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We introduce a family of quantum key distribution protocols for distributing shared random keys within
a network of n users. The advantage of these protocols is that any possible key structure needed within the
network, including broadcast keys shared among subsets of users, can be implemented by using a particular
multipartite high-dimensionally entangled quantum state. This approach is more efficient in the number of
quantum channel uses than conventional quantum key distribution using bipartite links. Additionally, multipartite
high-dimensional quantum states are becoming readily available in quantum photonic labs, making the proposed
protocols implementable using current technology.

DOI: 10.1103/PhysRevA.97.032312

I. INTRODUCTION

The possibility of increasing the amount of shared random
variables across spatially separated parties in an intrinsically
secure fashion is one of the flagship applications of quantum
entanglement [1]. Referred to as quantum key distribution
(QKD), such schemes have matured to the point of commercial
application today [2]. Bipartite entanglement of a sufficient
quality for violating Bell’s inequalities is enough to ensure
complete device-independent security in two-party commu-
nication scenarios [3–5]. However, due to strict technical
requirements such as extremely high detection and coupling
efficiencies, such schemes are difficult to realize in practice [6].

While conventional entanglement-based QKD protocols
employ two-party qubit states, it is well documented that the
quantum state dimension has a large impact on the actual key
rate [7–11] and can significantly improve the robustness of such
protocols against noise or other potential security leaks [12,13].
Both of these properties make quantum key distribution with
qudits a viable candidate for next-generation implementations.
High-dimensional bipartite entanglement in the spatial and
temporal degrees of freedom of a photon has been recently
demonstrated in the laboratory [14–18] and experimental
methods for measuring high-dimensional quantum states are
fast reaching maturity [19–22].

In parallel, recent years have seen the experimental realiza-
tion of high-dimensional multipartite entanglement [23–25],
as well as the development of techniques for generating a
vast array of such states [26]. These experimental advances
signal that multipartite high-dimensional entanglement is fast
becoming experimentally accessible, thus paving the way for
quantum communication protocols that take advantage of the
full information-carrying potential of a photon.

The usefulness of multipartite entanglement for quantum
key distribution was recently demonstrated by designing QKD
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protocols which allow n > 2 users to produce a secret key
shared among all of them [27,28]. Such a multipartite shared
key can later be used, for example, for the secure broadcast of
information. Both of these protocols usen-partite Greenberger-
Horne-Zeilinger (GHZ)-type qubit states. In certain regimes,
these protocols are more efficient than sharing a secret key
among n parties via bipartite links followed by sharing of the
broadcast key with the help of a one-time-pad cryptosystem.
This advantage is especially pronounced in network archi-
tectures with bottlenecks (see [27]), making this protocol an
interesting possibility for quantum network designs.

In this work, we go even further and generalize QKD
schemes to protocols which use a general class of multipartite-
entangled qudit states. Such states have an asymmetric entan-
glement structure, where the local dimension of each particle
can have a different value [23,29,30]. The special structure
of these states allows not only an increase in the information
efficiency of the quantum key distribution protocol (either
due to the dimension of the local states or the QKD network
structure), but also adds an additional qualitative property—
multiple keys between arbitrary subsets or “layers” of users can
be shared simultaneously. Our generalization therefore shows a
more complete picture of the advantages of multipartite qudit
entangled states in QKD networks, which goes beyond the
simple increase in key rates.

Let us now introduce the idea behind the proposed protocols
with a simple motivating example. Consider a tripartite state,

|�442〉 = 1
2 (|000〉 + |111〉 + |220〉 + |331〉). (1)

After measuring many copies of this state locally in the
computational basis, the three users—Alice, Bob, and Carol—
end up with data with interesting correlations. First of all, each
of the four possible outcome combinations 000,111,220,331 is
distributed uniformly. Moreover, the outcomes of the first two
users (00, 11, 22, and 33) are perfectly correlated and partially
independent of the outcomes of the third user. Alice and Bob
can postprocess their outcomes into two uniform random bit
strings kABC and kAB in the following way:

kABC =
{

0 for outcomes 0 and 2
1 otherwise,
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and, simultaneously,

kAB =
{

0 for outcomes 0 and 1
1 otherwise.

Note that kABC is perfectly correlated to Carol’s measurement
outcomes; therefore it constitutes a random string shared
between all three users. On the other hand, string kAB is
completely independent of Carol’s data—conditioned on either
of Carol’s two measurement outcomes, the value of kAB is 0
or 1, each with probability 1

2 . A simplified argument can now
be made—since this procedure uses copies of pure entangled
states, it is also independent of any other external data, and
therefore the strings kABC and kAB are not only uniformly
distributed, but also secure. It remains to show that this simple
idea can be turned into a secure QKD protocol, in which a
randomly chosen part of the rounds is used to assess the quality
of the shared entanglement.

In Sec. II, we provide a protocol which can implement an
arbitrary layered key structure of n users. In Sec. III, we com-
pare our proposed implementation with the more conventional
techniques of implementing key structures based on Einstein-
Podolsky-Rosen (EPR)- and GHZ-type states and show that
aside from allowing very specific layered key structures, our
proposed protocol provides a significant advantage in terms of
key rates. In Sec. IV, it is revealed that every layered key struc-
ture can be implemented with several different asymmetric
multipartite high-dimensional states. Additionally, we study
the relationship between local dimensions of the constructed
states and the achievable key rates.

II. LAYERED KEY STRUCTURES AND THEIR
IMPLEMENTATION WITH ASYMMETRIC

MULTIPARTITE QUDIT STATES

Suppose there are n users of a quantum network. In order
to achieve secure communication within this network, many
types of shared keys are required. Apart from bipartite keys
between pairs of users, which can be used for numerous cryp-
tographic tasks such as encryption [31,32] or authentication,
secret keys can be shared between larger groups of users. Also
known as conference keys, such keys have interesting uses such
as secure broadcasting. Let us therefore define a layered key
structure as a set of keys required for secure communication
in a given quantum network (see Fig. 1).

Formally, we define a layered key structure K as a subset
of the power set of users K ⊆ P (Un), where Un denotes a set
of n users {u1, . . . ,un}. In order to conveniently talk about the
layered key structures, let us define some of the parameters that
describe them. First, K is the number of layers. Additionally,
we will use the same labels for layers and keys shared in these
layers. They are labeled by a natural number i ∈ {1, . . . ,K},
and therefore i ∈ K is a label for a single layer (key) of the
layered structure. Last but not least, for each user uj , let us
define a parameter �j as the number of layers that the user uj

belongs to, and therefore �j := |{i ∈ K|uj ∈ i}|.
In what follows, given a particular key structure K, we

define a state that can be used for the implementation of
K in a multipartite protocol. The construction is based on
implementations of correlations shared in a tensor product of

GHZ- and EPR-type states for every layer with the help of
high-dimensional states.

State preparation. Given K, find the state |�K〉.
(1) For each layer i that the user uj is part of, they hold a

qubit labeled by ui
j .

(2) For each layer i ∈ K, we define a state

|ψi〉 := 1√
2

⎛
⎝⊗

j

|0〉uj
+

⊗
j

|1〉uj

⎞
⎠.

(3) Define the state |ψK〉 := ⊗K
i=1 |ψi〉.

(4) Each user j encodes their �i qubits {ui
j } into a qudit

register u′
j of dimension dj = 2�j by rewriting binary string of

qubits into digits.
(5) The resulting state |�K〉 is an equal superposition of 2K

states of registers d1, . . . ,dK .
Before describing the QKD protocol for the layered key

structure K implemented with the state |�K〉, let us first
discuss the measurements we will use in the protocol. As
stated above, each user ui holds a qudit state of dimension 2�i .
Our proposed protocol requires full projective measurements,
and therefore each user needs to be able to implement a
projective measurement with 2�i outcomes. Additionally, since
the state |�K〉 can essentially be seen as a tensor product
of various qubit GHZ and EPR states, the proof of security
will be done by the reduction to multiple instances of pro-
tocols for such qubit states implemented simultaneously in
higher-dimensional systems. The protocols for qubit systems
typically require only measurements in the three mutually
unbiased qubit bases σx,σy , and σz (see [27] for GHZ-based
protocols and [33] for an example of an EPR-based protocol).
In order to use the analysis for a qubit state protocol for
every layer, the user uj needs to implement measurements
with 2�j outcomes that can be postprocessed into measurement
outcomes on the respective “virtual” qubits belonging to these
layers. What is more, in order to keep the analysis of each
layer independent, all combinations of qubit measurements
are required. Let us therefore label required measurements
of user uj as M

j

b1,b2,...,b�j
, with ∀i,bi ∈ {x,y,z}. Outcomes of

such a measurement can be coarse grained into measurement
outcomes of measurements σbi

on their respective qubits.
Let us now present the protocol:
The Layered QKD protocol. Protocol for implementing K

using |�K〉.
(1) In each round, user uj performs a randomly chosen

projective measurement Mb1,...,b�j
and coarse grains its outcome

into measurement results for each “virtual” qubit correspond-
ing to their layers.

(2) The measurement choices are revealed to all users via a
public channel.

(3) For each layer i, the rounds in which σz was measured
by every user in this layer are the key rounds.

(4) For each layer i, the rounds with other σj measurement
combinations are the test rounds.

(5) In every layer separately, the test rounds are used for
parameter estimation.

(6) Based on the parameter estimation results, error cor-
rection and privacy amplification are performed separately for
every layer.
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FIG. 1. Examples of layered key structures. Left: Each of the two security agencies requires a secure communication channel with their
respective agents, as well as an interagency channel secret even from their agents. Additionally, the agents require a secure channel shared only
among themselves. Right: The central bank shares a key with each of its branches, while each branch shares a key with each of its automated
teller machines (ATMs) and, additionally, all parties share a common secret key.

Note that this is truly a parallel implementation of the qubit
protocols for all the layers using higher-dimensional qudit
systems and it retains all the expected properties. First of all,
a particular round can be a key round for some of the layers
and a test round for others. Moreover, it is possible, depending
on the quality of the state, to have different key rates for each
layer, including the situations when some of the layers have a
key rate equal to 0. And last but not least, the implementation
and analysis of each layer i does not depend on users who are
not the part of this layer. In fact, each layer can be used and
treated independently of the other layers. This signifies that the
key in every layer i is indeed secure even against other users
and, additionally, it can be implemented even if the users of
the network not in layer i stop communicating.

III. COMPARISON TO OTHER IMPLEMENTATIONS
OF KEY STRUCTURES

In this section, we compare the performance of our protocol
for implementing a key structure K with the performance of
other possible implementations. The tools available for other
implementations are the standard QKD protocols of two types:

(i) Bipartite QKD protocols (qubit or qudit) for sharing a
key between a pair of users with the use of EPR states such as

|φ+
d 〉 = 1√

d

d−1∑
i=0

|ii〉.

The qubit case of d = 2 can be seen as the standard solution
and is sufficient to implement any layered key structure with
current technology. However, for the sake of a fair comparison,
we also allow for higher-dimensional protocols (see, e.g., [8]).

(ii) Recently, multiparty QKD protocols have been pro-
posed that can implement a multipartite key with the use of
GHZ-type states shared between n users,

∣∣GHZn
d

〉
u1,...,un

= 1√
d

d−1∑
i=0

|ii . . . i〉u1,...,un
.

Such protocols can be used to implement the key for each
layer separately. Although so far only qubit (d = 2) protocols
are known [27,28], we also allow for protocols with higher-
dimensional systems, which are, in principle, possible.

These existing protocols can be combined to implement
the given layered key structure K in multiple ways. Here we
compare the performance of two specific implementations.
The first one uses only bipartite QKD protocols of various
dimensions between the selected pairs of users. These bipartite
keys are subsequently used to distribute a locally generated
multipartite key via one-time-pad encryption [31]. The second
implementation uses the GHZ protocols of various dimensions
to directly distribute the keys for each layer.

The merit of interest is the idealized key rate ri associated
with every layer i. The idealized rate ri is the expected number
of key bits in the layer i per the time slot, under an assumption
that only key round measurements (i.e., the computational
basis) are used. Such a merit captures how efficiently the
information-carrying potential of the photon is used in different
implementations, neglecting the need for the test rounds used
in the parameter-estimation part of the protocol.

In order to further specify what implementations of the
layered key structure K we are comparing to, we need to
characterize two different properties of the quantum network
we are using for comparison.

Since the achievable idealized rates depend on the archi-
tecture of the network (as illustrated in [27]), let us specify
the network architecture first. Let us suppose that the n users
Un form a network where each ui is connected to a source of
entanglement by a quantum channel, and each pair of users
(ui,uj ) shares an authenticated classical channel (see Fig. 2).

The second property of the network we need to specify is
the local dimensions of the measurements allowed for each
user. We restrict every user to the local dimension of |�K〉—
user ui can perform projective measurements with, at most,
2�i outcomes. This is a reasonable assumption since it is a
statement about the complexity of the measurement apparatus
of each user ui . This choice of dimension is also meaningful
since, in a certain sense, our protocol is a good benchmark
implementation under these local dimension assumptions. It
achieves the rates ri = 1 for all layers i and it is not difficult to
see that this is impossible with lower local dimensions, since
the logarithm of the local dimension di of the user ui needs to
be at least �i—the number of shared bits in each round.

Note that the two aforementioned assumptions do not
restrict the routing capabilities of the source. This means that
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FIG. 2. Entanglement distribution model. Each user uj is con-
nected to the source of entanglement via a quantum channel. Addi-
tionally each pair of users shares a classical channel.

the source can send out entangled states to any subset of users
on demand. Also, these assumptions allow for simultaneous
distribution of entangled states to mutually exclusive sets of
users. Therefore, for example, in networks of 2n users, n

EPR pairs can be sent simultaneously or, alternatively, two
n-partite GHZ states can be sent simultaneously, and so on.
The routing capabilities required of a source in order to be able
to implement such approaches pose significant experimental
challenges—for example, in access QKD networks [34–36],
only a single pair of users can receive an EPR pair in a single
time slot. However, for the sake of a fair comparison, we allow
them anyway. Note that in this sense, our protocol is passive
since the source produces the same state in every round of the
protocol.

In order to familiarize the reader with our setup, we
explicitly calculate the idealized rates for the simplest case
of three users [Alice (1), Bob (2), and Carol (3)], with the
layered key structure {k1 = {1,2,3},k2 = {1,2}} [see Fig. 3(a)],
before discussing the rates of different implementations more
generally. First of all, for this layered key structure K, the
associated state is the one introduced in Sec. I,

|�442〉 = 1
4 (|000〉 + |111〉 + |220〉 + |331〉).

This fixes the local dimensions to 4 for Alice and Bob and 2
for Carol.

Furthermore, note that in a network of just three users,
an EPR pair can be sent only to a single pair of users in
each time slot. However, since Alice and Bob can perform
ququart measurements, they can use any given time slot to
share and run a ququart QKD protocol with the state |ψ+

4 〉 =
1
4 (|00〉 + |11〉 + |22〉 + |33〉), achieving the idealized rate of 2.

Therefore, in order to implement the given key structure,
the source will alternate between sending an EPR pair |ψ+

4 〉
to Alice and Bob with probability p, and sending a standard
qubit (since Carol can manipulate only qubits) EPR pair |ψ+〉
to Alice and Carol with probability (1 − p) [see Fig. 3(b)].
This results in an idealized rate rAB = 2p for the bipartite
key kAB between Alice and Bob. The rate of the key kAC

between Alice and Carol in this setting is rAC = (1 − p). In
order to get one bit of the desired key kABC , a bit of each
key kAB and kAC needs to be used—Alice locally generates a
secret string kABC and sends an encrypted copy to both Bob
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FIG. 3. Simplest layered QKD (LQKD) example. (a) In this
example, three users want to share keys in two layers k1 = {1,2,3}
and k2 = {1,2}. p is the probability that users 1 and 2 share the
state |ψ+

4 〉. (b) An EPR implementation results in the idealized rates
[{1,2,3}; (1 − p)],[{1,2}; 3p − 1]. (c) A GHZ implementation results
in the idealized rates [{1,2,3}; (1 − p)],[{1,2}; 2p]. (d) An imple-
mentation with the state |�442〉 = 1

2 (|000〉 + |111〉 + |220〉 + |331〉)
results in the idealized rates [{1,2,3}; 1],[{1,2}; 1].

and Carol. Therefore, exchanging all bits of key kAC and an
equivalent amount of key kAB in this way results in the rates
[{1,2,3}; (1 − p)],[{1,2}; 2p − (1 − p)]. Note also that values
of p � 1

3 do not allow the users to exchange all keys kAC into
tripartite keys since the amount of the keys kAB is too low. For
comparison, note that our layered implementation results in the
rate [{1,2,3}; 1],[{1,2}; 1], while the previous analysis suggests
that keeping the rate rAB = 1 (p = 2

3 ) results in rABC = 1
3 .

The analysis for the GHZ implementation is much sim-
pler. Here, either the source sends a qubit GHZ state with
probability (1 − p) or a ququart EPR state to Alice and Bob
with probability p [see Fig. 3(c)]. This results in the rates
[{1,2,3}; (1 − p)],[{1,2}; 2p]. For comparison, keeping the
rate rAB = 1 (p = 1

2 ) results in rABC = 1
2 . Thus, while this

implementation is more efficient than the EPR one, it still
cannot achieve the rate of 1 for both layers obtained by the
state |�442〉 shown in Fig. 3(d).

The problem of finding the general form of achievable rates
for an arbitrary key structure K is too complex and would
involve too many parameters. The reason for this is the fact
that the probabilities (or, in fact, ratios) of EPR or GHZ states
sent to the different subsets of users change the average rates
ri in different layers (see the previous example). Therefore, the
goal of the following section is to argue that the rates ri = 1 for
all i are achievable for only restricted classes of key structures
K with both EPR and GHZ implementations.

Connected structures and partitions

Naturally, each layered structure K defines a neighborhood
graph GK. UsersUn are represented as the vertices in this graph
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u1 u2

u3u4

FIG. 4. A key structure with idealized rate 1 with EPR implemen-
tation. There are six two-user layers, which can be grouped into three
partitions {{u1,u2}, {u3,u4}}, {{u1,u4}, {u2,u3}}, {{u1,u3}, {u2,u4}}.
Eight-dimensional EPR pairs can be distributed to each partition in
parallel. If each of these distribution rounds happens with probability
1
3 , the average rate for every layer is 1.

and two users ui and uj are connected by an edge, if they share a
layer in the structureK. We call a layered structureK connected
if the neighborhood graph GK associated to it is connected.

The connected components of each layered structure K can
be treated separately since the source can send states to them
simultaneously and therefore their rates do not depend on the
rates of the other connected components. In what follows, we
therefore deal only with connected key structures K.

Let us now introduce partitions Pi of the key structure K.
These are subsets of layers that are mutually exclusive and
collectively exhaustive—meaning that their union is equal to
the set of all users Un and no pair of the layers in the partition
contains the same user. Formally,

Pj = {i1, . . . ,im ∈ K| ∪a ia = Un,∀a,b : ia ∩ ib = ∅}.
Note that we maintain an index j for each partition since each
connected layered structure might contain several partitions
(see Fig. 4).

Let us now suppose that all the layers of a key structure K
can be grouped into exactly � partitions. In such a case, each
user belongs to exactly � layers and, therefore, ∀i : �i = �. We
will show that for the GHZ implementation, all the partitionsK
with this property can achieve the idealized rate ri = 1 for all
layers. For the EPR implementation to achieve all rates equal
to 1, an additional requirement is needed—all layers need to
have exactly two users.

The crucial observation is that the source can send a
GHZ state of dimension 2� to each layer in a partition Pj

simultaneously, resulting in rate � in each of these layers. It
takes the source exactly � time slots to iterate over all the
partitions Pj , and therefore the average rate for each layer
is 1. For the case of all the layers being of size 2, this simple
distribution protocol reduces to one with EPR pairs.

It remains to be shown that key rates of 1 cannot be achieved
in every layer, unless the key structures K can be grouped
into partitions of Un without leftover layers. To see this, it
is enough to carefully count the number of key bits that are
required to be produced in every time step. In order to achieve
the rate 1 in each layer, each user needs to produce a total of
�i secret key bits in every round. This can only be achieved
if every user measures a state of full dimension in every time
step. However, this is not possible for connected key structures
K that cannot be fully decomposed into multiple partitions.
To see this, consider a user ui . In order to realize the full

...

u1

u2

u3

u4

u5

u6

um

FIG. 5. The number of channel uses needed in order to share a
multipartite key with EPR pairs. Users u1 and um need to share only
a single EPR pair with their neighbors. The rest of the users need
to share two EPR pairs each. To share the multipartite key, user u1

generates a random string locally and sends it to the user u2 secretly
via one-time-pad encryption. Then each user ui , after receiving the
key from the user ui−1, sends it secretly to the user ui+1, until all the
users share the new secret key.

information-carrying potential, the user ui needs to share a
2�i -dimensional GHZ state in one of his layers in a single round.
This implies that all the neighbors {uj } of user ui have �j = �i

since otherwise they either will not be able to measure in 2�i

dimensions or they will not be able to generate enough key in
the given round. This fact, together with the connectedness of
the key structure, implies that �j = �i for all users. In the case
of �i = 1, the desired graph is not connected. Let us therefore
discuss only key structures with �i > 1. In each round, each
user needs to share a key in one of his layers. This is possible
only if each layer is a part of a partition. Additionally, since
each user has �j = �i , to obtain the rate 1 in every layer, each
user needs to iterate over all his layers in exactly �i rounds.
This implies that the key structure can be decomposed into �i

partitions.
An EPR implementation requires an additional restriction

on the key structures implementable with rate 1. The reason for
this fact is that in each layer of size m > 2, there is a user who
needs to generate two bits of bipartite key in order to securely
distribute the locally generated multipartite key (see Fig. 5).
The number of required bits per round therefore exceeds �i in
some rounds for some of the users, whenever there is a key
shared among a number of users larger than 2. This fact shows
that even if the key structure can be grouped into partitions,
with all users having the same local dimension � and generating
� bits of bipartite randomness in each round, there are some
users who need to generate more than � bipartite key bits in
order to share �i bits in their multipartite layers.

Although the conditions formulated in this section fully
characterize when our construction does not give an advantage
when compared to the “traditional” implementations, let us
explicitly formulate a couple of simple corollaries, which
showcase interesting key structures in which our construction
does give an advantage. First notice that whenever a key
structure of n users contains a layer of size n − 1, it cannot be
decomposed exactly into partitions since keys of size 1 do not
exist. Therefore, such key structures cannot be implemented
with rates 1 in every layer by either the GHZ or the EPR
implementation. A particularly interesting example of such a
key structure is a key structure containing all the possible keys
within a set of n users. Another simple corollary concerns
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the EPR implementation—any key structure with an odd
number of users n containing only bipartite keys cannot be
exactly decomposed into partitions, and therefore its EPR
implementations cannot achieve rate 1 in every layer.

IV. DIMENSION-RATE TRADE-OFF

In this section, we show how to construct many different
multipartite high-dimensional states that are useful for the
implementation of a given key structure K. These states differ
from each other in their local dimensions as well as achievable
idealized key rates—generally there is a trade-off between
these two quantities.

As an example, consider the layered structure K =
{{1,2,3},{1,2}} depicted in Fig. 3. The solution discussed
previously can be used to implement this layered structure
with the |�442〉 state [see Eq. (1)] of local dimensions 4 for
the first two users and 2 for the third user. However, consider
the following state:

|�332〉 = 1√
2

(
|000〉 + 1√

2
(|111〉 + |221〉)

)
, (2)

which is very close to the first such asymmetric state that
was recently realized in the laboratory [23]. Measuring the
state in the computational basis produces data that can be
postprocessed into two uniformly random and independent
keys in the following way:

k123 =
{

0 for outcome 0
1 otherwise,

while, simultaneously,

k12 =
⎧⎨
⎩

0 for outcome 1
1 for outcome 2
⊥ otherwise,

where ⊥ denotes that no key was produced in this
layer. The idealized rate associated with this state is
[{1,2,3}; 1],[{1,2}; 1

2 ], as a bit for the key k12 gets produced
only with probability 1

2 . Interestingly, a comparison with other
implementations (see Fig. 3) reveals that even though the
local dimensions of the |�332〉 state are more restricted, it
can nonetheless achieve rates that are unattainable by four-
dimensional implementations for separate layers. In this sec-
tion, we discuss under which conditions such local dimension-
rate trade-off is possible and subsequently use this knowledge
in order to construct a whole family of states which are useful
for the implementation of a given layered key structure K.

The main idea allowing for the dimension-rate trade-off
is not to produce key bits in some of the layers for certain
measurement outcomes, which results in a smaller local di-
mension. However, this idea is not usable in every situation
since even the measurement outcome postprocessed to ⊥ can
leak information about the key produced in different layers.
In order to show this, consider two layers i and j with
i ∩ j �= ∅. Additionally, label the user present in both layers
as u. Without loss of generality, assume that user u interprets
the measurement outcome a as ⊥ in layer i and as a key bit 0
in layer j . Since all the users in the layer j are fully correlated,
the key shared in this layer can be interpreted as a string of
symbols 0,1, and ⊥. It is important to notice that keys in layers

i and j are not independent. While the users of layer i can infer
only that no key was produced in layer j in rounds where a bit
0 was produced in i (which is not a security breach), users of
j know that whenever the protocol produced no key symbol ⊥
in layer j , a bit 0 was produced in layer i. This is not a security
breach if and only if all users of the layer j are authorized to
also know the key i, in other words, if and only if j ⊂ i.

In order to explain how to use this observation in the
construction of states for any layered structure K, let us first
revisit the state construction algorithm proposed in Sec. III and
reformulate it recursively. Consider two layered key structures
K1 with usersU1 implementable with a state |�K1〉 andK2 with
users U2 implementable with a state |�K1〉. A new layered
key structure K := K1 ∪ K2 with users U = U1 ∪ U2 can be
implemented with a state |�K〉, constructed as follows:

Recursive state preparation, step 1. Given |�K1〉 and |�K2〉,
find the state |�K〉

with K = K1 ∪ K2.
(1) Consider the state |ψK〉 := |�K1〉 ⊗ |�K2〉.
(2) Each user uj ∈ K1 ∪ K2 holds two registers u1

j and u2
j

of dimensions d1
j and d2

j , respectively.
(3) Let each user uj ∈ K1 ∪ K2 encode their registers u1

j

and u2
j in a register u′

j of dimension d ′
j = d1

j d2
j .

(4) The resulting state is the desired state |�K〉.
The local dimensions of the resulting state are d ′

j = d1
j d2

j for
each user uj ∈ U1 ∩ U2 and remains unchanged (i.e., d ′

j = dj )
for all users uj /∈ U1 ∩ U2. Consider a layered key structure K
with |K| layers. If we assign a qubit k-partite GHZ state to
each of the layers of size k, we can recover the state for K
constructed in Sec. II by simply joining the GHZ states one by
one with the recursive step 1 we just introduced.

In order to incorporate the dimension-rate trade-off into the
state construction, let us present an alternative recursive step
that takes two states |�K1〉 and |�K2〉 as an input. These two
states implement key structures K1 and K2 with users U1 and
U2, respectively. The recursive step produces a state |�K〉,
which implements key structure K = K1 ∪ K2 ∪ {U1 ∪ U2},
where {U1 ∪ U2} is a new layer containing all users in both
U1 and U2.

Recursive state preparation, step 2. Given |�K1〉 and |�K2〉,
find the state |�K〉

with K = K1 ∪ K2 ∪ {U1 ∪ U2}.
(1) Consider a state |� ′

K2
〉, which is equal to |�K2〉, but with

all labels of computational basis vectors primed.
(2) A state implementing K can be written as

|�K〉 := 1√
2

(∣∣�K1

〉
U1

⊗ |⊥, . . . ,⊥〉U2\U1

)

+ 1√
2

(∣∣� ′
K2

〉
U2

⊗ |⊥, . . . ,⊥〉U1\U2

)
,

where ⊥ is a new symbol.
The local dimensions of state |�K〉 are d1

j + d2
j for users

uj ∈ U1 ∩ U2 and dj + 1 for users uj /∈ U1 ∩ U2. The reason
for this is that in the construction, we are using primed labels
of the computational basis states of |�K2〉 together with the
original basis labels of the state |�K1〉. The resulting states of
users uj ∈ U1 ∩ U2 therefore effectively live in a Hilbert space
obtained by a direct sum of their original Hilbert spaces. The
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addition of one dimension for the remaining users comes from
the fact that we enlarge their computational basis with a new
symbol ⊥ in the construction.

Note that neither K1 nor K2 are necessarily nonempty in
the construction. For this reason, let us define a state for K =
∅ with n users as |�∅〉 = |00 . . . 0〉u1,...,un

. This is especially
important in order to be able to use the trade-off recursive
step to construct a state for a union of two key structures K1

and K2, such that U1 ⊆ U2 and K2 = U2, i.e., the layered key
structure K2 contains only a single layer—the set of all of its
users (see Fig. 3 for an example of such a key structure). In
such a case, a state for the implementation of K = K1 ∪ {U2}
can be constructed with the recursive step 2 applied to states
|�K1〉U1 and |�∅〉U2 .

Now we would like to discuss how to use the state |�K〉 to
construct a QKD protocol producing a key in all the layers of
the key structureK. Our argument is again structured along the
lines of a reduction to existing qubit QKD protocols for GHZ
states of n users. The key observation for a state |�K〉 with
user set U = U1 ∪ U2 created with the recursive step 2 is that it
is an equal superposition of two computational basis vectors,
which are not only orthogonal, but also differ in every position.
We call this property local distinguishability. Let us now
divide the Hilbert spaces of the users in U into two orthogonal
components. Users uj ∈ U1\U2 can split their Hilbert space

into two orthogonal subspaces spanned by {{|i〉}d
1
j

i=1,|⊥〉} ∈
Hd1

j
⊕ H1, where the set of orthogonal computational basis

vectors {|i〉}d
1
j

i=1 is the computational basis of the Hilbert space
of user uj in the input state |�K1〉. Similarly, users uj ∈ U2\U1

can split their Hilbert spaces into two orthogonal subspaces

spanned by {|⊥〉,{|i ′〉}d
2
j

i=1} ∈ H1 ⊕ Hd2
j
, where {|i ′〉}d

2
j

i=1 is the
orthogonal computational basis of the Hilbert space of user uj

in the input state |�K2〉. Finally, users uj ∈ U1 ∩ U2 can split
their Hilbert spaces into two orthogonal subspaces spanned

by {{|i〉}d
1
j

i=1,{|i ′〉
d2

j

i=1}} ∈ Hd1
j
⊕ Hd2

j
, where d1

j and d2
j are the

dimensions of the Hilbert spaces of user uj in the input
states |�K1〉 and |�K2〉, respectively. For each user, projectors
onto these two subspaces define an incomplete set of positive
operator-valued measurements (POVM), which can be used
as analogues of σz measurements in the key rounds of the
QKD protocol. Since these states are fully correlated in the
respective subspaces, there are two kinds of possible classical
global measurement outcomes, each occurring with probability
1
2 . Either the outcome is (i,i,⊥) or (⊥,i ′,i ′). By a simple
renaming, the first outcome can be seen as a 0 shared among
all the users and the second one as 1, thus constituting a
common shared binary key. However, since the measurements
(depending on the dimensions of |�K1〉 and |�K2〉) do not
have to be fully informative, they also lead to interesting post-
measurement states. The postmeasurement states are, respec-
tively, |�K1〉U1 ⊗ |⊥ . . . ⊥〉U2\U1 and |⊥ . . . ⊥〉U1\U2 ⊗ |�K2〉U2 .
Clearly the postmeasurement states can be used to implement
subkey structures K1 and K2 by their respective users.

The analogues of σy and σz needed to formulate the full
GHZ protocol [27] require first projecting the state |�K〉 down
to a qubit state by locally mapping all vectors in the left
Hilbert space of each user onto a state |0〉 and all vectors
in the right Hilbert space onto a state |1〉, followed by qubit

measurements σx and σy . The down projection results in a
loss of information about the exact position of the vectors
in their respective subspaces. However, this happens only in
the test rounds in which we cannot use the postmeasurement
states to implement the keys in the substructures anyway. In
other words, each layer is probed only probabilistically in the
parameter-estimation rounds. However, since the parameter-
estimation rounds are generically sublinear, this only leads to a
constant increase of a sublinear number of rounds and does not
impact the key rounds at all. Since only a small (logarithmic)
portion of test rounds is required, most of the states will
be measured in σz measurements. Postmeasurement states of
these measurements will be useful for the implementation
of K1 half the time on average, and the other half will be
useful for the implementation of K2. This probabilistic nature
of obtaining the postmeasurement states is the source of the
rate decrease in this construction. Repeating the reductions to
binary QKD protocols for the substates leads to recovering a
QKD protocol for the key structure K.

A state for any layered key structure K can be constructed
by starting with an empty layered key structure and subsequent
application of one of the previous recursive rules until all the
layers of K have been added. It is important to note that the
exact form of the resulting state—i.e., the local dimensions
and the idealized rates in every layer—depends on the types
of recursive steps we use for each layer, but also on the order.
This is because adding the layers of the structureK in particular
orders might result in the inability to use the trade-off rule.

The simplest example to consider is once again the key
structure K = {{1,2},{1,2,3}}. Note that the recursive rule
number 1 can only join two nonempty key structures into one
state. In principle, this is not a problem since we know that
for layered key structures with only a single layer of size n,
there is only a single suitable state– - the GHZ state of n users.
Therefore, we can start by dividing K into the single-layer
sublayers K1 = {1,2,3} and K2 = {1,2} and assigning to them
their respective binary GHZ and EPR states. After doing this,
we can no longer use the recursive rule number 2. Therefore,
the only option is to join the states together with the recursive
rule number 1, resulting in the |�442〉 state (1).

Another option is to assign an EPR pair to the layer
{1,2} and subsequently use the second recursive rule with
K1 = {1,2} and K2 = {∅}, with user sets U1 = K1 and U2 =
{1,2,3} implemented with states |�K1〉 = 1√

2
(|00〉 + |11〉) and

|�K2〉 = |000〉, in order to obtain state

|�K〉 = 1√
2

(
1√
2

(|00⊥〉 + |11⊥〉) + |0′0′0〉
)

, (3)

which is equivalent to the state |�332〉 defined in Eq. (2).
Let us study the family of states for a fixed key structure

K in more detail. Recursive rule number 2 can be used to join
two key substructures K1 and K2 only if the final key structure
K also contains a layer U1 ∪ U2. For this reason, the central
concept of this part of the section is ordering the layers of the
key structure K with respect to the set inclusion [see Fig. 6(a)].

The first step necessary to characterize different states that
can be prepared for a given K using the introduced recursive
rules is to first order the layers k ∈ K according to the inclusion.
This ordering can be represented by an ordered graph G̃K,
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{1, 2} {1, 3} {1, 4}{2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

{1, 2} {1, 3} {1, 4}{2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

{1, 2} {1, 3}{1, 4}{2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

{1, 2} {1, 3} {1, 4}{2, 3} {2, 4}{3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

{1, 2} {1, 3} {1, 4}{2, 3} {2, 4}{3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

{1, 2} {1, 3} {1, 4}{2, 3} {2, 4}{3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}(a () b)

(c () d)

(e () f)

FIG. 6. Classification of different states for key structure K =
P ({1,2,3,4})\{∅,{1},{2},{3},{4}}. (a) Key structure K ordered with
respect to inclusion. (b) Decomposition of ordered K into binary
trees. Note that union of two children vertices is always equal to
their parent. Each tree can now be implemented using the trade-off
recursive step multiple times. Joining the trees together can be done
by the recursive step 1. This is illustrated by the dotted circle that joins
three states together. (c)–(f) Different decompositions of ordered K
into a nonbinary tree. Using reductions to qudit protocols allows us
to use the trade-off recursive step for all layers. Each decomposition
leads to a different state.

where each layer is represented by a vertex and two vertices
are connected if and only if one is a subset of the other
[see Fig. 6(a)]. The next step is to find specific binary tree
decompositions of G̃K.

A tree decomposition is a division of the graph into
tree subgraphs, where all the vertices are used and the tree
subgraphs are connected by edges from the edge set of graph
G̃K. An additional condition for the decompositions suitable
for our purposes is that the trees should correspond to key
substructures which can be implemented with the help of
recursive rule 2 only. This condition translates into the fact
that the trees in the decomposition have to fulfill an additional
constraint—the union of two children vertices has to be equal
to their parent vertex [see Fig. 6(b)].

By construction, each of the key substructures correspond-
ing to a tree can be implemented using the recursive rule 2
only by assigning qubit GHZ states with the correct number
of parties to the layers corresponding to leaves in the tree.
Following this, the state is recursively constructed all the way
up to the root of the tree by joining the states corresponding
to the children vertices, while simultaneously implementing a
layer corresponding to their parent. The states corresponding
to the trees in the decomposition can subsequently be joined
into a single state via recursive rule number 1. Every tree
decomposition results in a different final state for the key
structure K.

Note that we allowed only binary trees in the tree decompo-
sition of the graph G̃K. The reason for this is that in the recursive
state preparation step 2, we join two states in such a way that we
can implement a binary QKD protocol for the layer U1 ∪ U2.
However, in principle, we can define a more general recursive
state preparation step, in which m states for substructures are

put into a uniform superposition in a Hilbert space which
corresponds to a direct sum of the original Hilbert spaces. In
this way, the resulting state is an equal superposition of m

states living in subspaces, which are not only orthogonal but
also locally distinguishable by every user. These can be used as
m-dimensional GHZ states in order to generate a key in layer⋃

m Uk . The drawback of this recursive rule, however, is that it
uses a reduction to a QKD protocol based on m-dimensional
GHZ states, which are not known yet. The advantage is a larger
flexibility in tree decompositions of the graph G̃K; m-ary trees
are also allowed. This can lead to a situation where G̃K can be
decomposed into a smaller number of trees than with binary
trees only [see Figs. 6(c)–6(f)].

In what follows, we give an example of the fact that the
dimension-rate trade-off can scale exponentially. Consider n

users Un and a layered key structure K = {{n,n − 1},{n,n −
1,n − 2}, . . . {n,n − 1,n − 2, . . . ,1}}. Using only the recur-
sive rule 1 to construct the corresponding state results in a
local dimension 2n−1 for users un and un−1 since both of them
are present in each of the n − 1 layers. Additionally, this results
in local dimension 2i for the other users ui since each of them
is present in exactly i layers. On the other hand, a state for
this key structure can also be obtained by applying only the
trade-off rule, by adding the layers together with an empty
key structure, starting from the smallest to the largest. Such a
state has a local dimension n for users un and un−1, and i + 1
for every other user ui . The price to pay is the exponential
decrease of the rates. While the first state achieves a rate 1 for
every layer, the second state achieves a rate 1

2n−i for a layer of
size i.

Note that even this implementation offers an advantage
compared to the GHZ implementation explored in Sec. III.
Noting that the local dimension of the user u1 is 2, it is clear
that only a qubit n-partite system GHZ state can be distributed
to the layer of size n in each time slot. Therefore, in order to
achieve the rate equal to 1 in the layer {u1, . . . ,un}, all the time
slots need to be devoted to the distribution of the GHZ state
shared among all the users. This fact results in all the other rates
being equal to 0. On the other hand, in the implementation
using the full trade-off state, the sum of the remaining rates
quickly approaches 1 as the number of users n approaches
infinity.

Let us conclude this section by a short summary of the
main ideas about distributing secure keys among users of a
quantum network equipped with high-dimensional multipartite
entanglement sources. We have presented three general ideas
about encoding secure key structures in such states, each of
which can be analyzed by a reduction to protocols using GHZ
states. The first method can be seen as a standard solution
and simply uses classical mixtures of GHZ states, where the
mixture is known to the users. It uses a corresponding GHZ
state for each key in the key structure. The second method
utilizes the high-dimensional multipartite structure and uses
a tensor product of the GHZ states, again one for every key
in the structure, and encodes them simultaneously in high
local dimensions. A protocol using this idea is presented in
Sec. II. The third method uses the direct sum of Hilbert
spaces in order to create locally distinguishable superpositions
of states implementing substructures. As a byproduct, such
superpositions can in some sense be used as a GHZ state for a
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layer containing all users of the sublayers—this is a basis for
the trade-off recursive rule presented in Sec. IV.

Each of these implementations has its pros and cons. The
first one achieves the worst key rates, but unlike the other two it
can be used with active routing of qubit entanglement sources.
The second one achieves excellent rates; however, it requires
very high local dimensions, i.e., scaling exponentially in the
number of layers. The third one can be used to supplement the
second method in order to reduce the local dimensions to a
linear scaling in layers, albeit at the expense of decreased key
rates.

V. CONCLUSIONS

As quantum technologies develop, network architectures
involving multiple users are becoming an increasing focus of
quantum communication research [37,38]. For this purpose,
it is vital to know the limitations and, more importantly,
the potential of multipartite communication protocols. We
contribute to this effort by providing a straightforward protocol
that makes use of recent technological advances in quantum
photonics [23,24]. Layered quantum communication makes
full use of the entanglement structure and provides secure
keys to different subsets of parties using only a single quantum
state. If the production of such states becomes more reliable,
this has the potential to greatly simplify network architectures
as a single source will suffice for a variety of tasks. It is
known that multipartite entanglement can be recovered through
local distillation procedures, even if noise has rendered the
distributed state almost fully separable [39]. Moreover, high-
dimensional entanglement is known to be far more robust to
noise than low-dimensional variants [40], indicating that even

under realistic noise, our protocols, augmented by distillation,
could be applied in situations where all qubit-based protocols
would become impossible. Our protocols and proofs are largely
based on an extension of low-dimensional variants of key dis-
tribution through a separation into different subspaces. We have
explicitly described the protocols in non-device-independent
settings (i.e., trusting the measurement apparatuses, but not
the source). This is mainly due to the practical limitations of
fully device-independent entanglement tests, but in principle
our proposed schemes could work just as well with device-
independent variants of bipartite [3] and multipartite [28,41]
key distribution schemes.

While the number of quantum channel uses and the noise
resistance of entanglement scale favorably in the Hilbert
space dimension, the current production rates of the proposed
quantum states underlying the protocols are severely limited
and exponentially decreasing in the number of parties. The
central challenge in multipartite quantum communication thus
still remains the identification of sources that reliably create
multipartite entangled states in a controllable manner and at
a decent rate. We hope that explicitly showcasing potential
protocols will inspire further efforts into the production of
multipartite entanglement in the laboratory.
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