrix for the dual to C2, C⊥
2 , which has distance d2.

We use G1 to denote the generators of C1. By construction, S

is distance d1 for X errors and distance d2 for Z errors. Upon
calculating the stabilizer violations in the two possible cases
of E and E′, we have (neglecting the permutation matrices,
which simply reorder the columns), respectively,(

H1 H1

G2J
U G2(JU + 1)

)
,

(
0 H1

G2 G2J
U

)
.

In either case, the minimum number of columns required to
find linear dependence is preserved. Take the E′ case. An
error cn gives stabilizer violations described by column N + n

in the above matrix. What is the smallest number of other
errors that would have to occur in order to make the set of
stabilizer violations zero? In order to make the top half zero
(even ignoring the bottom half), we have to introduce a further
d1 − 1 error of the form cm. Thus, the code is at least distance
d1 to the cn errors. An error Zn gives a stabilizer violation
corresponding to column n. It would take a further d2 − 1 Z

error in order to get a linearly dependent set, so the code is
distance d2 to Z errors. Similar arguments can be made for E.
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FIG. 1. A two-fermion error on a spin chain consists of a pair
of X or Y rotations, with Z rotations in-between. Detecting bit-flip
locations in the decoding region implies the locations of intermediate
phase errors to be corrected.

We thus conclude that it is sufficient to directly select S̃

to be a CSS code. There are two different ways in which we
might represent our final codes. Once we find a suitable CSS
code, we either use it as the set of stabilizer violations (S)
and calculate the stabilizers themselves from S̃ = S · E−1, or
set the stabilizers S̃ to be of the CSS form and calculate the
stabilizer violations to be S = S̃ · E. We will use the latter.

We can now simply search through possible CSS codes.
For case (iii), we need the stabilizer of the Majorana code to
contain Z⊗M , while case (ii) requires commutation with Z⊗M .
Both impose that the row weights of G2 must be even, while
in the former case, if we use the standard form H1 = (A 1),
then the only way to create the all-ones row is to take a linear
combination of every row, implying that the columns of A have
odd weight.

Code distance for CSS codes and Majorana fermion
error correction

As observed in [13], a distance 5 CSS code is, in principle,
capable of correcting for any single phase error that occurs
during the evolution of a perfect state transfer spin chain
[11,12], simply requiring modification of how to act based on
the error syndrome. This is mathematically described above,
but conceptually, it boils down to the idea illustrated in Fig. 1:
if we use an X-error correcting part of a CSS code first, we
detect the positions of the X or Y operators in the decoding
region. Since we know these represent the ends of Majorana
fermions, these also tell us where there are sequences of Z

rotations. Once these have been corrected, the only remaining
errors are a maximum of two Z errors indicating whether the
positions with X errors were Xs or Y s.

For the explicit construction given in [13], it proved suffi-
cient to correct for 1 Z error, i.e., forming the CSS code by
combining a distance 5 and a distance 3 code instead of two
distance 5 codes, permitting a smaller encoding region. We
will now argue this is true for any CSS-based construction
code using the E′ error association.

Lemma 1. CSS codes with d1 = 5, d2 = 3 correct for a pair
of Majorana fermion errors during state transfer.

Proof. Consider the parity check matrices H1 and G2 of
code C1 and the dual to C2. H1 detects the location of any
pair of X errors (for the Pauli code, or cn for the Majorana
code; the distinction is unimportant here). If one or no X

errors were detected, the maximum number of Z errors is
1, which can be corrected for using a distance 3 code. We

then want to know that, if two X errors occur, we can correct
for any and all Z errors that might arise. These Z errors
occur on the same sites as the X errors. The only question is
whether the syndrome for a pair of Z errors occurring on a
pair of qubits necessarily gives a nontrivial syndrome that is
different from the syndromes for Z errors on either of those
qubits separately. Since G2 is distance 3, all pairs of columns
are linearly independent. Hence, distinct syndromes result.
Interestingly, this means that we are using the nondegenerate
code as if it were a degenerate code of greater distance.

The construction of asymmetric quantum codes, including
CSS codes, has already received some attention in the literature
[28–31]. The code tables [32] show that the smallest M for
which both C1 and C⊥

2 can exist is M = 13. While this does
not guarantee a solution satisfying C2 ⊆ C1, [31] states its
existence. We have found a suitable example, corresponding
to case (i), and verified that there are no case (ii) examples
[and hence no case (iii) examples either]. The generators for
the CSS code for G1 and G2 (above the line) are

1 0 0 0 0 1 1 1 0 0 1 0 1
0 1 0 0 0 1 1 0 1 1 0 1 1
0 0 1 0 1 0 1 0 1 0 1 1 1
0 0 0 1 1 1 0 1 0 1 1 1 1
0 0 0 0 1 0 0 1 1 1 0 0 1

.

For case (iii), the smallest possible solution was found to
have M = 15. The generators take the form

1 0 0 0 1 1 0 0 1 0 1 1 1 0 1
0 1 0 0 0 1 1 1 0 0 1 1 0 1 1
0 0 1 0 1 0 1 1 1 1 1 1 0 0 0
0 0 0 1 0 0 0 1 1 1 0 1 1 1 1
0 0 0 0 1 1 0 1 0 0 0 0 1 1 1

.

These describe the smallest possible CSS-type error correct-
ing codes that correct for any arbitrary two-Majorana fermion
error during the evolution of the chain, including any single
phase error, requiring either 13 or 15 qubits depending on
the starting conditions. The case (iii) reduction is particularly
dramatic compared to the 36 qubits required in [13], heralding a
significant impact on the working regimes of a noisy spin chain.

IV. RESTRICTED NOISE MODELS

In special cases, different assignments to the permutation P

can have benefits, facilitating a far more powerful application
of CSS-based constructions. We will now restrict ourselves to
perfect state transfer chains where the spectrum is symmetric
about zero. This symmetry property is a feature of the standard
perfect state transfer chain [11], and is used more broadly as
it has the useful consequence that the chain has zero magnetic
field (Bn = 0).

Lemma 2. Define the odd-parity fermions to be {c2n−1}N/2
n=1 ∪

{cN+2n}N/2
n=1. For a chain with a symmetric spectrum, time

evolution preserves the parity of fermions.
Proof. Define the matrix D = ∑N

n=1(−1)n|n〉〈n|. We recog-
nize that this anticommutes with h1. Hence, Z ⊗ D commutes
with Y ⊗ h1. The eigenvalues of Z ⊗ D are therefore constants
of the motion. Thus c1, for example, can only evolve into a
superposition of c2n−1 or cN+2n.
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A dephasing error Zn ≡ cncN+n is an even and odd pair
of fermions, and this is preserved by the time evolution.
Identifying Xn with even parity fermions and Zn with odd-
parity fermions (i.e., using the choice E), we need only correct
for up to one error of each parity.

In comparison, the Hamiltonian H is composed of pairs of
fermions of the same parity. As such, this restricted noise model
is not appropriate to timing errors (described as a power series
expansion in H ), or to perturbations in the coupling strengths.
The existence of codes specialized to these usage scenarios,
improving upon Sec. III, remains open.

Perfect quantum codes

Our target is thus to design a code that can correct for up
to r bit-flip errors and up to r phase flip errors, as Gottesman
achieved in [27]. A CSS construction where both codes are
distance 2r + 1 is sufficient because the two error types
are corrected independently. What is remarkable is just how
efficient the code becomes.

Lemma 3. A perfect classical code with parity check matrix
H has a corresponding quantum code H1 = G2 = H , which
is a perfect case (ii) solution for dephasing noise on spectral-
symmetric chains.

Proof. The definition of a perfect code is that every state
in the space is used for detecting a different error, i.e., for
the classical codes, 2M = 2k

∑(d−1)/2�
i=0

(
M

i

)
, while for our

quantum code, it would mean

2M = 22k−M

((d−1)/2�∑
i=0

(
M

i

))2

.

The latter trivially follows from the former. The only nontrivial
perfect codes are the Golay code and the Hamming codes.
These are all weakly self-dual, meaning that HHT ≡ 0 mod 2,
as required for the CSS construction. The row weights are
all even, showing that all the stabilizers commute with X⊗M

and Z⊗M . Clearly these terms cannot be contained within the
code because they mutually anticommute—they are logical
operators of an encoded qubit. This means they are solutions
for case (ii) [and consequently case (i)], but not case (iii).

The Hamming (7,4,3) yields the usual Steane [[7,1,3]] code
[9]. The other Hamming codes yield [[2r − 1,2r − 2r − 1,3]]
codes that have capacity approaching 1, while correcting for
one phase error during transfer. Meanwhile, the Golay code
gives a [[21,3,7]] code, the additional distance of which hints
at exciting prospects.

Codes such as the seven-qubit Steane code are not usually
considered to be perfect because the ability to correct for
combinations of X and Z errors over and above the basic
distance of the code is usually irrelevant, but it is absolutely
essential in the present context.

While the best case (iii) solution is not a perfect code, the
reduction to ten qubits, with generators

1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 1 1 0 1 1
0 0 1 0 1 1 1 0 0 0
0 0 0 1 1 0 1 1 1 1
0 0 0 0 1 1 0 1 1 0

,

also represents a marked improvement.

FIG. 2. For a chain of length N = 12, comparison of state transfer
success for perfect encoding (M = 7, averaged over all pure single-
qubit input states) and no encoding. The rest of the chain was
initialized as |0〉⊗(N−M).

V. SIMULATIONS

We have proven that the [[7,1,3]] code can always correct
for a single dephasing error, occurring at an unknown position
and time during the transfer. However, it is more natural to
consider dephasing noise, with dephasing rate γ , described by
the master equation

dρ

dt
= −i[H,ρ] + γ

N∑
n=1

ZnρZn − Nγρ.

We expect the code to be effective here as well—for sufficiently
small error rates (2Mγ t0 ∼ 1, recalling that t0 ∼ N if the
maximum coupling strength of the chain is bounded), only one
dephasing error is expected, which we know can be corrected.
One can immediately see the critical importance of minimizing
M . The numerical simulation of Fig. 2 shows that there is an
operating regime for small dephasing rates such that the encod-
ing outperforms no encoding. To generate this, we selected the
standard solution of perfect state transfer, Jn = √

n(N − n).
Simulation of other similar chain lengths yielded indistinguish-
able curves, consistent with the predictions of [13].

Other scenarios in which a small number of Majorana
fermions can be expected include Hamiltonian perturbations
and timing errors. However, neither of these preserves the
parity of the fermions involved, so our perfect codes cannot
be used. The optimal codes of Sec. III (consisting of 13 or
15 qubits) yield qualitatively similar performance to those
presented in [13] (for a 15-qubit code).

VI. IMPOSSIBILITY OF CORRECTING BIT-FLIP NOISE

So far, we have concentrated on showing how to correct for
errors that can be described as a small number of Majorana
fermions. While it is not uncommon that one particular type
of noise dominates another, a frequently studied noise model
is depolarizing noise, wherein errors of X, Y , and Z types all
act with equal likelihood. If we are to tolerate such noise, we
must be able to correct for a single X error occurring at any
site, at any time. The purpose of this section is to argue that
it is impossible to do this perfectly unless the encoding region
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is at least half the size of the whole spin chain, for which
there are trivial solutions. We assume that the system outside
the encoding and decoding regions is initialized to the all-zero
state. To achieve this, we will specialize to showing that an error
XN/2+1 (N even) at time t0/2 cannot be perfectly corrected.
This is expected to be the most destructive instance, requiring
the largest number of fermions (by symmetry), maximizing the
proportion of a single transferring excitation on that site.

Rewriting the error XN/2+1 as Z1Z2 . . . ZN/2cN/2+1, we can
treat the evolution of the cN/2+1 independently from the other
terms, so let us neglect it for now. Instead, consider the time
evolution of everything else:

U = e−iH (2t0−t0/2)Z1Z2 . . . ZN/2e
−iH t0/2.

We made the total evolution time 2t0 (perfect revival) instead of
t0 (state transfer) for simplicity; it does not affect the ultimate
conclusion. We need a basis of states on the encoding region
(of M qubits), and while we could select the computational
basis there is a more natural basis to choose. Inspired by
[16], we calculate the M × M matrix W = �inU�in, where
�in projects onto the first excitation subspace of the input
spins. The eigenvectors of W ,

∑M
m=1 λnm|m〉, define creation

operators

a†
n = 1

2

M∑
m=1

λnm(cm − icN+m),

which provide the requisite basis. Moreover, the corresponding
eigenvalues λn indicate the probability amplitude with which
such an excitation returns to the encoding region at the revival
time. These act independently, hence the probability amplitude
that a pair of excitations both return is the product of the two
eigenvalues.

Encoding a qubit requires two logical states, at least one of
which must have some excitations. So, consider the component
of that state which has the maximum number of excitations.
Unless there is a value |λn| = 1, there is a nonzero probability
that none of these excitations arrive on the encoding or
decoding region. Hence, there is a term |0〉〈0|⊗M in the arrival
density matrix (we chose the maximum excitation number to
ensure that this component gives no off-diagonal terms). Since
both logical states have at least some component of |0〉〈0|⊗M ,
they cannot be perfectly distinguished. We conclude that the
logical qubit cannot be perfectly error corrected.

We now reintroduce the evolution of cN/2+1. Provided there
is no value |λn| = 1, the time evolution of cN/2+1(t0/2) cannot
localize onto just the encoding region—that result would
provide one such eigenvector. Considering the component that
does not arrive on the encoding region, there continues to be a
|0〉〈0|⊗M element in the density matrix of each logical state.

The only assumption that remains is that there is no value
|λn| = 1. Let

R = �1U�1 = eih1t0/2D̃e−ih1t0/2,

let D̃ = diag(−1, − 1, . . . , − 1,1,1, . . . 1), and let �1 be the
projector onto the single excitation subspace for the whole
chain. Given that W is the Mth principal submatrix of R, its

eigenvalues are contained within the range of eigenvalues of
R, which are ±1 given that R2 = 1. For Hermitian matrix W ,
with entries wij , the eigenvalues are contained within the discs:

wii ±
√∑

j �=i

|wij |2.

However, Lemma 4 will prove that wii = 0. Moreover, if we
took the entire row of R, then the sum-mod-square is 1. Since
Lemma 5 proves that |wi,N+1−i | > 0, and hence

N/2∑
j=1

|wij |2 < 1,

for i � N/2, W does not have any singular values equal to 1
if the size of the encoding region is M � N/2.

Lemma 4. Assuming h1 has a symmetric spectrum, the
elements 〈n|R|n〉 = 0 for all n.

Proof. If we let e−ih1t0/2|n〉 = ∑
m αm|m〉, then it is suffi-

cient to show that |αm| = |αN+1−m| for all m.
By symmetry, we have that

e−ih1t0/2|N + 1 − n〉 =
∑
m

αN+1−m|m〉.

Since Dh1D = −h1 provided h1 has a symmetric spectrum,
up to a ±1 phase,

eih1t0/2|N + 1 − n〉 = D
∑
m

αN+1−m|m〉.

However, by the perfect state transfer property, we have
eih1t0/2|N + 1 − n〉 = e−ih1t0/2|n〉, up to a global phase. Thus,
up to a global phase, we have∑

m

αm|m〉 = D
∑
m

αN+1−m|m〉,

as required.
Lemma 5. Assuming H is the standard perfect state transfer

chain of [11], and N even, the elements 〈n|R|N + 1 − n〉 �= 0
for all n.

We believe this to be true more generally, but the extension
remains unproven.

Proof. Given that

eih1t0/2 = − 1

2(N−1)/2

N−1∑
n,m=0

|n + 1〉〈m + 1|

×
√(

N − 1

n

)(
N − 1

m

)
in+m

× 2F1(−n, − m; 1 − N ; 2)

for the standard perfect state transfer chain, we can compare
this to the eigenvectors of the system, explicitly given in [24].
This reveals that e−ih1t0/2|m〉 and |λm〉 have amplitudes on each
site of equal magnitude. Hence,

〈n|R|m〉 = 〈λn|D̃|λm〉.
Since the diagonal matrix flips the symmetry of a vector,
the elements 〈n|R|m〉 = 0 if n and m have the same parity,
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subsuming Lemma 4. Furthermore, R is Hermitian (and
imaginary). Concentrating on m = N + 1 − n,

〈λn|D̃|λN+1−n〉 = −2
N/2∑
k=1

λ2
n,k(−1)k+1,

since we know that the eigenvector elements satisfy
λN+1−n,k = (−1)k+1λn,k . Substituting the eigenvector relation
λnλn,k = Jk−1λn,k−1 + Jkλn,k+1 causes neighboring terms in
the sum to cancel, leaving only

〈λn|D̃|λN+1−n〉 = 2λ2
n,N/2+1

JN/2

λn

(−1)N/2+1.

For even N , the eigenvalues cannot be zero, as eigenvalues
occur in ±λ pairs and are nondegenerate. Furthermore, since
|λn,N/2+1| = |λn,N/2|, if it were the case that λn,N/2+1 = 0,
there would be two consecutive zeros, and the only possible
solution in that case is for the entire eigenvector to be zero. We
therefore conclude that 〈λn|D̃|λN+1−n〉 �= 0 for all n.

In contrast to this result that error correction of a single
bit flip is impossible unless M > N/2, [19] explicitly shows,
once M > N/2, how to find states that at time t0/2 are
entirely localized on the first half of the spin chain, and are
hence entirely unaffected by the act error operation. Indeed,
with M = N/2 + 1, at least two a

†
ns return perfectly; call

them a
†
1 to a

†
2. Define the two logical states to be |0〉⊗N and

|1〉⊗M |0〉⊗(N−M). After the evolution, the encoding or decoding
region of the first logical state never contains more than one
excitation (coming from cN/2+1), while the second always has
at least two excitations (as the original encoding certainly
contained a

†
1 and a

†
2, neither of which can be removed by

cN/2+1), so this guarantees that this specific error can be
corrected, as indeed can any single X error at any position
and time because while the appropriate a

†
1 and a

†
2 are different

for every position and time, no matter the basis, the state
|1〉⊗M always contains them. An alternative perspective is
that if M = N/2 + 1 then even if the maximum number of
excitations (N/2 − 1) are left outside the encoding or decoding
region there must be at least two remaining on the encoding or
decoding region.

We have therefore exactly determined when error correction
of a single unknown bit-flip error is possible, at least for
the standard instance of perfect state transfer. However, it
requires such a large encoding region that trivial solutions arise
(encode on a single common spin, and decode from that spin
immediately), and we consider it outside the bounds of interest
for spin chains, for which the encoding or decoding region
should be much shorter than the length of the chain.

VII. CONCLUSIONS

In this paper, we have studied the error correction of perfect
state transfer, improving markedly upon the results of [13]
for dephasing noise by specifying optimal error correcting
strategies. It is important to note that the method of error
correction is largely independent of the spin chain; we used
the fact that the chain was capable of perfect state transfer, and
the best error correcting codes required a perfect state transfer
chain with no magnetic field. One typically expects that CSS

codes are not the best, and that they can be outperformed by
error correcting codes that do not separate out the X and Z

errors into distinct cases. The perfect five-qubit code [23] is one
such example of an improvement over the best, seven-qubit,
CSS code [9]. There is also an 11-qubit, distance 5, non-CSS
code [27]. However, in the present context, we used CSS codes
far more efficiently than in the usual Pauli-error context and,
indeed, the fact that the resultant codes are perfect for Majorana
errors proves that there can be no better.

This paper was predicated on the assumption of choosing
a perfect state transfer system. However, as soon as there is
noise present, transfer is not perfect. At that point, we should
assess whether there are imperfect transfer schemes that are
more tolerant of noise. Indeed, there are. Solutions such as
[33] provide high-fidelity transfer at shorter times. Since the
time is shorter, the dephasing has less effect, and this difference
can more than compensate for the imperfect transfer fidelity
in the non-noisy case. The crucial step for future studies, in
terms of improving the operating regime depicted in Fig. 2,
is to optimize the chains used. That said, this will require a
nontrivial step in the theory because solutions such as those
of [33] are unsuitable without further modification. Those
schemes are tuned specifically for end-to-end transfer. They
generate high transfer fidelity between |1〉 → |N〉 at a higher
speed, at the cost of the transfer fidelity between intermediate
sites. However, error correction requires high-quality transfer
for all pairs |n〉 → |N + 1 − n〉 where n � 7 is in the encoding
region. For example, the optimal N = 42 solution from [33]
has a 1 → 42 excitation transfer fidelity of 0.993 in a time
0.77t0 (where t0 is the perfect transfer time for a system with the
same maximum coupling strength), but the fidelity for 5 → 38
is less than 0.4.

While error correction of phase errors is possible, we have
shown that exact error correction of other errors, such as a
single bit flip, is not possible during a perfect state transfer. We
are thus constrained to using systems for which phase noise is
dominant over depolarizing noise, and for which state transfer
can be achieved in a time shorter than the depolarizing time.
Importantly, this proof is not contingent upon the description of
the error correction in terms of Majorana fermions—there is no
description that permits error correction of these bit-flip errors.
That said, while perfect correction of even a single bit flip is
impossible, the effects can be mitigated via an approximate
error correction. A repetition code followed by majority vote
can be expected to have some advantage. For example, on a
chain of 21 qubits, and a single X error occurring at t0/2 on
qubit 11, an unencoded transfer has an error probability of 85%,
while a three-qubit repetition code reduced that to 7%, while
a five-qubit code yields a further improvement to 0.0006%.
Clearly, this has the potential to be extremely effective against
bit-flip errors, and could be combined with the codes developed
here for phase flips in order to provide reasonable robustness
against depolarizing noise.

Note added. Some aspects of the formalism, although not
the setting, are similar to that developed in [34].
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