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We investigate the performance of several continuous-variable quantum key distribution protocols in the
presence of uniform fading channels. These are lossy channels whose transmissivity changes according to a
uniform probability distribution. We assume the worst-case scenario where an eavesdropper induces a fast-fading
process, where she chooses the instantaneous transmissivity while the remote parties may only detect the mean
statistical effect. We analyze coherent-state protocols in various configurations, including the one-way switching
protocol in reverse reconciliation, the measurement-device-independent protocol in the symmetric configuration,
and its extension to a three-party network. We show that, regardless of the advantage given to the eavesdropper
(control of the fading), these protocols can still achieve high rates under realistic attacks, within reasonable values
for the variance of the probability distribution associated with the fading process.
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I. INTRODUCTION

The purpose of quantum key distribution (QKD) [1,2] is
to establish a secret key between two authenticated parties
based on the laws of quantum mechanics [3–8]. This key can
then be used for cryptographic tasks such as the one-time pad
[9]. In QKD, the effect of eavesdropping on the exchanged
quantum systems between the parties can be detected and
quantified so that a shared secret key can be extracted. This
is achieved by implementing the correct amount of error
correction and privacy amplification after communicating via
a public channel. Significant advantages have been provided
by the use of continuous variable (CV) systems [6,8]; in
particular, with Gaussian states [7]. CV systems can transfer
higher amounts of information per signal with respect to
qubit-based approaches and they rely on cheaper technological
implementations. A number of CV-QKD protocols have been
studied [10–21] and experimentally implemented [22–28].

In this scenario, another concept that needs to be treated
carefully is that of side-channel attacks, where the eavesdrop-
per (Eve) creates an alternate channel with the aim of directly
attacking the setups where the signal states are prepared and
measured. A practical but partial solution was proposed in
2012 and is known as measurement-device-independent (MDI)
QKD [29,30], later extended to the CV setting [31–33]. A
MDI-QKD protocol can be seen as a “prepare and measure”
version of entanglement swapping [34] where the middle
Bell detection is performed by an untrusted relay. Recently,
a suitable generalization of the Bell detection to many parties
has led Ref. [35] to introduce a multipartite CV-MDI-QKD star
network with an arbitrary number of users.

Today the field of CV-QKD needs to accomplish two main
complementary tasks. The first is the invention of practical
protocols that can achieve the high secret key rates that are
ideally accessible with CV systems. When implemented with
ideal reconciliation efficiencies, low-loss couplings and highly
efficient detectors, CV-QKD protocols are not so far from
the ultimate Pirandola–Laurenza–Ottaviani–Banchi (PLOB)

bound for private communications over a lossy channel [36]
(see also extensions of this bound to multiple users [37],
repeaters and networks [38], and other developments [39–41]).
The other task is improving the security analysis of CV-QKD
protocols so as to include realistic issues associated with their
practical realization, e.g., finite-size effects [42,43], and other
aspects such as composability [44,45].

In terms of realistic implementations, one should also
consider the possibility of temporal variations of the commu-
nication line between two remote users as modeled by the
so-called fading channel. In this case, the transmissivity η

of the link between the two parties is not constant and may
take values according to some probability distribution [46].
This description might emerge from the use of a free-space
link [47] that is susceptible to the atmospheric turbulence
[48–54]. Here we consider a basic model which is based
on a uniform distribution of the transmissivities. We call
these “uniform fading channels.” Contrary to previous studies
[55] that have analyzed the symmetric situation where both
users and eavesdropper are subject to truly environmental
fading, this paper considers the worst-case scenario where
the eavesdropper is in complete control of the fading process,
so that she may choose different instantaneous values of the
transmissivity for each use of the channel.

This type of fading is fast so that the users are only able to
estimate the statistical distribution of the transmissivity but not
its instantaneous values. This is in contrast to slow fading where
the transmissivity of the channel remains constant for suffi-
ciently many uses, allowing the remote users to estimate its ac-
tual value. In mathematical terms, for some fixed transmissivity
η consider the key rate as given by the difference between the
mutual information IAB of the remote parties and the accessible
information IE of the eavesdropper, i.e., R(η) = βIAB − IE ,
where β ∈ [0,1] is the reconciliation parameter [7]. In slow
fading, the key rate is averaged over the distribution of the
transmissivity. In fast fading, this is not the most conservative
approach. While we may still consider the average ĨE for
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the eavesdropper, we need to assume the lower transmissivity
ηmin for the users, i.e., I ηmin

AB [56]. Therefore, the secret key rate
will be given by

Rfast(ηmin) = βI
ηmin
AB − ĨE. (1)

In this work, we adopt a basic model of fading channel
where the transmissivity is uniformly distributed over some
interval. Then, we study the performance of several CV-QKD
protocols in the worst-case scenario. We first investigate the
effects in the case of the one-way coherent-state switching
protocol [10] in reverse reconciliation (Sec. II). In Sec. III, we
then study the CV-MDI-QKD protocol [31] in the symmetric
configuration [33]. Finally, in Sec. IV, we focus on the case of
a CV-MDI-QKD network [35] considering three remote users.
In all cases we show that high key rates are achievable within
reasonable distances, even with fast-fading attacks, assuming
different values for the variance of the uniform distribution
associated with the fading channel.

II. ONE-WAY QUANTUM KEY DISTRIBUTION
UNDER FAST FADING

Consider a sender (Alice) preparing a bosonic mode A using
coherent states whose mean values x = (xq,xp) are chosen ac-
cording to a zero-mean Gaussian distribution with variance φ.
These states are sent through a channel with transmissivity η

to Bob, who then applies a homodyne measurement to either
the q or p quadrature of his output mode B, with the outcome
being described by a random variable y (see Fig. 1). For each
use of the channel, Eve has a two-mode squeezed vacuum
state [7] with thermal variance ω � 1, which represents a
realistic version of an Einstein–Podolsky–Rosen (EPR) pair in
CV systems. This state describes modes e and E as depicted
in Fig. 1. Then Eve’s remote mode E is made to interact with
Alice’s mode A via a beam splitter with transmissivity η which
takes values from a uniform distribution Pη with extremal
values ηmin and ηmax = ηmin + �η. Thus, Eve receives mode

FIG. 1. One-way switching protocol. Alice prepares a coherent
state on mode A whose mean value x is modulated according to a
Gaussian with variance φ. This state is sent through the channel with
transmissivity η whose value may be changed by Eve in each use of the
channel. Bob gets an output mode B, which is homodyned randomly
in the q or p quadratures, with outcome y. Eve’s attack also comprises
of her sending mode E of an EPR state to interact with mode A in
a beam-splitter interaction with instantaneous transmissivity η, and
injecting thermal noise ω. After the interaction she stores mode E′

and the other EPR mode e in a quantum memory to be measured at
the end of the quantum communication (collective attack).

E′ and stores both e and E′ in a quantum memory, to be
measured at the end of the entire quantum communication.

An arbitrary input signal state ρ undergoes a transformation
via a thermal-loss channel Eη,ω(ρ) for a specific η randomly
chosen by Eve (while ω is kept fixed). The asymptotic key
rate will be given by Eq. (1). Here, Eve’s information on
Bob’s variable (reverse reconciliation) is given by the averaged
Holevo bound

ĨE =
∫

dηPηχ (E : y), (2)

where

χ (E : y) = S(ρE′e) − S(ρE′e|y), (3)

with S(·) being the von Neumann entropy computed over Eve’s
output state ρE′e and her conditional output state ρE′e|y (given
Bob’s outcome y).

The derivation is simplified by using the entanglement-
based (EB) representation of the protocol [7], where, for each
use of the channel, Alice holds an EPR pair with parameter
μ = φ + 1 and sends one of the modes through the channel.
By heterodyning her kept mode a, Alice projects the other trav-
eling mode A into a modulated coherent state. This allows us to
exploit purification arguments and write S(ρE′e) = S(ρaB) and
S(ρE′e|y) = S(ρa|y). Furthermore, because the states involved
are all Gaussian, we may write the von Neumann entropy in
terms of the symplectic eigenvalues of the covariance matrices
(CMs) of ρAB and ρA|y [7]. In fact, for a Gaussian state whose
CM has symplectic spectrum {z}, we may write S = ∑

z h(z)
where [7]

h(z) = z + 1

2
log2

z + 1

2
− z − 1

2
log2

z − 1

2
. (4)

In Eq. (1), the term I
ηmin
AB represents the mutual information

between Alice and Bob, who does not know the instantaneous
value of the transmissivity but only the uniform distribution
Pη with minimum transmissivity ηmin. Therefore, they need to
choose the worst-case scenario associated with the minimum
possible transmissivity. As a result, their mutual information
turns out to be I

ηmin
AB := IAB(ηmin) where

IAB(η) = 1

2
log2

VB

VB|xq

. (5)

Here VB is the variance of Bob’s variable y, and VB|xq
is the

conditional variance given Alice’s input xq (or xp), computed
for a generic value of the transmissivity η.

In the regime of μ � 1 we may compute

χ (E : y) = 1

2
log2

η(1 − η)μ

ω
+ h(ω), (6)

and

IAB(η) = 1

2
log2

ημ

η + (1 − η)ω
. (7)

Thus, the secret key rate for a fast-fading channel is given by

Rfast(ηmin) = βIAB(ηmin) − 1

�η

∫ ηmax

ηmin

dηχ (E : y), (8)

where ηmax = ηmin + �η. In particular, if we restrict ourselves
to a pure-loss channel and we set β = 1 then the rate above
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FIG. 2. Secret key rate is plotted in terms of ηmin for a fast-fading
channel with �η = 0.2 (dashed blue line), �η = 0.5 (solid blue line),
and �η = 0.6 (dotted blue line). We set ω = 1 (passive eavesdrop-
ping), β = 1 (ideal reconciliation), and μ = 106. We compare the
results with the PLOB bound for repeaterless private communications
over a lossy channel (black line) [36]. We can see that high rates can be
achieved up to losses of about 6–7 dB, where the rates start to rapidly
decrease. Note that some curves start from nonzero dBs because we
need to enforce ηmin + �η � 1, otherwise the fading channel may
become an amplifier.

simplifies to

Rloss
fast (ηmin) = 1

2�η
[g(η̄min − �η) − g(η̄min)]

− 1

2�η
(ηmin + �η) log2

ηmin + �η

ηmin

+ log2 e, (9)

where g(x) = x log2 x and x̄ = 1 − x. Note that, for slow
fading, both Alice and Bob’s mutual information and Eve’s
Holevo information need to be averaged so that

Rslow(ηmin) = 1

�η

∫ ηmax

ηmin

dη[βIAB(η) − χ (E : y)]. (10)

In Fig. 2 we show the secret-key rate for a fast-fading chan-
nel with �η = 0.2, �η = 0.5, and �η = 0.6, also compared
with the PLOB bound versus ηmin, which sets the limit for
repeaterless private communication over a lossy channel [36].
In Fig. 3 we compare the key rates for slow and fast fading
considering �η = 0.1. In Fig. 4, we consider the secret key
rates for �η = 0.1 but including extra thermal noise ω = 1.01
and assuming a nonideal reconciliation parameter β = 0.98
(rates are optimized over μ). As we can see from the plots, the
key rate is high up to losses of the order of 6–7 dB, even in the
presence of fast-fading attacks.

III. CV-MDI-QKD UNDER FAST FADING

The detailed calculations for the CV-MDI-QKD protocol
can be found in the supplementary material of Refs. [31,33].
Here we consider the symmetric configuration, so that each link
with the untrusted relay is a fading channel whose transmis-
sivity (ηA and ηB) follows a uniform probability distribution,
while the thermal noise ω is equal and fixed. For fast fading,
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FIG. 3. Comparison between the key rates for fast- and slow-
fading versus ηmin. We plot the secret key rate for the fast-fading
channel (lower blue line) and slow-fading channel (upper black line)
for �η = 0.1. We also set μ = 106, ω = 1 (passive eavesdropping)
and β = 1 (ideal reconciliation). Performances are comparable within
the range between 0 and 6 dB.

we have

RMDI
fast (ηmin) = βIAB(ηmin) − 1

(�η)2

×
∫ ηmin+�η

ηmin

∫ ηmin+�η

ηmin

dηAdηBχ (ηA,ηB),

(11)

where IAB(η) and χ (ηA,ηB) are given in Refs. [31,33].
In Fig. 5, we present the secret key rates for β = 1, ω = 1

and a very large modulation μ � 106, while we set �η = 0.1
(solid lines). We see that the performance for fast fading
is not so far from that related to slow fading and that is
achievable with a standard lossy channel. We also present the
same instances but for β = 0.98, optimizing over μ and setting
ω = 1.01 (dashed lines). In this latter case, the eavesdropper
may also optimize her attack by exploiting correlations in the
injected environmental state [31].

IV. CV-MDI-QKD THREE-USER NETWORK
UNDER FAST FADING

Let us start with investigating the protocol assuming lossy
channels. We consider a three-party network where Alice,
Bob, and Charlie prepare coherent states for their modes A,
B, and C. The mean values are Gaussian variables x1, x2,
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FIG. 4. Comparison between fast and slow fading. As in Fig. 3
but for ω = 1.01, β = 0.98, and optimized over μ.
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FIG. 5. Performance of the CV-MDI-QKD protocol in symmetric
configuration assuming two fading channels in the links with �η =
0.1 and no excess noise (ω = 1). We plot the secret key rate versus
ηmin for fast fading (lower blue solid line) and slow fading (upper
black solid line). We also show the standard case of a nonfading
lossy channel (middle red solid line) which is plotted in terms of the
expectation value of η, i.e., η̄ = ηmin + �η

2 . Here we set β = 1 and
μ = 106. Then we plot the same rates but for β = 0.98, ω = 1.01 and
optimizing over μ (see the corresponding dashed lines).

and x3 with the same variance φ. Then they send these states
to an untrusted relay through three links described by lossy
channels with transmissivities ηA, ηB , and ηC , respectively.
The relay is assumed to operate in a certain way in each
channel use. In particular, as illustrated in Fig. 6, it mixes
Alice’s and Bob’s modes in a beam splitter with transmissivity
τ1 = 1/2 and homodynes the q quadrature of the output mode
R−

1 , while the mode R+
1 is mixed with Charlie’s mode in a

beam splitter with transmissivity τ2 = 2/3. Then, the output
modes R−

2 and R+
2 are homodyned with respect to the q

and p quadrature, respectively. All the measurement results
γ = (γ1,γ2,γ3) are then broadcast (see Fig. 6). This is the
three-party realization of the multipartite CV Bell detection
recently introduced in Ref. [35]. The distributed classical
correlations can be processed by the three parties to derive
a common secret key for secure quantum conferencing. See
Ref. [35] for a CV-MDI-QKD quantum conferencing network
with an arbitrary number of parties (and Ref. [57] for a recent
fully-device-independent quantum conferencing network in
discrete variables).

Although the relay is assumed to be under the control of the
eavesdropper, we can always assume an attack that is described
by an attack restricted in the links according to the discussion
in Ref. [31]. More specifically, a correlated attack among all
the three links is described by a covariance matrix. Here each
of the modes are interacting by a beam splitter with each of
the modes that the parties send through the channel. This CM
is given by

VEAEBEC
=

⎛
⎜⎝

ωAI G1 G3

G1 ωBI G2

G3 G2 ωCI

⎞
⎟⎠, (12)

where ωA, ωB , and ωC are the vectors of the noise injected
by the eavesdropper in each link whereas Gi = diag(gi,g

′
i)

FIG. 6. Three-party CV-MDI-QKD network. The parties prepare
coherent states in the modes A, B, and C whose mean values are
Gaussian variables x1, x2, and x3, with variance φ. Then the parties
send these states to the relay using links with transmissivities ηA, ηB ,
and ηC , respectively. After traveling through the links the modes arrive
at the relay as modes A′, B ′, and C ′ and are processed by the relay.
Although the relay is under the full control of the eavesdropper, we
can assume without loss of generality that it operates consistently in
each use of the channel: (a) first it mixes Alice’s and Bob’s modes in a
beam splitter with transmissivity 1/2 and measures the q quadrature
of mode R−

1 with a homodyne detection, (b) subsequently mixes
Charlie’s mode with R+

1 and then measures the q quadrature and
p quadrature of modes R−

2 and R+
2 , respectively, (c) finally the results

of the measurements γ1, γ2, and γ3 are broadcast. As in Ref. [31], any
general attack affecting both the links and the relay can be reduced to
an attack tampering only with the links. In this case, Eve is injecting
thermal noise ω1, ω2, and ω3 in each of the links by means of the
modes EA, EB , and EC interacting with modes A, B, C. In a general
Gaussian attack, Eve’s modes are described by a correlated Gaussian
state whose covariance matrix is specified in Eq. (12).

describes the correlations between the modes. When gi and
g′

i are equal to zero, the attack is reduced to an uncorrelated
attack, which is the case that we investigate in this study.

In terms of the security analysis, we adopt the EB represen-
tation of the protocol, where the (traveling) modes A, B, and
C are each one half of an EPR pair with parameter μ = φ + 1.
Then heterodyne measurements are applied to the ancillary
EPR modes a, b, and c so that the traveling modes are projected
onto modulated coherent states. In this representation, Eve’s
Holevo bound χ is given by the symplectic eigenvalues of the
total CM Vabc|γ and the conditional CM Vbc|γ ,x1 following the
reasoning in Sec. II. In particular, the total CM is defined as
the CM of the parties’ local modes after the application of the
three relay measurements with outcomes γ , and the conditional
CM is derived by the total CM after applying a heterodyne
detection on mode a (we assume that Alice’s variable is the
one to reconciliate with).

The mutual information in the case of the three parties is
defined as the minimum of the mutual information between
Alice–Bob and Alice–Charlie, i.e., Imin = min{IAB,IAC}. Each
of the terms are evaluated by the formula IAB(C) = 1

2 log2 �b(c),
where we have the following (for m = b or c):

�m = det(Vm|γ ) + tr(Vm|γ ) + 1

det(Vm|γ ,x1 ) + tr(Vm|γ ,x1 ) + 1
, (13)

in terms of the covariance matrices of the local mode m.
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FIG. 7. Secret conferencing key rate versus η for the three-party
star configuration protocol based on the CV-MDI-QKD scheme,
optimized over μ.

As a result, the secret conferencing key rate is given by

R(μ,ω,η) = βImin(μ,ω,η) − χ (μ,ω,η), (14)

where ω = (ωA,ωB,ωC) is the vector of the noise injected by
the eavesdropper in each link with corresponding transmissiv-
ity η = (ηA,ηB,ηC). Numerically, we have checked that, even
for ideal reconciliation β = 1, the largest value of μ is not the
optimal and we have therefore to optimize the rate over μ. In
the case of a star configuration with identical links [58], the
previous rate simplifies to

Rstar(μ,ω,η) = βImin(μ,ω,η) − χ (μ,ω,η), (15)

where ηA = ηB = ηC := η and ωA = ωB = ωC := ω. This is
plotted in Fig. 7 for passive eavesdropping (ω = 1).

Consider the star configuration in the presence of fading
channels affecting the links, with uniform distribution between
ηmin and ηmin + �η. We need to integrate the Holevo bound
with respect to the three transmissivities of the channels
and compute the mutual information assuming the minimum
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FIG. 8. The secret-conferencing-key rate versus ηmin in a star
configuration of the three-party CV-MDI-QKD network assuming
fast-fading channels (blue solid line) and slow-fading channels (black
solid line) with the same variance �η = 0.05. We also include the rate
of the protocol in the presence of lossy channels with transmissivity
η̄ = ηmin + �η

2 . For all the plots we have optimized over μ ∈ [2,20]
and set ω = 1.

transmissivity (worst-case scenario). Thus, we write

Rstar
fast (ηmin) = βImin(μ,ω,ηmin)

−
∫∫∫ ηmin+�η

ηmin

χ (μ,ω,η)

(�η)3
dη. (16)

The rate for �η = 0.05 and ω = 1 is optimized over μ

and shown in Fig. 8. From the figure, we can see that the
performance is comparable to the case of slow fading where
the parties’ mutual information is averaged over the statistical
distribution.

V. CONCLUSION

In this work we have investigated the effects of fading
channels in the links used by authorized parties in various
quantum key distribution protocols. More specifically, we
have studied the one-way switching protocol with coherent
states in reverse reconciliation, the symmetric configuration of
continuous-variable measurement-device-independent quan-
tum key distribution protocol, and its extension to a three-
user network for quantum conferencing. Fading describes
channels with randomly varying transmissivity according to
a probability distribution that encompasses effects present
in free-space communications where the links are under the
influence of atmospheric turbulence. Here, we have considered
the most random scenario where the distribution is uniform
between two extremal values.

In particular, our work considers the worst-case scenario
where the eavesdropper is assumed to have the full control
of the fading channel. In other words, it is Eve who fixes
the instantaneous value of the transmissivity, not just the
environment. When this value is changed very fast, e.g., for
each transmission, then we have a fast-fading attack which
makes the honest user in a particularly disadvantaged situation.
They can only access the probability distribution of fading at
the end of the quantum communication and they therefore need
to assume the minimum transmissivity (compatible with that
distribution) for the extraction of their secret key.

As we discussed in our paper, this is clearly different from
a slow-fading attack where the action of the eavesdropper is
slow with respect to the quantum communication so that the
transmissivity is approximately constant over a large block
size. This allows the honest user to make an estimate of
the transmissivity to be used in the extraction of part of
the key. For the regime of fading variances chosen in our
work, our results show that the performance achievable in
the worst-case scenario with fast fading is not so far from
the performance under slow fading. In particular, sufficiently
high rates can be achieved within ranges of distance which are
typical of the various protocols analyzed. Such results support
the robustness of continuous-variable quantum key distribution
protocols under conditions of turbulence. In future works, it
would be interesting to extend the present derivation to other
(nonuniform) probability distributions for the fading process.
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