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Quantum devices, from simple fixed-function tools to the ultimate goal of a universal quantum computer, will
require high-quality, frequent repetition of a small set of core operations, such as the preparation of entangled
states. These tasks are perfectly suited to realization by a coprocessor or supplementary instruction set, as is
common practice in modern CPUs. In this paper, we present two quintessentially quantum coprocessor functions:
production of a Greenberger-Horne-Zeilinger state and implementation of optimal universal (asymmetric)
quantum cloning. Both are based on the evolution of a fixed Hamiltonian. We introduce a technique for deriving
the parameters of these Hamiltonians based on the numerical integration of Toda-like flows.
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I. INTRODUCTION

The task of quantum state synthesis [1,2] lies at the heart of
any potential quantum technology: before a quantum protocol
can be run, be it a Bell test [3], quantum key distribution
[4], quantum cloning [5–7], random-number generation [8], or
quantum computation [9], a nontrivial quantum resource must
be prepared. The required resource might be a fixed quantum
state such as a Bell state, W state, cluster [9], or Greenberger-
Horne-Zeilinger (GHZ) state, or it might depend on a small
input, such as the unknown state of a qubit. The availability
of these resource states is the source of the power of quantum
technologies. Repeated demands for the same resource state
make it vital to concentrate on their accurate functioning. This
suggests developing a device that accomplishes that single
task, replacing a complex sequence of quantum gates. These
might provide the first step in a quantum protocol (i.e., the core
functionality of a particular quantum technological device) or
operate as a fixed-function subroutine within a quantum com-
puter, much as today’s classical processors provide enhanced
instruction sets (e.g., Streaming SIMD Extensions (SSE) and
Advanced Vector Extensions (AVX)) or coprocessors. Our
aim is to produce the desired states and transformations by
the free evolution of a Hamiltonian whose parameters have
been specifically tuned for the task. By doing this directly
with the system’s Hamiltonian for any relevant experimental
scenario, whether this is in the solid state [10,11], trapped
ions [12], or even photonic systems [13–15], we ensure that
the state is produced as accurately and as quickly as possible,
reducing the opportunities for external influences to degrade
the resource.

One special case of this has been extensively studied:
perfect quantum state transfer [16–20], wherein an unknown
quantum state can be transported between the two extremes of
a one-dimensional chain of spins. This example demonstrates
the power of the approach: it is twice as fast as the equivalent
quantum gate sequence [21], and many of the error modes are
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relegated to the manufacturing process; they can be identified
prior to use and corrected or simply rejected until a higher-
quality version is produced [15]. In addition to perfect state
transfer, the same device can create graph states [22], of which
the cluster states and GHZ states are special cases (albeit in
an unusual basis). Minor modifications [19,23,24] have also
permitted the creation of Bell states between the extremal
sites of the chain. More recently [1,2], new systems have been
created to facilitate the synthesis of arbitrary one-excitation
states on the chain, such as W states between subsets of sites,
while more exotic interactions have been shown to cause signal
amplification, ideal for enhancing measurement signals [25].

In this paper, we develop a coprocessor that creates GHZ
states in a particularly straightforward manner (see Sec. II).
Moreover, the one-dimensional transverse Ising model that
we introduce is highly appropriate for many experimental
scenarios from superconducting qubits [10,11] to trapped ions
[12] and demonstrates a reasonable robustness to experimental
imperfections (see Sec. II A). In Sec. III, we also show how
the state synthesis solutions of [1,2] can be combined with
the GHZ coprocessor to implement optimal universal cloning
of one unknown qubit to N clones [7,26,27]. While the
circuits in [27] were probabilistic in nature, the present scheme
constitutes a reliable implementation of optimal universal
asymmetric cloning, demonstrating that fixed-function devices
can perform transformations based on a small input space and
realize highly nontrivial quantum properties. In Sec. III A 1,
we also introduce the state synthesis problem for uniformly
coupled networks (as compared to chains with engineered
couplings) and demonstrate that some hypercubes are useful
for generating the uniform superpositions (W states) that are
desirable for symmetric cloning.

Crucial to the specification of both coprocessors is the
numerical discovery of appropriate Hamiltonian parameters.
We introduce a technique based on the numerical integration
of a differential equation, the Toda flow. This is the main focus
of Sec. III A, along with discussions of convergence issues in
the Appendix. Variants of this [28] and good techniques for its
numerical integration [29–31] have been extensively studied
in the numerical-analysis and numerical-methods literature.
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Perfect excitation transfer

Throughout this work, we will rely on many of the insights
previously developed in the study of perfect state transfer. In
essence, the core of this is that there is an N × N tridiagonal
matrix

h
(N)
PST =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 J
(N)
1

J
(N)
1 0 J

(N)
2

J
(N)
2 0 J

(N)
3

. . .
. . .

. . .

J
(N)
N−2 0 J

(N)
N−1

J
(N)
N−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix has a basis {|n〉}Nn=1, and the coupling strengths are
chosen such that

e−ih
(N)
PST t0 |n〉 = (−i)N−1|N + 1 − n〉. (1)

The standard solution [17] for these couplings is J (N)
n =√

n(N − n) and t0 = π/2. Although there are infinitely many
others, some analytic [32] and some numeric [19,33], this first
solution optimizes many desirable features such as the speed
of transport [21,34,35]. On the other hand, [33] provides an
insightful method for producing coupling schemes that are
close to some desirable configuration, perhaps imposed by
experimental restrictions.

The key properties of h
(N)
PST are related to its symmetry and

its spectrum [19]. The evolution time has to be long enough
that a relative phase of π (modulo 2π ) is generated between
neighboring eigenvectors. As such, the minimum transfer time
is related to the minimum eigenvalue gap � via t0 � π/�.

II. GHZ-STATE CREATION

Systems such as the transverse Ising are now routinely
accessed or simulated in quantum devices [36]. The N -qubit
Hamiltonian is

HI =
N∑

n=1

JnXn +
N−1∑
n=1

BnZnZn+1,

where Xn and Zn denote the Pauli X and Z matrices, re-
spectively, acting on qubit n. We will now show how the
parameters Jn and Bn can be tuned so that an initial separable
state of |0〉⊗N , which is easily prepared, evolves to a maximally
entangled GHZ state in fixed time.

The evolution under HI is solved via a Jordan-Wigner
transformation [37]. We invoke the Majorana fermions

c2n−1 = X1X2 · · · Xn−1Zn c2n = X1X2 · · · Xn−1Yn.

These evolve under HI independently according to

cn(t) = e−iHI t cne
iHI t =

2N∑
m=1

cm〈m|e−2ih1t |n〉,

where h1 is the 2N × 2N matrix

h1 = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 B1

−B1 0 J1

−J1 0 B2

. . .
. . .

. . .

−BN−1 0 JN−1 0

−JN−1 0 BN

−BN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the Majorana fermions form a basis, specifying the
evolution invoked by this matrix h1 fixes the evolution of
the entire system. Moreover, the tridiagonal structure of h1

is easily transformed into the form of a real symmetric tridi-
agonal, which has been well studied for perfect state transfer
[16,17,19].

Recall that J (N)
n are the coupling strengths for a perfect-

state-transfer scheme that has a transfer time t0. By making the
same identification as [20],

Jn = J
(2N)
2n , Bn = J

(2N)
2n−1,

then h
(2N)
PST satisfies Eq. (1), and

h
(2N)
PST =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 B1

B1 0 J1

J1 0 B2

. . .
. . .

. . .

BN−1 0 JN−1 0

JN−1 0 BN

BN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Introducing the unitary

D =
2N∑
n=1

in−1|n〉〈n|,

we can transform between h
(2N)
PST and h1,

h
(2N)
PST = Dh1D

†.

This also updates the evolution,

e−ih1t0 |n〉 = D†e−ih
(2N)
PST t0D|n〉

= (−i)2N−1in−1D†|2N + 1 − n〉
= (−1)n|2N + 1 − n〉.

It follows that cn(t0/2) = (−1)nc2N+1−n.
We can now decompose the initial separable state in terms

of the Majorana fermions,

|0〉〈0|⊗N = 1

2N

[
N−1∏
n=1

(1 + ZnZn+1)

]
(1 + Z1),

= 1

2N

[
N−1∏
n=1

(1 + ic2nc2n+1)

]
(1 + c1). (2)

After evolution under HI for time t0/2, terms such as c2nc2n+1

transform into −c2N+1−2nc2N−2n = c2N−2nc2N+1−2n via the
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anticommutation of the fermions. Hence, the product involving
pairs of fermions is unchanged, and the final state must become

1

2N

[
N−1∏
n=1

(1 + ic2nc2n+1)

]
(1 − c2N ).

This is the same (up to a global phase) as the pure state

|GHZ〉 = 1√
2

(|0〉⊗N − i|1〉⊗N ). (3)

We have successfully engineered an Ising chain that creates
GHZ states by its natural dynamics. The transfer time scales
linearly with N if a maximum coupling strength is imposed,
which is the best possible scaling for a one-dimensional
system [38].

The evolution after subsequent periods of t0/2 is readily
determined since

(1 + c1) → (1 − c2N ) → (1 − c1) → (1 + c2N ) → (1 + c1),

so the state evolves as

|0〉⊗N → |GHZ〉 → −i|1〉⊗N → −iZ1|GHZ〉 → −i|0〉⊗N

(4)

(indeed, the phase Z1 might equally well be applied on any
qubit). The only part that is not justified is the global phase.
However, we know that

|0〉⊗N → |GHZ〉, |1〉⊗N → Z1|GHZ〉,
so by linearity, we can evaluate |GHZ〉 → −i|1〉⊗N .

It is also now straightforward to determine the evolution
of other basis states, which we will make use of in Sec. III.
Consider an input state |x〉 for x ∈ {0,1}N . We can alternatively
write this as Xx |0〉⊗N , where Xx has Pauli X operators applied
on the sites where the bit value of the string x is 1 and identity
on the other sites. Each Xn = ic2n−1c2n and therefore evolves
to XN+1−n. So, if xR is the reversal of bit string x, we have

|x〉 = Xx |0〉⊗N �→ XxR
|GHZ〉. (5)

These models are well suited to near-term experimental
realization. For example, [36] uses Rydberg atoms in a chain
to produce a Hamiltonian which can, in principle, be tuned to
give an Ising model of up to 51 qubits. The main challenge is
to make the fields Bn and Jn a similar strength. Currently,
|Bn/Jn| � δ � 0.1. While incompatible with the standard
perfect-state-transfer couplings [17], other techniques such as
that in [33] can return the couplings for suitable perfect-transfer
schemes. However, this means that there are two eigenvalues
of h1 which are separated by O(δN ) (corresponding to the
unpaired fermions of the Majorana chain described by Kitaev
[39]). Consequently, the time for generating the GHZ state
scales as �(δ−N ), which is currently prohibitive.

A. Robustness of GHZ synthesis

While we have identified the main experimental challenge,
the necessary accuracy of engineering for the system parame-
ters could be a concern. This is particularly acute in the case of
GHZ-state synthesis because the state in Eq. (2) is described
in terms of a large number (up to 2N − 1) of Majorana
fermions. If each is transported with some subunital fidelity,

FIG. 1. Average overlap with |GHZ〉 for N = 21 when the pa-
rameters Bn and Jn are all chosen uniformly at random within a range
of ±x% of the value they should be (the “standard” perfect transfer
couplings [17]), using 1000 samples.

the overall success of the synthesis could be quite minimal. In
fact, the situation is not nearly so bleak, and the system has a
good tolerance of these imperfections. A good estimate of the
overlap of the output state 〈GHZ|e−iHI t0/2|0〉⊗N is

≈ 1 + |F |
2N

√
det(e−ih1t0h0eih1t0h0 − 1),

where F = 〈2N |e−ih1t0 |1〉 is the single-excitation transfer
fidelity and

h0 =
N−1∑
n=1

|2n〉〈2n + 1| − |2n + 1〉〈2n|.

This exactly evaluates the evolution of
∏N−1

n=1 (1 + ZnZn+1),
comparing it to itself, by writing it as a fermionic Gaussian
state [40,41]. The additional effect of the single excitation c1

is then approximated, ignoring possible interactions with the
Gaussian component. This approximation facilitates numeric
simulations, and Fig. 1 demonstrates the effect on a chain of
size 21.

It must be emphasized that these results are very basic,
merely measuring the overlap with the target state. When this
device is made, we will characterize the state that is produced
and adapt for its imperfections, such as applying an optimized
choice of local unitaries. This can serve only to increase the
figure of merit. Or can we witness the presence of different
types of entanglement, in particular, k-body entanglement for
k ∼ N? Existing entanglement witnesses are not yet sophisti-
cated enough to be able to discriminate this.

On the other hand, one thing that we cannot easily do is
replace the perfect-transfer couplings with a coupling scheme
that achieves nearly perfect transfer (but with a shorter transfer
time, making the system less susceptible to noise and some
perturbations), such as those suggested in [42]. Those schemes
are tuned specifically for end-to-end transfer. They generate
high transfer fidelity between |1〉 and |2N〉 at a higher speed,
at the cost of the transfer fidelity between intermediate sites.
However, GHZ synthesis requires high-quality transfer for all
pairs |n〉 → |2N + 1 − n〉. For example, the optimal N = 21
solution from [42] has a 1 → 42 excitation transfer fidelity of

032316-3



ALASTAIR KAY PHYSICAL REVIEW A 97, 032316 (2018)

0.993 (which is roughly reproduced by the 3% perturbed chains
in Fig. 1) but generates the GHZ state with only an overlap of
0.762 due to the vastly lower transfer fidelities in the middle
of the chain, such as for 5 → 38, which is less than 0.4.

B. GHZ creation in the XY model

A generalization of HI can be written as

HZY =
N∑

n=1

BnXn +
N−1∑
n=1

Jn(1 + γn)ZnZn+1

+ Jn(1 − γn)YnYn+1.

This model is also a free-fermion model and has the same
Majorana fermions as HI . Starting from the same initial state
as described by Eq. (2), the only possible difference is what
those Majorana fermions can evolve into, which is again
governed by a 2N × 2N matrix hγ , similar to h1. We are
interested in whether this broader class of Hamiltonians can
also produce the GHZ state, again in the hope of improving
experimental viability. For pedagogical simplicity, we will
fix γn = γ for all n, although there is no such restriction
arising in the mathematics. We could equally well consider the
Hadamard-transformed version of this Hamiltonian, which is
the more familiar XY model:

HXY =
N∑

n=1

BnZn +
N−1∑
n=1

Jn(1 + γn)XnXn+1

+ Jn(1 − γn)YnYn+1.

In this case, the initial state would be (H |0〉)⊗N , and the final
state would be H⊗N |GHZ〉.

We already know two solutions for this matrix. At γ = 1
(vanishing YY terms), we have already fixed Bn = J

(2N)
2n−1 and

Jn = J
(2N)
2n /2, while for γ = 0, Bn = N and Jn = J (N)

n /2
come from perfect state transfer. Indeed, this last solution is
the usual perfect-state-transfer chain (using HXY ), and it was
already observed in [22] that this system is capable of creating
the GHZ state (in a nonobvious basis).

Solutions for both values of γ have the same eigenvalues,
±1,±3,±5, . . . ,±(2N − 1). We are hence interested in inter-
mediate values of γ , with the same spectrum. We shall do this
by providing a numerical routine to interpolate between the
two known solutions. We believe the form of the isospectral
transformation is new to the spin-chain community, although
it is well studied in the numerical-methods and -analysis
literature [28–31].

We permute the elements of hγ , grouping odd-numbered
and even-numbered basis elements together. The matrix then
decomposes as

hγ = i|0〉〈1| ⊗ X(γ ) − i|1〉〈0| ⊗ XT (γ ),

where X(γ ) is a nonsymmetric matrix,

X =
N∑

n=1

Bn|n〉〈n| +
N−1∑
n=1

Jn(1 + γ )|n〉〈n + 1|

+
N−1∑
n=1

Jn(1 − γ )|n + 1〉〈n|.

The spectrum of hγ is ±λi , where λi are the singular values
of X. Hence, it is sufficient to perform an isospectral transfor-
mation on X. To achieve this, we observe that if A and B are
anti-Hermitian, then

X(t) = e−BXeA

describes an isospectral flow. Taking the derivative,

dX

dt
= XA − BX. (6)

So any small, anti-Hermitian A, B will achieve an isospectral
transformation; we just need to select them so that X retains
the properties that we want it to:

(1) X is tridiagonal; that is, 〈m|XA|n〉 = 〈m|BX|n〉 for any
n,m such that |n − m| > 1.

(2) C is centrosymmetric in the sense 〈n|X|m〉 =
〈N + 1 − m|X|N + 1 − n〉. We anticipate this being a nec-
essary condition in the same way that it is for state transfer
[19], although this is unproven.

(3) We require 〈n + 1|X|n〉/〈n|X|n + 1〉 = 1−γ

1+γ
to be the

same for all n.
As conditions on the matrix X, if it satisfies them at any

given value, we can ensure they are upheld on subsequent
values by imposing them on the derivatives. For a given X,
each condition is linear in the coefficients of A and B, and the
number of constraints coincides perfectly with the number of
coefficients, permitting solution. By performing a numerical
integration starting from a known solution for X(0) (which, as
already observed, we know for γ = 0,1) any desired value of
γ can be arrived at.

Equation (6) can be integrated following two different
philosophies. First, one can integrate it directly, i.e., setting
the next X to be

X �→ X + δ(XA − BX).

The structural aspects of X are preserved exactly, but the
isospectral transformation is accurate only to O(δ2) for each
step of size δ, giving an overall accuracy of O(δ). Alternatively,
one can perform the update

X → e−BXeA.

This unitary transformation is isospectral, but the structural
properties such as tridiagonality are accurate only to O(δ2).
Nevertheless, there is the facility to compensate for any error
in the next step, preventing it from accumulating during the
integration. Moreover, if δ is shrunk as a solution converges,
then the accuracy is arbitrarily good. Throughout this paper, we
use first-order (Euler) integrations. While they appear to serve
very well, isospectral flows of this form are often challenging
to integrate [43], and novel techniques such as Runge-Kutta-
Munthe-Kaas, have been developed [29,30]. These may be
used to improve performance in the future.

We conclude that any model HZY can be tuned to achieve
GHZ-state generation. An explicit demonstration is given in
[44] for 21 qubits and γ = 0.7 (integrating from γ = 0, using
the direct method). The modest choice of size derives only from
memory limits of simulating a full Hamiltonian for verification.
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III. OPTIMAL CLONING

Production of the GHZ state has shown that although studies
of state transfer are often constrained to the single-excitation
subspace, the same ideas can be applied to generate interesting
evolution in multiple excitation sectors. For the GHZ state,
this was a fixed input providing a fixed output. Are there other
protocols that we might consider? An arbitrary unitary seems
to be out of the question, even within the single-excitation
subspace; if we use a state synthesis routine [1,2], then we can
choose the evolution of a particular excitation, say, |1〉 → |ψ〉.
But then the possible evolution of other input states is tightly
constrained. For example, since |2〉 = H |1〉/J1,

e−iH t |2〉 = 1

J1
He−iH t |1〉 = 1

J1
H |ψ〉.

So, if |ψ〉 is confined to a small set of sites, |2〉 evolves
only onto those and neighboring sites. Perfect state transfer
demonstrates this: any system that transfers |1〉 → |N〉 must
also transfer |n〉 → |N + 1 − n〉; there is no freedom to choose
these transformations. Still, there may be interesting protocols
that depend upon a small input subspace. Perfect state transfer
is one such example, wherein the possible inputs are spanned
by a basis of two states. Another example is 1 → N cloning.
The optimal 1 → N universal asymmetric cloning machine
[7,26,27] implements the (not necessarily unique) transforma-
tion

|0〉 �→ A|0〉⊗N +
N∑

n=1

βn|1〉⊗(n−1)|0〉|1〉⊗(N−n),

|1〉 �→ A|1〉⊗N +
N∑

n=1

βn|0〉⊗(n−1)|1〉|0〉⊗(N−n), (7)

where

A =
N∑

n=1

βn, B2 =
N∑

n=1

β2
n,

and βn determine the asymmetry of the cloning quality via the
single-copy average fidelities,

Fn = 2 + (βn + A)2

6
,

and satisfy the normalization A2 + B2 = 1. We will now show
how this can be implemented using spin chains. There is not
a single spin chain that achieves this entire transformation,
but we can use spin chains as tools that massively simplify the
sequence of quantum gates that need to be applied. To that end,
consider a set of M = 2N − 1 qubits. One qubit, k + 2, is the
unknown state to be cloned |ψ〉, but rotated by a phase gate,
and we still aim to produce N clones on the odd-numbered
qubits. The rest are prepared in the separable state:

|0〉⊗k(A|0〉 + iB|1〉) ⊗
√

Z|ψ〉 ⊗ |0〉⊗(M−2−k).

This can be decomposed into the four basis states

|0〉⊗k|x〉|0〉⊗(M−2−k)

for x ∈ {0,1}2. We evolve with any M-qubit, GHZ-generating
HZY for the generation time. According to Eq. (5), this

produces the states

X
x1
M−kX

x2
M−k−1|GHZ〉.

Now, we apply a controlled-phase gate between the qubits M −
k and M − k − 1. The effect is that if the two bits of x are the
same value, this works like a phase gate on the |GHZ〉 state
[skipping two steps in Eq. (4)], while it does nothing if the two
bit values are different. Then, we repeat the GHZ evolution.
Referring to Eq. (4), this returns X

x1
k+1X

x2
k+2|0〉⊗M if the two

bits of x are equal and X
x1
k+1X

x2
k+2|1〉⊗M otherwise. Overall,

|0〉 �→ A|0〉⊗M + BXk+1|1〉⊗M,

|1〉 �→ AXk+2|1〉⊗M + BXk+1Xk+2|0〉⊗M

have been implemented (the inputs being the basis of the qubit
to be cloned). Finally, we apply a controlled-NOT controlled
from qubit k + 1 and targeting qubit k + 2. This gives the
overall transformation

|0〉 �→ A|0〉⊗M + B|1〉⊗k|0〉|1〉⊗(M−1−k),

|1〉 �→ A|1〉⊗M + B|0〉⊗k|1〉|0〉⊗(M−k−1).

In fact, the entire transformation up to this point can be
implemented by a single Hamiltonian evolution, using a less
physically motivated Hamiltonian, based on a tuned three-body
cluster-state Hamiltonian [25]. Alternatively, as already ob-
served, one can replace the Ising-generating Hamiltonian with
a perfect-state-transfer Hamiltonian by applying a Hadamard
transform before and after. This has the advantage of making
the form of the Hamiltonian for the GHZ generation and state
synthesis parts the same, up to modification of the coupling
strengths, at the cost of adding some local Hadamard gates.

From here, we can get our overall desired cloning transfor-
mation, creating the N clones on the odd-numbered qubits of
the chain, if we can implement

|0〉⊗M �→ |0〉⊗M,

|1〉⊗M �→ |1〉⊗M,

|k + 1〉 �→
∑N

n=1 βn|2n − 1〉
B

,

∣∣k + 1
〉 �→

∑N
n=1 βn

∣∣2n − 1
〉

B
,

where |0〉⊗(k−1)|1〉|0〉⊗(M−k) = |k〉 and |k̄〉 = X⊗M |k〉. The
first two transformations are automatic for an exchange-
coupled spin chain,

HXX =
M−1∑
n=1

Jn

2
(XnXn+1 + YnYn+1), (8)

because |0〉⊗M and |1〉⊗M are null vectors of HXX. Assume that
couplings can be found to implement the third transformation
in a time t0 [1,2]. This will be discussed in Sec. III A. Indeed,
a suitable solution was found in [2] for an initial state in the
middle, k = N − 1, and is reproduced in Fig. 2. For the last
condition, observe that [HXX,X⊗M ] = 0. Hence,

e−iHXXt0 |k̄〉 = X⊗Me−iHXXt0 |k〉,

032316-5



ALASTAIR KAY PHYSICAL REVIEW A 97, 032316 (2018)

FIG. 2. A single excitation input to the central spin of a 21-qubit
spin chain (top) evolves into a uniform superposition over the odd-
numbered sites (bottom), as required for optimal symmetric universal
1 → 11 cloning.

which simply yields that the transformations in the 1 and
M − 1 excitation subspaces are essentially identical, so the
final condition will also be satisfied.

All of the complexity of producing these clones is con-
veniently wrapped up in just two helper functions. The
corresponding circuit diagrams are contrasted in Figs. 3 and 4.
While a quantum circuit for cloning has previously been ex-
plicitly stated for small sizes [45], we are not aware of a version,
other than probabilistic versions [27], that works deterministi-
cally for general 1 → N universal symmetric cloning, let alone
the asymmetric case. This is probably because the cloning
map in Eq. (7), specialized to symmetric cloning, is not the
map usually stated [46,47]: [7] reveals that the cloning map is
associated with the ground state of a particular matrix, and the
symmetric case is highly degenerate. The version that we have
chosen, Eq. (7), extends consistently from the asymmetric case
and lends itself well to implementation with a quantum circuit,
as depicted in Fig. 4, providing such a definition for symmetric
cloning. This circuit can be modified for asymmetric cloning.
Assuming that the architecture exhibits only nearest-neighbor

couplings (the only instance where it makes sense to consider
implementation via a nearest-neighbor Hamiltonian), the depth
of the circuit is N and comprises O(N2) gates.

Why do we create clones only on every second site of the
chain? Imagine we have a Hamiltonian like Eq. (8) but include
magnetic fields as well:

H =
M−1∑
n=1

Jn

2
(XnXn+1 + YnYn+1) +

N∑
n=1

Bn

2
(1 − Zn). (9)

Let

U =
(N+1)/2∏

n=1

X2n−1

(N−1)/2∏
n=1

Y2n.

We have that UHU = −H + (
∑N

n=1 Bn)1. Moreover, at t0,
e−iH t0 = eiHt0 because e−iλnt0 = ±1 for every eigenvalue (ne-
glecting, for simplicity, a possible global phase). Thus, time
evolution in the higher-excitation subspace is given by

e−iH t0 |n̄〉 = −(−i)(N−1)/2+2nUe−i[H+(
∑N

n=1 Bn)1]t0 |n〉.
If the state produced in the single-excitation subspace is

|ψ〉 =
∑

n

αn|n〉,

in the higher-excitation subspace we get

(−i)(N+3)/2+2ne−it0
∑

m BmU
∑
m

αm|m〉

= e−it0
∑

m Bm

∑
m

(−1)n+mαm|m〉.

This is consistent with the desired transform only if αm = 0
on every second site to eliminate the effect of the (−1)n+m

term. In doing so, it transpires that for a symmetric target
spectrum, it suffices to set Bn = 0. One can readily verify that
although the even-numbered qubits effectively act as ancillas
and although the transformation we implement does not leave
them separable, it does not adversely affect the cloning fidelity.

FIG. 3. Quantum circuit diagram for quantum cloning when supplemented by two helper Hamiltonians, acting on M = 2N − 1 input qubits.
Coefficients are specifically chosen for optimal universal symmetric cloning. The input qubit can be arbitrary.
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FIG. 4. Quantum circuit diagram for quantum cloning without the two helper Hamiltonians. Moving beyond the symmetric cloner requires
replacement of the

√
SWAP with partial SWAP operations of different amounts.

A. Designing state synthesis systems

While we can use the algorithms of [1,2] to generate
figures such as Fig. 2, they are limited by very small radii
of convergence. Instead, we would now like to examine if the
isospectral flow ideas outlined above can be applied. The two
papers [1,2] provide different philosophies for how to produce
a useful chain, but for our purposes, much of the calculation
in the same.

Let us start with a first guess at a Hamiltonian H0 (in the
single-excitation subspace). It has a desired spectrum, but its
evolution produces

e−iH0t0 |φ〉 = |ψ0〉,
starting from the separable state |φ〉 (i.e., a single excitation
on a particular site) and evolving for a time t0, where |ψ0〉 is
not our target state |ψt 〉. In practice, we will set |φ〉 = |N+1

2 〉
to minimize the evolution time. However, if |ψt 〉 is symmetric,
we can reduce the task to finding a chain of half the length,
starting with an excitation at site 1 [2]. For that reason, we will
typically assume |φ〉 = |1〉.

How can we make a better guess, H1, which should have
the same spectrum as H0? Again, we use the isospectral
transformation

H1 = e−BH0e
A

for some anti-Hermitian matrices A, B. We have several
properties that we want to impose. As in the Ising case, we
can rearrange the matrix H0 into a block structure of {all odd
elements, all even elements}, so that H0 takes the form

H0 =
(

0 X0

XT
0 0

)
.

A block diagonal A = diag(Ao Ae) preserves the structure of
H0, with X0 evolving as X0 → e−AeX0e

Ao .
Next, we want to impose that the tridiagonal structure of H0

is preserved. This just requires 〈i|Ḣ0|j 〉 = 0 for all |i − j | > 1.

We have already partially achieved this with our block diagonal
of A ensuring that it is true for all |i − j | being even. The
remainder is simply a set of simultaneous linear equations in
the parameters Ao and Ae:

〈i|X0Ao − AeX0|j 〉 = 0 ∀j �= i,i − 1.

We are hence building up a set of linear conditions which, so
far, just ensure that subsequent matrices maintain the important
properties of the initial matrices. Now we must impose that
each subsequent iteration moves us towards a better evolution.
Since we are updating

H0 �→ e−AH0e
A

and assuming A is small, the evolution updates as

e−Ae−iH0t0eA|φ〉 ≈ |ψ0〉 − A|ψ0〉 + e−iH0t0A|φ〉.
To fix the new evolution to be |ψt 〉, we might solve

−A|ψ0〉 + e−iH0t0A|1〉 = |ψt 〉 − |ψ0〉,
subject to the structure constraints that we have already
described. However, a solution of this form is unlikely to keep
A small; it is perhaps better to describe it as a constrained
optimization problem (linear programming):

max
A:‖A‖�δ

(〈ψt | − 〈ψ0|)[e−iH0t0 ,A]|φ〉.

Having found A, we update H0 according to the unitary
transformation update (rather than direct integration).

For the particular design philosophy of [1], we can go
further. There, due to the chosen spectrum,

e−iH0t0 = 1 − 2|λ0〉〈λ0|,
the aim is to fix the null vector to |λt 〉, where

|ψt 〉 = (1 − 2|λt 〉〈λt |)|1〉,
knowing that the null vector of the next iteration is e−A|λ0〉.
In successive iterations, we aim to maximize the overlap with
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FIG. 5. A single excitation input to the first spin of a 21-qubit spin
chain (top) can be caused to evolve into a uniform superposition over
the odd-numbered sites (bottom), as required for symmetric 1 → 11
cloning.

|λt 〉. Hence, we have to solve the linear programming problem

min
‖A‖∞�δ

〈λt |A|λ0〉.

Convergence is well motivated: unless there is a reason that
either |λ0〉 or |λt 〉 must be a null vector of A, we can always
find a nonzero value of the overlap, and choosing the sign of A

ensures that the outcome is always negative and hence iterates
towards an improved solution. The solution must converge, and
further justification that it converges globally on the correct
solution is given in the Appendix. A typical output is shown in
Fig. 5 and is used in [44] to demonstrate the proper functioning
of the entire evolution sequence, giving the optimal symmetric
cloning fidelity of F = 23

33 .

1. Hypercubes

So far, we have discussed engineering a one-dimensional
chain, choosing the coupling strengths to achieve the evolution
that we desire. This perfectly parallels studies of perfect state
transfer. However, another avenue for study in perfect state
transfer is the set of uniformly coupled graphs that can ac-
complish the same task. For example, hypercubes of arbitrary
dimension k and side length 2 or 3 achieve perfect state transfer
at distance k or 2k, respectively [18]. Various other graphs
have since been shown to provide perfect transfer, including
a variety of modifications of the hypercubes [18,48–50].
Can graphs also be used for the state synthesis tasks that
could be useful for quantum cloning? We specifically focus
on generating uniform superpositions across some subset of
sites, with a preference for those where the phase on each of
the superposed sites is the same.

Let G be a graph with edges E and N vertices V . The graph
Hamiltonian is defined as

HG = 1
2

∑
(i,j )∈E

(XiXj + YiYj ).

Like before, there is a subspace structure based on the num-
ber of excitations, |0〉⊗N and |1〉⊗N are null vectors, and

[H,X⊗N ] = 0; we have to get only the evolution in the single-
excitation subspace correct. If the graph is bipartite, the phase
choice can be consistent only if the superposed sites are all
part of the same bipartition by a generalization of the argument
around Eq. (9).

In the single-excitation subspace, the Hamiltonian is repre-
sented by the adjacency matrix A of the graph. The conditions
on state synthesis [2] are remarkably similar to those of perfect
transfer [19,51]: to start from a site n, producing a state |ψ〉 in
time t0, if |ψ〉 ∈ RN , then

〈λm|n〉 = ±〈λm|ψ〉
for every eigenvector |λm〉, and for those eigenvectors for which
〈λm|n〉 �= 0, the eigenvalues λm must satisfy

e−iλmt0 = ±eiφ

for some phase φ. This has some further consequences for the
spectrum of the adjacency matrix A [52]. For example, with
one extra assumption about the nature of the state synthesis
task (that all vertices have a perfect revival at the same time),
we know that the spectrum for a nonbipartite graph must be
integral, while for a bipartite graph, the spectrum is either
integral or rational multiples of

√
� for a square-free integer

�. We will not develop this theory more generally here but
will focus on some special cases that we have found.

Several instances of the path Pn (i.e., a uniformly coupled
chain of n vertices) generate uniform superpositions:

e−iA(P2)π/4|1〉 = |1〉 − i|2〉√
2

,

e−iA(P3)π/
√

8|2〉 = |1〉 + |3〉√
2

,

e
−iA(P3) cos−1

(
1√
3

)
/(

√
2π)|2〉 = |1〉 + i|2〉 + |3〉√

3
,

e−i2A(P5)/
√

27|3〉 = |1〉 + i|2〉 + i|4〉 + |5〉
2

.

The second of these is ideally suited to 1 → 2 symmetric
cloning (and is closely related to a previous construction
[53,54]). We can extend these cases by using the hypercube
construction [18]. For a graph G, the adjacency matrix of the
corresponding k-dimensional hypercube is

A(Gk) =
k∑

n=1

1⊗(n−1)
N ⊗ A ⊗ 1⊗(k−n)

N .

This describes independent evolution along each of the k

dimensions. Taking a basis x ∈ [N ]k (a k-dimensional vector
where each element takes an integer value from 1 to N ), each
|x〉 corresponds to a single excitation being on a particular
vertex of the graph. Starting from |y〉, the final amplitude on a
vertex |x〉 is

k∏
i=1

〈xi |e−iAt |yi〉.

If A gives a uniform superposition, so does the hypercube.
The hypercube with a side length of 2 (i.e., derived from P3)
is particularly compelling. For example, a 3 × 3 square lattice
of uniformly coupled qubits generates a uniform superposition
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of all nine sites. Or, more applicable to symmetric cloning, P k
3

produces (at a different time) the uniform superposition across
all 2k corners.

IV. CONCLUSIONS

We have shown how a fixed transverse Ising system can
produce a GHZ state, which is a key quantum resource for use
in future technologies. This could act as a stand-alone device
or as a special unit, a coprocessor, within a larger quantum
device. The fixed-function coprocessor replaces what would
otherwise be a complex sequence of unitary gates, with the
inaccuracies inherent in the multiple separate steps that have
to be taken in its implementation. By extending the results
from HI to HZY , we have potentially opened GHZ synthesis
to a much broader range of experiments. Realizing that the
transformation required to achieve GHZ-state synthesis in a
transverse Ising model essentially reduces to a state-transfer-
like condition on h1 would also significantly simplify optimal
control studies such as [55], moving away from the assumption
of perfect engineering.

We have also specified a second transformation. This two-
step procedure, where the first step uses the GHZ synthesizer,
implements optimal asymmetric universal cloning of qubits.
A nonprobabilistic strategy has been given for these cloning
machines. Our transformation is implemented by operations
that are local in a one-dimensional chain of qubits. Our use of
the GHZ synthesizer to implement a single-control, multiple-
target controlled-NOT gate may be of further interest in relation
to the Fourier transform.

Both transformations, when restricted to a nearest-neighbor
architecture, exhibit an optimal O(N ) scaling in run time and
have running times essentially identical to their quantum circuit
equivalents.

Central to these results was an isospectral transformation
algorithm with fine-grained control over directing consecutive
iterations. Global convergence of the algorithm is well moti-
vated. Mathematica scripts that implement the reported results
for chains of 21 qubits are available from [44]. The algorithm
demonstrates considerable potential for further development
and should be broadly applicable.
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APPENDIX: CONVERGENCE
OF THE ISOSPECTRAL ALGORITHM

We aim to motivate that the algorithm described in Sec. III A
has a single point of convergence provided the target null vector
|λt 〉 can be a null vector of a system with the fixed spectrum.

At each step, we iterate with a matrix A and impose that the
elements of A are bounded by some step size δ, ‖A‖∞ � δ. It
is important that we pick δ such that the second-order term in
the expansion of 〈λt |e−A|λ0〉 is negligible. Since 〈ψ |A|ψ〉 = 0
for all real-valued states |ψ〉, the maximum value of 〈λt |A|λ0〉

is achieved with

A|λ0〉 ∼ |λt 〉 − 〈λ0|λt 〉|λ0〉.

This is generically possible to fix: A|λ0〉 has (N + 1)/2 compo-
nents, and the (N − 1)/2 free parameters can control the output
in the space orthogonal to |λ0〉. By aligning these vectors with
the left- and right-maximum singular vectors of A (singular
value σ ), we have 〈λt |A|λ0〉 = −σ

√
1 − 〈λ0|λt 〉2. Meanwhile,

〈λt |A2|λ0〉 < σ 2, i.e., σ �
√

1 − 〈λ0|λt 〉2. Through the fol-
lowing bounds, we relate δ to σ :

√
N + 1

2
δ �

√
N + 1

2
‖A‖∞ � ‖A‖2 � σ,

where ‖A‖2 is the Frobenius norm. Thus, by ensuring that
δ = ε

√
1 − 〈λ0|λt 〉2 for small ε > 0, the second-order term

is always negligible. Indeed, we can directly bound the value
χ = 〈λt |λ0〉:

dχ

dt
� −σ

√
1 − χ2 � −ε(1 − χ2).

This solution tends exponentially towards χ = 1. Assuming
that A|λ0〉 can be picked as specified, we have convergence,
and accuracy ε is achieved with an average complexity of
O(N6 log(

√
N/ε)), the leading term arising from solving

O(N2) linear constraints.
Generically, A|λ0〉 can be any state in the odd space that is

orthogonal to |λ0〉 since there are (N − 1)/2 free parameters
with which to achieve this. So, when does this fail? Is this
compatible with the observation that some states cannot be the
null vector for a tridiagonal system of a particular spectrum [1]?

We start by noting that although [1] indicated that none of
the vector elements on the odd space can be zero (as this would
give consecutive zero elements on the complete vector), this
was an artificial imposition resulting from requiring nonzero
coupling strengths. However, this consideration is not built into
the algorithm, so we are not prevented from reaching these
forms of |λt 〉.

Since the state A|λ0〉 is linear in the free parameters, the
space described when the corresponding vectors do not span
the space (and are hence linearly dependent on each other)
must be a convex space. There is a single inaccessible region,
which must therefore include any inaccessible null vectors.
The only question is whether this region is tight with that of
the inaccessible null vectors.

Case study

In the absence of universal answers, we investigate the
special case of N = 5 and spectrum 0, ± 3, ± 5 since this is a
case where there are forbidden null vectors [1]. The odd space
is dimension 3, and there are two free parameters, a and b. For
a particular h with coupling strengths J1, . . . ,J4,

Ao|λ0〉 = a

⎛
⎜⎝

J1J2
(
J 2

3 + J 2
4

)
J 2

1 J 2
3 − J 2

2 J 2
4

J3J4
(
J 2

1 + J 2
2

)
⎞
⎟⎠ + b

⎛
⎜⎝

J1
(
J 2

3 + J 2
4 − J 2

1

)
−J2

(
J 2

1 − J 2
4

)
−J2J3J4

⎞
⎟⎠.
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The ratios γ1 = J1
J2

and γ2 = J4
J3

parametrize the possible null
vectors

|λ0〉 =

⎛
⎜⎝

J2J4

−J1J4

J1J3

⎞
⎟⎠,

from which we can derive that the only time that we do not
have access to the whole space is when J 2

1 + J 2
2 = J 2

3 + J 2
4 ,

and thus,

(
1 + γ 2

1

)(
1 + γ 2

2

) = 172

82
, (A1)

where we used the eigenvalue relations (such as J 2
1 + J 2

2 +
J 2

3 + J 2
4 = 34) to eliminate the remaining terms. This defines

a barrier in the possible space of |λt 〉 that the algorithm cannot
cross.

Now let us consider the region of |λt 〉 for which there is
no h with the correct spectrum and that null vector. Using the

explicit eigenvalue relations for the coupling strengths, we can
write that

[
J 2

2

(
1 + γ 2

1

) − 17
]2 =

{
64 − J 2

2

1 + γ 2
2

[
34 − J 2

2

(
1 + γ 2

1

)]}
.

This has a non-negative solution for J 2
2 when

(
1 + γ 2

1

)(
1 + γ 2

2

)
� 172

82
.

We conclude that our algorithm is capable of converging on
any valid null vector for N = 5. If we demand an invalid null
vector, the algorithm will converge somewhere on the surface
of closest approach, defined by Eq. (A1). It is reasonable
to expect similar behavior in larger spaces, but this remains
unproven.
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