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It has been suggested that second-order nonlinearities could be used for quantum logic at the single-photon
level. Specifically, successive two-photon processes in principle could accomplish the phase shift (conditioned on
the presence of two photons in the low-frequency modes) |011〉 → i|100〉 → −|011〉. We have analyzed a recent
scheme proposed by Xia et al. [Phys. Rev. Lett. 116, 023601 (2016)] to induce such a conditional phase shift
between two single-photon pulses propagating at different speeds through a nonlinear medium with a nonlocal
response. We present here an analytical solution for the most general case, i.e., for an arbitrary response function,
initial state, and pulse velocity, which supports their numerical observation that a π phase shift with unit fidelity
is possible, in principle, in an appropriate limit. We also discuss why this is possible in this system, despite the
theoretical objections to the possibility of conditional phase shifts on single photons that were raised some time ago
by Shapiro [Phys. Rev. A 73, 062305 (2006)] and by Gea-Banacloche [Phys. Rev. A 81, 043823 (2010)] one of us.
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I. INTRODUCTION

It would be extremely useful for all kinds of quantum
information processing if one could use optical nonlinearities
to implement quantum logical gates at the single-photon level.
The idea of using the cross-phase modulation properties of an
optical Kerr medium (a χ (3) nonlinearity) to change the overall
sign of the wave function when two photons (as opposed to
one) are present together in the medium (thereby carrying out a
basic entangling operation known as the “conditional phase” or
CPHASE gate), was first popularized, very early on, by Chuang
and Yamamoto [1], and actually predates, in a somewhat
different form [2], much of the current interest in quantum
computing. There are, however, considerable practical difficul-
ties to its realization, primarily because conventional optical
nonlinearities are extremely weak at the single-photon level.

Interestingly, there have also been a number of theoretical
papers, primarily by Shapiro and coworkers [3–5], one of us
[6–8], and others [9–11], strongly suggesting that there are
some fundamental obstacles to the direct realization of high-
fidelity conditional phase gates using any kind of optical non-
linearity. Typically, what is found in papers such as Refs. [3]
and [6] is that there is a tradeoff: Large phase shifts are
associated with low gate fidelities and vice versa.

Recently, however, several developments have challenged
the skepticism expressed in the above-mentioned works. In
particular, at least a couple of theoretical papers [12,13]
have appeared that make a strong case for the possibility of
a unit-fidelity π -radian conditional phase shift in different
nonlinear optical setups, in more or less direct conflict with the
expectations of Refs. [3–11]. (Other encouraging theoretical
results along these lines have been presented in Refs. [14,15].)
At the same time, on the experimental side, several groups
have reported impressive conditional phase shifts at the single-
photon level over the past year, using different arrangements,
such as storage and retrieval of the photons in an atomic
medium [16,17]. All this suggests that a re-examination of

the real limitations of traveling photon schemes may be
particularly timely (if not, in fact, somewhat overdue).

As a first step toward this goal, we carry out in this paper a
thorough analytical study of the system studied numerically by
Xia et al. [12], namely, two single-photon pulses copropagat-
ing, at different velocities, through a nonlinear (χ (2)-equivalent
[18]) and nonlocal medium, in its most general form. Our
results confirm their numerical observation that, indeed, a
π phase shift with unit fidelity is possible, in principle, in
this system, in an appropriate limit that we characterize here.
Equally importantly, we also discuss how this is possible,
in spite of the theoretical difficulties raised in the works
mentioned above.

Our paper is organized as follows. In Sec. II, we summarize
the main difficulties pointed out in the original papers by
Shapiro [3] and Gea-Banacloche [6], pointing out how in
fact one could get around these problems and how this is
accomplished in the proposals of Xia et al. [12] and Brod
and Combes [13] (see also Ref. [19] for a more detailed
discussion of the latter). Then, in Sec. III, we introduce our
generalization of the system of Xia et al., present the formal
solution to it, and discuss analytically the large-phase shift,
high-fidelity limit. Section IV is devoted to a more qualita-
tive, conceptual discussion of what makes this scheme work.
Section V summarizes our conclusions and the questions that
we feel still remain to be addressed. Finally, an Appendix
shows how to obtain an approximate analytical solution for
the time evolution of the single-photon wave functions in this
system, under the conditions leading to the maximum fidelity
and phase shift.

II. OBSTACLES TO HIGH-FIDELITY SINGLE-PHOTON
NONLINEAR OPTICS

The main obstacles to achieving high fidelity in nonlin-
ear optical processes at the single-photon level identified in
Refs. [3] and [6] are as follows:
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(i) Phase noise arising from the Langevin operators intro-
duced to preserve unitarity in a χ (3) process, when the medium
response is nonlocal in time [3].

(ii) Spectral entanglement of the output photons, due to the
fact that the original photons are destroyed and recreated with
the sole constraint of overall energy conservation [6].

Mathematically, the origin of the first of these difficulties is
ultimately the need to limit the medium’s bandwidth in order
to avoid infinities. Physically, the finite bandwidth is naturally
tied to a finite response time for the medium, which one can
always expect to be the case for any realistic system. As pointed
out already in Ref. [23] (see also Refs. [20–22]) “quantum
theories of light in instantaneous Kerr media are ill-defined
in the absence of dispersion due to the infinite bandwidth of
the vacuum fluctuations coupling to any frequency window of
interest. Hence, even though one is interested in the quantum
evolution of long pulses, reference to the much shorter response
time of the non-linearity is unavoidable” (Ref. [23], p. 241).

The introduction of this response time in the evolution
equations for the quantized field, when done in the standard
way (namely, by giving a “memory” to the nonlinear index
of refraction, as in Ref. [3]), has, however, a profound conse-
quence. The resulting time nonlocality means that the system’s
evolution cannot be derived from a Hamiltonian that contains
only free-field operators. This, in turn, means that the free-field
commutators will not be preserved (and hence, unitarity will be
violated) unless appropriate “Langevin noise terms” are added.

The effect of these noise terms is negligible in the case when
the pulses are very long compared to the medium’s response
time, since in that case the latter can, for practical purposes, be
treated as instantaneous. This is the “large medium bandwidth”
regime. However, in this limit Shapiro found that the optical
nonlinearity effectively vanishes, so the cross-Kerr phase shift
goes to zero. This may be understood as arising from the fact
that, if we only have two photons in a very long pulse, the
probability that they could both (randomly) be found within
the same narrow time window corresponding to the medium
response time becomes negligible.

In a similar way, one can expect that the pairing of a
narrowband medium with a broadband wave packet (i.e., the
very short-pulse limit) will be useless, because the medium
will either reject (that is, reflect) or absorb most of the incident
spectrum; in the first case, with high probability the photon
state is unchanged, and in the second case the photons simply
vanish. So, the only potentially useful regime is when the
medium bandwidth and the pulse bandwidth (or equivalently,
the pulse duration and the medium response time) are more
or less evenly matched. In this case, however, the effect of
the Langevin noise operators cannot be neglected, and one
finds that the fidelity of the conditional gate is substantially
degraded: That is to say, the outgoing pulses do not overlap
very much (either spectrally or temporally) with the incoming
ones.

The considerations above originated in the study of conven-
tional nonlinear devices, such as crystals that are intended to
be used far from resonance, and can therefore be characterized
by a real (nonlinear) index of refraction. However, in the years
preceding the publication of Shapiro’s paper, many workers
in quantum information had considered near-resonance pulse
propagation in especially configured atomic media, which led

to evolution equations (typically written in the Heisenberg
picture) that mimicked, at the single-photon level, what one
would obtain for classical fields propagating through a Kerr
medium. In an apparent contradiction with the claims of
Ref. [3], these equations were unitary and local in time, and
did not include explicitly any Langevin noise terms.

In an attempt to understand which limitations, if any,
might be present in these systems, one of us [6] developed
a Hamiltonian treatment of the so-called “giant Kerr effect”
[24–26] and presented its solution in the Schrödinger picture.
The main obstacle to high-fidelity performance that was
revealed by this study was item (ii) above, that is, the spectral
entanglement of the output photons. Its origin is simple: In
these systems, to get a large phase shift the photons need to
interact very strongly, which means that the input photons are
actually (and not just virtually) destroyed and then recreated
in the medium. However, in the copropagating case with
equal velocities, the only constraint that applies to the whole
process is conservation of energy, which is equivalent, in
this configuration, to conservation of momentum or phase
matching, and which only restricts the outgoing frequencies
ω1,ω2 to satisfy the relation

ω1 + ω2 = ω′
1 + ω′

2, (1)

where ω′
1,ω

′
2 are the frequencies of the incoming photons.

Equation (1) typically leads to an entangled spectrum of the
form

f (ω1,ω2) ∼
∫

f0(ω′)f0(ω′,ω1 + ω2 − ω′) dω′ (2)

in terms of the incoming spectrumf0 of each individual photon.
This entanglement is found to set a limit on the achievable
fidelity of the process.

In hindsight, it is actually not difficult to envision a possible
way out of this difficulty: Namely, set up a situation in which
momentum and energy conservation approximately apply and
are actually not equivalent. For this, it suffices to have the
photons traveling at different velocities through the medium
or to go to a counterpropagating geometry. These are the
solutions adopted in Refs. [12] and [13], respectively. Under
those conditions, the two simultaneous constraints, on k and ω,
will ultimately force ω � ω′ and all but eliminate the spectral
entanglement in the output field (see Ref. [19] for a more
detailed discussion, and see also below).

This still does not address point (i) above, which somehow
seems to not apply to the system considered in Ref. [6],
since this was described by a Hamiltonian model and did not
require the introduction of Langevin operators. However, close
inspection of the model in Ref. [6] shows that the Hamiltonian
description led to a finite solution only because of the explicit
introduction of a bandwidth cutoff (in agreement with the
essential point made in the early works such as Refs. [20–23]);
in other words, the field operators appearing in Eqs. (2) and (3)
of Ref. [6] are not actually the free-field operators, a point made
most explicitly in the subsequent work of He and Scherer [10].

A key observation, however, is that in principle there
are ways to limit a system’s bandwidth without having to
make it “nonlocal in time” in such a way as to preclude a
Hamiltonian treatment. One of these approaches, which we
considered in a recent paper [8], is simply to place the nonlinear
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medium inside a one-sided cavity. If the medium’s response
time is faster than the cavity decay, then it can be treated as
effectively instantaneous, and the cavity can be trusted to limit
the system’s effective bandwidth in a way that still allows
for a fully Hamiltonian treatment [27], as well as a strong
enough interaction when the pulse bandwidth is comparable.
The approach in Ref. [8] was shown to work for both χ (2) and
χ (3) processes, although, there again, spectral entanglement
placed a severe limitation on the achievable fidelity.

Another bandwidth-limiting approach is to make the
medium’s response nonlocal in space. This is what was done
in Ref. [12]. As will be shown below, the spatial nonlocality
extending over a distance σ introduces a bandwidth limitation
through the Fourier relation �k ∼ 1/σ , while still making
a fully Hamiltonian description of a χ (2) process possible.
(Interestingly, this approach was already shown to work with
a χ (3) interaction by Marzlin et al. [28], albeit only under a
somewhat restrictive condition.)

Finally, and for completeness, we note that pointlike in-
teractions with, for instance, atomic systems (such as those
considered in Ref. [13]), require for their description the
introduction of atomic operators and do not therefore fall under
the category of the models considered in Ref. [3], namely, pure
field theories involving nothing but interacting field operators.
When the atomic systems involved start and end in their ground
state, however, incoming and outgoing field states can be
related by means of a unitary scattering matrix (or S matrix),
to which, again, the Langevin noise requirements do not
apply.

III. A χ (2) MEDIUM WITH A SPATIALLY
NONLOCAL RESPONSE

A. General treatment

We consider here a χ (2) (or, as in Ref. [12], a “χ (2)

equivalent” [18]) system which in a simplified, single-mode
picture could be described by the Hamiltonian Ĥ = h̄ε(â†b̂ĉ +
ĉ†b̂†â). Starting with one b and one c photon, one then gets the
time evolution |011〉 → i|100〉 → −|001〉. This was proposed
by Langford et al. [29] as a way to carry out a CPHASE gate
and was analyzed, in a multimode treatment, by us in Ref. [8],
with the conclusion that spectral entanglement would prevent
it from ever achieving high fidelity.

However, we considered only in Ref. [8] a copropagating
arrangement with identical pulses. Xia et al. [12] instead
considered the case in which the b and c photons have
different speeds, so that they pass through each other, and
showed numerically that in this case high fidelities and an
overall π -phase shift were achievable. Although the different
velocities mean the b and c photons cannot be identical, as
would be required for qubits in quantum computation, it might
be possible to get around this difficulty, in principle, by using
different polarizations in a birefringent medium (assuming the
qubit is not encoded in the polarization state), or, perhaps
more challengingly, actually shifting the frequency of the
photons before they enter and after they leave the interaction
medium.

We will deal here with the most general (but still one-
dimensional) multimode version of this problem, with a spatial

nonlocality, as described by the following Hamiltonian:

Ĥ = Ĥ0 + Ĥint,

Ĥ0 = h̄va

∫
dk k â

†
kâk + h̄vb

∫
dk k b̂

†
kb̂k + h̄vc

∫
dk k ĉ

†
kĉk,

Ĥint = h̄ε

∫ L

0
dza

∫ L

0
dzb

∫ L

0
dzc f (za,zb,zc)

× Â†(za)B̂(zb)Ĉ(zc) + H.c., (3)

where Ĥ0 is the Hamiltonian of the free field and Ĥint represents
the interaction with the χ (2) medium. Here we consider the
most general case where the a, b, and c photons travel with
different speeds, viz., va, vb, and vc, respectively. The medium
of interaction has a length L, but this will not figure in our
calculations, since we will let the pulses pass through each
other and assume the interaction starts well after they enter
the medium and ends well before they leave. The function
f (za,zb,zc) characterizes the nonlocal response of the medium,
and following Xia et al., we will assume for it a form

f (za,zb,zc) = h(za − zb) h(za − zc) (4)

in terms of a suitable real function h(z), which we expect to be
maximum at z = 0. The operators Â(za), B̂(zb), and Ĉ(zc) are
defined as

Â(za) = 1√
2π

∫
dk eikza âk,

B̂(zb) = 1√
2π

∫
dk eikzb b̂k, (5)

Ĉ(zc) = 1√
2π

∫
dk eikzc ĉk,

and satisfy the canonical commutation relations [Â(z),
Â†(z′)] = [B̂(z),B̂†(z′)] = [Ĉ(z),Ĉ†(z′)] = δ(z − z′).

We shall work out this problem in the Schrödinger picture.
In the position representation, we can write the field state as

|ψ(t)〉 =
∫

dza φa(za,t)Â
†(za)|0〉

+
∫

dzb

∫
dzc φbc(zb,zc,t)B̂

†(zb)Ĉ†(zc)|0〉, (6)

from which we get the following equations for the “wave
functions” φa and φbc:

∂φa

∂t
+ va

∂φa

∂za

= −iε

∫ ∫
f (za,zb,zc)φbc(zb,zc,t) dzb dzc,

∂φbc

∂t
+ vb

∂φbc

∂zb

+ vc

∂φbc

∂zc

= −iε

∫
f (za,zb,zc)φa(za,t) dza.

(7)

Inspection readily shows these equations to be identical to
the ones considered by Xia et al. We have, therefore, shown
that their results are compatible with a Hamiltonian formalism
involving only field operators satisfying the canonical commu-
tation relations.
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We will solve the system (7) by working in the momentum representation, where the state of the field can be written as

|ψ(t)〉 =
∫

dk1 ξa(k1,t) â†(k1)|0〉 +
∫

dk2

∫
dk3 ξbc(k2,k3,t)b̂

†(k2)ĉ†(k3)|0〉 (8)

and ξa and ξbc are the Fourier transforms of φa and φbc, respectively, with respect to the spatial variables. In this representation,
the equivalent of Eqs. (7) is the system(

∂

∂t
+ ikava

)
ξa(ka,t) = −iε

√
2π

∫
dkb h̃(kb) h̃(ka − kb) ξbc(kb,ka − kb,t),

(
∂

∂t
+ ikbvb + ikcvc

)
ξbc(kb,kc,t) = −iε

√
2π h̃∗(kb)h̃∗(kc) ξa(kb + kc,t), (9)

where Eq. (4) has been used and h̃(k) is the Fourier transform of h(z).
We solve this system of differential equations by the method of Laplace transform. Denoting by ξ̃a and ξ̃bc the Laplace

transforms of ξa and ξbc (with respect to the time variable), we obtain

(s + ikava)ξ̃a(ka,s) − ξa(ka,0) = −iε
√

2π

∫
dkb h̃(kb)h̃(ka − kb)ξ̃bc(kb,ka − kb,s), (10a)

(s + ikbvb + ikcvc)ξ̃bc(kb,kc,s) − ξbc(kb,kc,0) = −iε
√

2πh̃∗(kb)h̃∗(kc)ξ̃a(kb + kc,s). (10b)

On substituting for ξ̃a(kb + kc,s) in Eq. (10b) in terms of ξ̃bc using Eq. (10a) and furthermore setting ξa(ka,0) = 0, since there
is no a photon at t = 0, we obtain

ξ̃bc(kb,kc,s) = ξbc(kb,kc,0)

s + ikbvb + ikcvc

− 2πε2

s + i(kb + kc)va

h̃∗(kb)h̃∗(kc)

s + ikbvb + ikcvc

∫
dk h̃(k)h̃(kb + kc − k)ξ̃bc(k,kb + kc − k,s). (11)

The next step is to evaluate the integral on the right-hand side of Eq. (11). This can be done by shifting to dummy arguments in the
same equation, viz., kb → k′ and kc → kb + kc − k′ and multiplying throughout by h̃(k′)h̃(kb + kc − k′), and finally integrating
both sides of the equation over k′. Following this procedure, we obtain

∫
dk h̃(k)h̃(kb + kc − k)ξ̃bc(k,kb + kc − k,s) =

(
1 + 2πε2

s + i(kb + kc)va

∫
dk

|h̃(k)|2|h̃(kb + kc − k)|2
s + ikvb + i(kb + kc − k)vc

)−1

×
∫

dk
h̃(k)h̃(kb + kc − k)

s + ikvb + i(kb + kc − k)vc

ξbc(k,kb + kc − k,0). (12)

On substituting Eq. (12) in Eq. (11), we obtain the following expression for ξ̃bc(kb,kc,s):

ξ̃bc(kb,kc,s) = ξbc(kb,kc,0)

s + ikbvb + ikcvc

− 2πε2

s + i(kb + kc)va

h̃∗(kb)h̃∗(kc)

s + ikbvb + ikcvc

(
1 + 2πε2

s + i(kb + kc)va

×
∫

dk
|h̃(k)|2|h̃(kb + kc − k)|2

s + ikvb + i(kb + kc − k)vc

)−1 ∫
dk

h̃(k)h̃(kb + kc − k)ξbc(k,kb + kc − k,0)

s + ikvb + i(kb + kc − k)vc

. (13)

Equation (13) is the formal solution to our problem. Of course, inverting the Laplace transform is generally impossible, but
we are not interested in the detailed time evolution, only in the asymptotic state of the b,c wave packet after the interaction
is over (formally, as t → ∞). In past work, such as Refs. [7,8], we have used the final value theorem of operational calculus
in the form limt→∞ ξbc(kb,kc,t) = lims→0 s ξ̃bc(kb,kc,s), but this result is not quite applicable here. The reason is that, in the
absence of interaction, the system (9) does not evolve toward a constant value, but rather one has ξbc(kb,kc,t) = exp[−i(kbvb +
kcvc)t]ξbc(kb,kc,0). In the presence of the interaction, we expect that we can separate the changing phase factor from the slowly
varying spectral amplitude as follows:

lim
t→∞[ei(kbvb+kcvc)t ξbc(kb,kc,t)] = lim

s→0
s ξ̃bc(kb,kc,s − ikbvb − ikcvc). (14)

Accordingly, we make the substitution s → s − ikbvb − ikcvc in Eq. (13) and take the limit (14) to obtain

lim
t→∞[ei(kbvb+kcvc)t ξbc(kb,kc,t)] = ξbc(kb,kc,0) − 2πε2h̃∗(kb)h̃∗(kc)

ikb(va − vb) + ikc(va − vc) + 2πε2I2(kb,kc)
I1(kb,kc), (15)

where we have defined

I1 ≡ lim
s→0

∫
dk

h̃(k) h̃(kb + kc − k)

s + i(k − kb)(vb − vc)
ξbc(k,kb + kc − k,0), I2 ≡ lim

s→0

∫
dk

|h̃(k)|2|h̃(kb + kc − k)|2
s + i(k − kb)(vb − vc)

. (16)
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We can actually simplify the first integral in (16) substantially
with some straightforward assumptions. First, without loss of
generality, we will assume that the b photon starts behind the c

photon and travels with a higher speed than c photon. We shall
denote the initial position of the center of the b wave packet
by −z0, which we take to be a large negative number. We shall
also assume that the initial state is factorizable, and hence we
write

ξbc(k,kb + kc − k,0) = eikz0ξb(k,0) ξc(kb + kc − k,0), (17)

where ξb(kb,0) and ξc(kc,0) are the Fourier transforms of wave
packets centered around zb = 0 and zc = 0, respectively. Then,
making use of

1

s + i(k − kb)(vb − vc)
=

∫ ∞

0
dt e−[s+i(k−kb)(vb−vc)]t , (18)

we rewrite I1 as

I1 = lim
s→0

∫ ∞

0
dt e−st eikbvbct

∫ ∞

−∞
dk eik(z0−vbct)

× h̃(k)h̃(kb + kc − k)ξb(k,0)ξc(kb + kc − k,0), (19)

where, to save space, we have introduced vbc ≡ vb − vc. Since,
physically, we want z0 to be much greater than the width of
the wave packets and the range of the medium’s nonlocal
response [width of the function h(z)], it is clear that the
integral over k in (19) represents a function of t that peaks
around t = t0 ≡ z0/vbc and vanishes (to an arbitrarily good
approximation) for both t � t0 and t < 0 � t0. Assuming the
decay for t � t0 is exponential or faster, we can then first take
the limit s = 0 (since the e−st factor becomes irrelevant as soon
as s is much smaller than both 1/t0 and the wave packets’ decay
constant), and then formally extend the integral over t to minus
infinity. Then the integral over t in (19) produces a δ function,
2πδ[(kb − k)vbc]/vbc, and we end up with

I1(kb,kc) = 2π

vbc

h̃(kb) h̃(kc) ξbc(kb,kc,0). (20)

For the second integral, a partial simplification is possible by
using a well-known result involving Cauchy’s principal value:

I2 = π

vbc

∫
dk δ((k − kb)vbc) |h̃(k)|2|h̃(kb + kc − k)|2

− i

vbc

P

∫
dk

|h̃(k)|2|h̃(kb + kc − k)|2
k − kb︸ ︷︷ ︸

Ip

= π

vbc

|h̃(kb)|2|h̃(kc)|2 − i

vbc

Ip, (21)

where P stands for the principal value and Ip is the notation
to denote this integral for brevity. An additional advantage of
(21) is that it shows explicitly the real and imaginary parts of
the result.

On substituting Eqs. (20) and (21) in Eq. (15) and carrying
out some mathematical manipulation, we obtain a compact
form for the final state written as

ξbc(kb,kc,t → ∞) = e−i(kbvb+kcvc)t ξbc(kb,kc,0) e2iθ(kb,kc), (22)

where the first phase factor is just the free evolution and the
second one is the phase arising from the interaction:

θ (kb,kc) = tan−1

(
2π2ε2 |h̃(kb)|2|h̃(kc)|2

[kbvab + kcvac]vbc − 2πε2Ip

)
, (23)

where we have introduced the other two relative velocities,
vab ≡ va − vb and vac ≡ va − vc. In order to get a π shift with
high fidelity, we want θ � ±π/2, to a good approximation, for
all relevant values of kb,kc. It is perhaps easiest to see how that
can be accomplished by considering a specific example, as in
the following subsection.

B. Special case: Gaussian pulses and medium response

We shall now consider a special case where the response
function of the medium is Gaussian and the initial state is also
a Gaussian pulse. For this case, the response function in real
space is written as

f (za,zb,zc) = h(za − zb) h(za − zc)

= 1√
πσ 3

e−(za−zb)2/2σ 2
e−(za−zc)2/2σ 2

. (24)

In momentum space, we have

h̃(k) =
(

σ

π

)1/4

e−k2σ 2/2, (25)

where σ is the length scale of medium nonlocality. The initial
state is written as

ξbc(kb,kc,0) = σ0√
π

eikbz0 e−k2
bσ

2
0 /2 e−k2

c σ
2
0 /2. (26)

For a Gaussian response function, the principal value
integral in (21) is just proportional to the Hilbert transform
of a Gaussian, which can be expressed in terms of the error
function of imaginary argument as

Ip = −σ e−σ 2(k2
b+k2

c )erfi

[
σ (kb − kc)√

2

]
. (27)

We can then rewrite Eq. (23) as

θ (kb,kc) = cot−1

[
[kbvab + kcvac]vbc

2πε2σ
eσ 2(k2

b+k2
c )

+ erfi

(
σ (kb − kc)√

2

)]
. (28)

To get a π phase shift, we want the argument of the inverse cot
function to be close to zero for all the relevant kb, kc. Noting
that ξbc in Eq. (26) restricts |kb|,|kc| to be not much greater than
1/σ0, we see that the argument of the erfi function goes as σ/σ0,
and so σ0 � σ can make that term negligible, as well as make
the exponential in the first term �1. Then, to make the first term
small enough, we require |�v|2 � 2πε2σσ0, where �v is a
characteristic velocity difference. Note that we cannot simply
make vb = vc, because it would nullify the whole derivation;
basically, the b photon would never catch up with, and interact
with, the c photon. Similarly, we cannot completely eliminate
the nonlocality (formally, letσ → 0), because then there would
be no way to keep the first term in (28) small.

As in previous work, we define the fidelity F and the
phase shift φ by the overlap between the initial and final
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states, i.e.,
√

Feiφ ≡ 〈ψ(0)|ψ(t)〉. In this case, to remove the phase factor of e−i(kbvb+kcvc)t , we substitute the freely evolving state
for |ψ(0)〉 in the above expression. In the Gaussian medium and Gaussian state considered here, we can write

√
Feiφ =

∫ ∞

−∞
dkb

∫ ∞

−∞
dkc ξ ∗

bc(kb,kc,0) ei(kbvb+kcvc)t ξbc(kb,kc,t → ∞)

= 1 − 4
∫ ∞

−∞
dk′

b

∫ ∞

−∞
dk′

c

e−(τ 2+1)(k′
b

2+k′
c

2)

iτα(k′
bvab/vac + k′

c) + 2πe−τ 2(k′
b

2+k′
c

2)erfc[−iτ (k′
b − k′

c)/
√

2]
, (29)

where α ≡ vacvbc/ε
2σ 2 is a dimensionless parameter and τ ≡ σ/σ0. On the second line of Eq. (29), k′

b ≡ kbσ0 and k′
c ≡ kcσ0 are

also dimensionless variables. This scaling simplifies the numerical calculations to follow and also makes it clearer the limit in
which we may expect

√
Feiφ � −1; namely, when τ � 1 and ατ � 1 (we will discuss the physical meaning of these conditions

in the following section).
In the special case considered by Xia et al. [12], the a and b photon are assumed to travel with the same speed, va = vb. All

the equations above simplify in obvious ways, and, in particular, the complex fidelity becomes

√
Feiφ = 1 − 4

∫ ∞

−∞
dk′

b

∫ ∞

−∞
dk′

c

e−(τ 2+1)(k′
b

2+k′
c

2)

ik′
cτα + 2πe−τ 2(k′

b
2+k′

c
2)erfc[−iτ (k′

b − k′
c)/

√
2]

, (30)

where now α ≡ v2
bc/ε

2σ 2.
Figure 1 shows the result for

√
Feiφ (note that φ is here

limited to take on the values 0 and π , since the quantity being
evaluated is actually real) for this case, as a function of the
parameters τ and α. This shows that it is generally more
important to have a small τ than a small α, and that, in fact, it

FIG. 1. Fidelity and phase shift as a function of α and τ for the
case va = vb.

does not matter how large α is, the desired result can always
be achieved by making τ small enough. Note that α essentially
contains only medium parameters (pulse speeds, interaction
strength, characteristic nonlocality length), whereas τ depends
on the “initial conditions,” namely, the spatial extent of the
pulse, σ0. So, what we seem to see here is that, regardless of
the properties of the medium, one can always “in principle”
get the scheme to work by making the pulse long enough.

The velocity condition va = vb �= vc of Xia et al. would be
somewhat unnatural in a true χ (2) medium, since in that case
one would expect the b and c photons to be much closer in
frequency to each other than they are to a (in order to satisfy
ωa = ωb + ωc). The scheme of Ref. [12], however, is in reality
a four-wave mixing process with a classical pump, so one
has ωp + ωa = ωb + ωc, and all three a,b,c photons could
be very close in frequency. Still, the result (29) indicates that
the condition va = vb �= vc is not really necessary. Figure 2,
computed for the set of assumptions vb = 1.1vc, va = 2vb,
shows that the velocity of the a photon does not, in fact, make
any substantial difference.

IV. DISCUSSION

A. Why increasing the pulse length helps

As we mentioned in Sec. II, for copropagating pulses
traveling at the same speed through a nonlinear medium,
increasing the pulse length actually tends to eliminate the
nonlinear response altogether, because the probability that
both photons would be found within the same narrow time
window (determined by the medium response time) becomes
negligible. This is clearly not the case here. Since the pulses
pass through each other completely, it does not matter “where
in the pulse” each photon is initially: It is certain that they will
meet eventually.

Once the photons meet, they basically have a time tslip ∼
σ/vbc to interact before the pulses slip past each other be-
yond the range of the nonlocality, σ . Thus, the b + c → a

conversion probability amplitude is proportional to εtslip, and
the corresponding probability goes as ε2σ 2/v2

bc. However, this
is only the probability assuming the photons meet in one of the
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FIG. 2. Fidelity and phase shift as a function of α and τ for the
case vb = 1.1vc, va = 2vb.

roughly N � σ0/σ slices into which we can (coherently) split
the wave packet. Adding up all the probability amplitudes for
these processes results in an enhancement factor of the order of√

N for the amplitude, or N for the probability, so the overall
success probability ends up being proportional to

P ∼ ε2σ 2

v2
bc

σ0

σ
= 1

ατ
, (31)

where α and τ are the dimensionless parameters introduced in
the previous subsection. This explains, qualitatively, why the
scheme works in the limit ατ → 0.

The factor
√

N enhancement for a long pulse can be
understood semiquantitatively as follows. Consider the process
as seen in the reference frame of the c photon. Assume for
simplicity that both pulses have the same width, σ0, and divide
each of them into N slices, or “bins,” so their state before the
interaction can be written symbolically as

1√
N

N∑
n=1

|zn〉b ⊗ 1√
N

N∑
m=1

|z′
m〉c. (32)

Here, |zn〉b represents a state in which the b photon is found
in the slice centered at z = zn, and similarly |z′

m〉c. Since
eventually the two photons will meet and interact for a time
tslip, all N2 states in the superposition (32) will, with probability
amplitude εtslip, be converted into a state that has an a photon
in some slice. The width of the a pulse is clearly σ0vac/vbc, so

it contains N ′ = Nvac/vbc slices of width σ . Thus, on average
each slice will be populated by N2/N ′ of the terms that evolve
from the superposition (32), all with the same amplitude, so
the a-pulse state can be symbolically written as

1

N

N ′∑
n=1

N2

N ′ εtslip|zn〉a. (33)

The norm of this state, that is, its probability to happen, is
clearly (εtslip)2N2/N ′ = (εtslip)2Nvbc/vac = ε2σσ0/vbcvac =
1/ατ , as indicated above.

Note that the conversion b + c → a is really only half the
process, since what we want ultimately is to end up again
with a b,c pair. The eventual “decay” of the a photon is,
however, ensured as long as it stays in the nonlinear medium
a sufficiently long time (which is automatically guaranteed by
our formalism, since we are always taking the t → ∞ limit).
More precisely, the results in the Appendix [see, in particular,
Eq. (A4)] show that the a photons disappear (through the
process a → b + c) at a rate γ = 2πε2σ/vbc. We therefore
want γL/va � 1, where L is the length of the medium. Since
we already require L/vb (and L/vc) to be greater than σ0/vbc,
so the pulses have enough time to pass through each other, we
see that

γL

va

>
2πε2σσ0vb

v2
bcva

= 2π

ατ

vb

va

vac

vbc

. (34)

So as long asvb andva are not too dissimilar, the same condition
1/ατ � 1 that ensures that b + c → a happens will ensure
that a → b + c happens in the medium as well.

B. How the entanglement disappears

As discussed particularly in Ref. [19], the spectral entangle-
ment of the final two-photon state can be made to vanish when
momentum and energy conservation give different constraints
on the wave vectors of the interacting photons. This can be
seen to be the case in this system as well.

First, note that since we have assumed an effectively
infinite medium, and the functions f (za,zb,zc), as given by
Eq. (4) exhibit translational invariance, Eqs. (9) already enforce
momentum conservation. One can see from the first Eq. (9) that
any momentum component ka of the a photon will grow from
any two kb and kc components that add up to ka (this is, in
fact, the origin of spectral entanglement in these nonlinear
processes). The second Eq. (9) expresses the same fact in
reverse.

The next ingredient, energy conservation, comes into play
when dealing with the integrals in Eq. (13), particularly the
last one. When vb = vc, this integral simply expresses the
well-known spectral entanglement arising from momentum
conservation, just discussed: The final momentum components
at kb and kc can arise from a range of initial components k′

b

and k′
c provided only k′

b + k′
c = kb + kc. [In Eq. (13), k′

b ≡ k

and k′
c ≡ kb + kc − k.]

However, when vb �= vc, the denominator of this integral
gives us (through the pole of the Laplace transform) the
long-time dependence of ξbc, in the form of a phase factor
exp[i(k′

bvb + k′
cvc)t], and comparing it to the free-evolution

factor exp[i(kbvb + kcvc)t] leads to the energy-conservation
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requirement k′
bvb + k′

cvc = kbvb + kcvc. This can be seen in
the treatment of the integral I1 [Eq. (16)], which is the same as
Eq. (13), only with the free-evolution phase factor removed:
Then, as discussed just below Eq. (19), the denominator of
I1 yields a δ function δ(kb − k′

b) in the s → 0, or long-time
limit. This results in the simultaneous enforcement of energy
and momentum conservation, and removes the main source of
spectral entanglement in the final result (15).

Alternatively, we can say that energy conservation is en-
forced in the long-time limit by the phase factors proportional
to vaka, vbkb, and vckc, on the left-hand sides of Eqs. (9). This
can be seen in the approximate time-domain solution to these
equations presented in the Appendix.

C. Role of the nonlocality

As indicated above, we can formally get the desired high
fidelity and large phase shift for any value of the nonlocality
parameter σ , as long as it is not exactly zero. It is tempting
to argue that this means that the scheme is fundamentally
realizable, since one would expect any real-life material or
medium to exhibit some degree of nonlocality. Indeed, on this
crucial point Xia et al. [12] cite a relatively large number of
sources that mention possible nonlocal effects in four-wave
mixing materials, arising from a variety of physical processes,
including charge transport in a photorefractive crystal [30]
and optical rectification in a noncentrosymmetric material
that exhibits a second-order polarization in addition to the
third-order one [31].

Importantly, however, we have not found in these or any
of the other references cited by Xia et al. anything that can be
considered a justification of the form assumed for the functions
f (za,zb,zc) in Eq. (24). That is to say, the works cited allow
for the possibility of nonlocal effects, in some cases (as in
Ref. [31]) leading, indeed, to contributions to the nonlinear
polarizability that depend on wave-vector differences like
ka − kb, but there is no indication that these effects would be
the primary bandwidth-limiting factor for the whole four-wave
mixing process [32].

Our tentative conclusion is that it is probably best to think
of the assumed nonlocality in Ref. [12] as just a mathematical
artifice to limit the system’s bandwidth in momentum space,
in order to get a well-behaved field theory (as discussed
in Sec. II above), rather than as something that could be
realized physically or, for that matter, be even necessary for the
eventual realization of these types of gates. All that is really
necessary is that whatever physical mechanism ultimately
limits the system’s bandwidth should not also degrade the
pulse’s coherence. Intuitively, it would seem that this should
be possible to arrange, particularly in the limit of a very long
(and hence, spectrally very narrow) pulse discussed here.

V. CONCLUSIONS

We have carried out a detailed analytical study of the
mathematical system proposed by Xia et al. that confirms
their claim that a π conditional phase shift between single
photons, with arbitrarily high fidelity, is formally possible in
their scheme. Our analysis also elucidates the mechanisms that
make such an outcome possible.

As a result, we must conclude that the earlier work [6] by
one of us was in error in considering spectral entanglement
as an insurmountable obstacle to high-fidelity quantum log-
ical operations based on single-photon nonlinear optics. The
unwanted entanglement, it turns out, can be eliminated to (in
principle) an arbitrary degree simply by considering a setup
in which the interacting beams travel with different velocities,
unlike what we assumed in Refs. [6,8].

Our analysis also indicates that a system like this, where
the pulses pass through each other, can in principle generate
large phase shifts in the very long pulse limit; in fact, other
things being equal, as the pulse length increases the phase
shift increases. This is remarkable, because it is the opposite
of what one finds for pulses traveling at the same velocity. We
have provided an explanation for this phenomenon in terms of
constructive quantum interference between the different paths
that can lead to the generation of the intermediate photon. One
might hope that operation in this very long pulse limit would
also help avoid the phase noise associated with a potentially
noninstantaneous response of the medium, since it was shown
in Ref. [3] that its effect tends to vanish in that limit. However,
the work by Dove et al. [5], which explicitly considers pulses
passing through each other in the context of a χ (3) interaction,
contradicts this notion, so clearly more work is required to
settle the issue. (It is at least conceivable that χ (2) media,
like the one considered here, may end up being fundamentally
different from χ (3) media in this regard.)

In any case, it is probably fair to say that at this point
it appears increasingly likely that there may not be any
fundamental limits to the realization of conditional quantum
gates between single traveling photons. Any specific proposal
would need to be evaluated on its own merits, however, and
the question of how it would circumvent the objections raised
in previous works would still have to be addressed explicitly.

APPENDIX: APPROXIMATE TIME-DOMAIN SOLUTION

In the limit that we have identified as leading to the largest
fidelity (ατ � 1), it is possible to derive an approximate
solution to Eqs. (9) in the time domain as follows: By formally
integrating the second equation and substituting in the first one,
one obtains(

∂

∂t
+ ikava

)
ξa(ka,t)

= −iε
√

2π

∫
dkb h̃(kb) h̃(ka − kb) e−i[kbvb+(ka−kb)vc]t

× ξbc(kb,ka − kb,0) − 2πε2
∫ t

0
dt ′

∫
dkb|h̃(kb)|2

× |h̃(ka − kb)|2e−i[kbvb+(ka−kb)vc](t−t ′)ξa(ka,t
′). (A1)

If we have a specific form for the functions h̃, we can evaluate
the integral over kb in the second term explicitly. For the
Gaussian functions we used in the body of the paper, the
result is

−ε2
√

2π e−k2
aσ

2/2
∫ t

0
dt ′ξa(ka,t

′)e−ika (vb+vc)(t−t ′)/2

×e−v2
bc(t−t ′)2/8σ 2

. (A2)
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We can now make the approximation that ξa is slowly varying
compared to the exp[−v2

bc(t − t ′)2/8σ 2] (which essentially
only requires σ to be small enough). From the structure of
Eq. (A1), it seems that a better choice for a “slow” function
might be eikava t ξa , but this turns out not to make a difference in
what follows. Pulling ξa(ka,t) out of the integral and extending
the lower limit of integration to −∞, this becomes

−2πε2σ

vbc

e−k2
aσ

2(v2
b+v2

c )/v2
bc ξa(ka,t)

×
{

1 − i Erfi

[
kaσ (vb + vc)√

2 vbc

]}
. (A3)

Now assume that ka ∼ 1/σ0 and σ � σ0. We can then set the
arguments of both the exponential and the error function �0,
and we end up with the simple equation for ξa:(

∂

∂t
+ ikava + γ

)
ξa(ka,t)

� −iε
√

2π

∫
dk h̃(k) h̃(ka − k)

× e−i(kvbc+kavc)t ξbc(k,ka − k,0), (A4)

with γ = 2πε2σ/vbc. This can be integrated, with the result

ξa(ka,t) = −iε
√

2π e−ikavct

∫
dk h̃(k) h̃(ka − k)

× e−ikvbct ξbc(k,ka − k,0)

γ + i(kavac − kvbc)
. (A5)

Here we have neglected a term proportional to e−(ikava+γ )t ,
on the grounds that this will be negligible by the time the
interaction begins; again, this can be ensured for any finite
γ provided the b and c pulses start sufficiently far apart.

[The Fourier-transform factor e−ikvbct in the integral (A5)
ensures the interaction does not start, and accordingly the a

field does not start to grow, until pulse b catches up with
pulse c.]

One final simplification of (A5) is possible, in the limit γ �
|kavac − kvbc|. Noting that we should expect k,ka ∼ 1/σ0, we
see that this is essentially the same as the condition ατ � 1
discussed in the main text. We conclude

ξa(ka,t) � −i
vbc√
2π εσ

e−ikavct

∫
dk h̃(k) h̃(ka − k) e−ikvbct

× ξbc(k,ka − k,0). (A6)

If we substitute this into the second of Eqs. (9) and integrate,
we conclude

ξbc(kb,kc,t) � e−i(kbvb+kcvc)t

[
ξbc(kb,kc,0) − vbc

σ
h̃∗(kb)h̃∗(kc)

×
∫

dk h̃(k) h̃(kb + kc − k)
∫ t

0
dt ′e−i(k−kb)vbct

× ξbc(k,kb + kc − k,0)

]
, (A7)

where again we can take the lowest limit of the time integral
to −∞, since the term in question is negligible before t = 0.
When this is done, and the long-time limit is similarly taken,
one obtains a δ function 2πδ[(k − kb)vbc], and with the choice
(25) for the functions h̃(k) (which we made use of earlier in
the derivation), we get

ξbc(kb,kc,t) � e−i(kbvb+kcvc)t [1 − 2e(k2
b+k2

c )σ 2
]ξbc(kb,kc,0).

(A8)

This again yields the desired result, ξbc(kb,kc,t) =
−e−i(kbvb+kcvc)t ξbc(kb,kc,0), in the limit σ � σ0.
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