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The Barenco gate (B) is a type of two-qubit quantum gate based on which alone universal quantum computation
can be achieved. EachB is characterized by three angles (α, θ , and φ), though it works in a two-qubit Hilbert space.
Here we design B via a noncollinear interaction V |r1r2〉〈r1r3| + H.c., where |ri〉 is a state that can be excited from
a qubit state and V is adjustable. We present two protocols for B. The first (second) protocol consists of two (six)
pulses and one (two) wait period(s), where the former causes rotations between qubit states and excited states,
and the latter induces gate transformation via the noncollinear interaction. In the first protocol, the variable φ can
be tuned by varying the phases of external controls, and the other two variables α and θ , tunable via adjustment
of the wait duration, have a linear dependence on each other. Meanwhile, the first protocol can give rise to CNOT

and controlled-Y gates. In the second protocol, α,θ , and φ can be varied by changing the interaction amplitudes
and wait durations, and the latter two are dependent on α nonlinearly. Both protocols can also lead to another
universal gate when {α,φ} = {1/4,1/2}π with appropriate parameters. Implementation of these universal gates
is analyzed based on the van der Waals interaction of neutral Rydberg atoms.
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I. INTRODUCTION

Data processing in computers involves many gate op-
erations, which is also the case for quantum computation,
although the latter works in fundamentally different ways.
The information processing in quantum computing can be
understood as a series of unitary operations on a given input
state [1,2]. If a set of quantum gates can represent an arbitrary
unitary operation, it is a universal set [3]. Study of universal
sets of quantum gates has been a focus for decades [4–14].
A popular universal set consists of the controlled-NOT (CNOT)
gate and either a collection of three fixed-angle single-qubit
gates or another collection of four single-qubit gates [2]. In
other words, to build a reliable quantum computer requires the
preparation of multiple gates of four or five types, each with an
adequate accuracy. In 1995, Adriano Barenco introduced the
two-qubit quantum gate [4]

B =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 eiα cos θ −iei(α−φ) sin θ

0 0 −iei(α+φ) sin θ eiα cos θ

⎞
⎟⎠, (1)

which by itself constitutes a universal set, where α, θ , and φ

are fixed irrational multiples of π and of each other. Another
universal gate similar to B was found in Ref. [5]. According
to [4], being able to accurately realize B is sufficient for the
construction of a quantum computation network. Since it is
challenging to experimentally realize all quantum gates in a
universal set with a high accuracy, it seems a more attractive
route to build a quantum computer by designing only one gate
such as B, compared with the strategy of designing several
single-qubit gates and a CNOT gate.
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Although a single two-qubit gate as a universal set was
proposed more than two decades ago [4,5], its implementation
remains an outstanding challenge. For the case of the Barenco
gate, this is possibly because B has three angles {α,θ,φ},
although it operates on two qubits. Thus designing a CNOT

gate (which is usually more challenging than realizing single-
qubit gates) is the first choice [15] with systems such as
single photons [16], electrons in silicons [17], superconducting
circuits [18,19], atomic ions [20], and neutral Rydberg atoms
[21,22].

Here we propose two protocols (I and II) for Barenco gates
when there is a noncollinear interaction between states that
can be excited from the qubit states. Protocol I consists of
two π pulses and one wait period, illustrated in Fig. 1, where
φ is tunable by adjustment of the phases of external control,
and α and θ change linearly with the wait duration in different
ways. Protocol II consists of six π pulses and two wait periods;
α changes linearly with the wait durations, while the other
two variables depend on α nonlinearly. Protocol I can lead
to CNOT and controlled-Y gates and can be easily tuned to
the parameter regime of {α,φ} = {1/4,1/2}π and θ being an
irrational multiple of π , where B becomes

B1 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 eiπ/4 cos θ −ie−iπ/4 sin θ

0 0 ie−iπ/4 sin θ eiπ/4 cos θ

⎞
⎟⎠, (2)

which, being similar to the universal gate introduced in [5],
also constitutes a universal set by itself [4]. Protocol II can
also realize Eq. (2) if specific interactions are available.

Below, we detail the sequences for the two gate protocols
and analyze the experimental prospects of realizing B by using
van der Waals interaction (vdWI) of Rydberg atoms [23].
Before proceeding, we introduce a generic method to construct
a noncollinear interaction that is essential to our protocols.
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FIG. 1. Protocol I for the Barenco gate. The first pulse maps qubit
states to excited states, then the wait period allows the noncollinear
interaction to induce state transformation that is essential for the gate,
and the second pulse maps the excited states back to qubit states.
There is a π phase difference in the external fields between the first
and the second pulses on the target qubit.

II. TUNABLE NONCOLLINEAR INTERACTION

Our protocols are based on a noncollinear interaction
between states that can be transformed from the qubit states
via external control fields, which we introduce here. We denote
the basis states of Eq. (1) {|00〉,|01〉,|10〉,|11〉}, where |μν〉 ≡
|μ〉c ⊗ |ν〉t is a two-qubit product state, with |μ(ν)〉 = |0〉or |1〉
being the ground state of a quantum system, and the subscripts
c and t denote control and target, respectively. We suppose that
no interaction exists in the four computational basis states of
the gate. Among the four single-qubit states of the control and
target, three can be connected to other states during the gate
sequence,

|1〉c ↔ |r1〉c, |0〉t ↔ |r2(3)〉t, |1〉t ↔ |r3(2)〉t,

where the kets on the right-hand sides of the double arrows
(↔) are either excited states or other ground states that can
be connected with the qubit states |0(1)〉 via external control.
In our gate sequence, the input states |10〉 and |11〉 can be
excited to two states, |r1r2〉 and |r1r3〉, in which the following
engineered two-body interaction arises:

H =
(

V1 Vee
−iβ0

Vee
iβ0 V2

)
, (3)

which is written with the ordered basis {|r1r2〉,|r1r3〉}, where
β0, V1, V2, and Ve are real variables. The off-diagonal interac-
tion in Eq. (3) is essential for our method.

FIG. 2. Excitation of the superposition states in Eq. (5) during
pulse 1 of Protocol I. (a) and (b) show the preparation of |r2〉 and |r3〉,
respectively. Different superpositions in |r2〉 and |r3〉 follow after the
different ratios of the two Rabi frequencies on the energy eigenstates
|R1〉 and |R2〉. β1 is tunable by adjustment of the ratio between the
strengths of the laser fields on the two Rydberg eigenstates.

The form of Eq. (3) is a little unusual compared with the
more familiar two-body interaction of the form

H0 =
2∑

j,k=0

bjk|RjRk〉〈RjRk|, (4)

where the energy eigenstates |R0〉,|R1〉, and |R2〉 are orthogo-
nal to each other, and bjk is a blockade energy shift. Equation
(4) can be found in various systems suitable for quantum
computing, including (but not limited to) electrons in quantum
dots [24], superconducting circuits [25], and neutral Rydberg
atoms [26]. Nevertheless, a noncollinear interaction in Eq. (3)
rarely appears in qubits for quantum information processing,
although it can be found in collective excitations in condensed
matter systems [27,28].

To realize Eq. (3) based on Eq. (4), we consider the
orthogonal states

|r1〉 = |R0〉, |r2〉 = cos β1|R1〉 + sin β1e
iβ0 |R2〉,

|r3〉 = sin β1e
−iβ0 |R1〉 − cos β1|R2〉 (5)

in a rotating frame, Ĥ → eiR̂t Ĥ e−iR̂t − R̂, where R̂ =∑
j Ej |j 〉〈j | sums over all involved atomic states |j 〉. In this

rotating frame, states |r2〉 and |r3〉 become eigenstates with any
mixing angle β1 ∈ [0,π/2]. Note that the superposition states
above can also be written as

|r2〉 = eiβ0 (cos β1|R1〉 + sin β1|R2〉),
|r3〉 = sin β1|R1〉 − cos β1|R2〉

by redefining |R1(2)〉, since a relative phase between |R1〉 and
|R2〉 in |r2(3)〉 is trivial in our case. |r2〉 and |r3〉 can be prepared
by simultaneously exciting the two excited states |R1〉 and
|R2〉 from the qubit state, shown in Fig. 2. A specific angle
β0 in Eq. (5) is determined by adjusting the phase of the
external field on the component |R1(2)〉 to be β0(β0 − π ) in
|r2〉 relative to that in |r3〉, as shown in Fig. 2. Take neutral

032310-2



UNIVERSAL BARENCO QUANTUM GATES VIA A TUNABLE … PHYSICAL REVIEW A 97, 032310 (2018)

atoms, for example; |0(1)〉 is a hyperfine ground state, and
|R1〉 and |R2〉 can be Rydberg eigenstates. When two laser
beams of different frequencies are simultaneously delivered
to one atom of initial state |0〉, with one laser exciting |R1〉
at Rabi frequency � cos β1 and the other one pumping |R2〉
at Rabi frequency � sin β1e

iβ0 , shown in Fig. 2(a), a rotation
between |0〉 and |r2〉 at Rabi frequency � is established.
Similarly, setting the two Rabi frequencies on |R1〉 and |R2〉
to � sin β1e

−iβ0 and −� cos β1 establishes the preparation of
|r3〉.

According to Eq. (4), the interaction between the two
orthogonal states |r1r2〉 and |r1r3〉 can be represented by Eq. (3),
where

V1 = b01 cos2 β1 + b02 sin2 β1,

V2 = b01 sin2 β1 + b02 cos2 β1,

Ve = (b01 − b02) sin β1 cos β1. (6)

As long as b01 	= b02, Ve can be nonzero. Note that in Eq. (5),
we can use |R1〉 or |R2〉 instead of |R0〉 in |r1〉. However, when
an external control can simultaneously influence both qubits, it
is necessary to choose |r1〉 to be orthogonal to |r2(3)〉. The three
interaction strengths V1, V2, and Ve can be tuned by varying
β1, and the ratio b01/b02 is adjustable by choosing different
sets of states {|R0〉,|R1〉,|R2〉}.

Below we present two protocols based on Eq. (3), where
the three variables α, θ , and φ exhibit distinct tunabilities that
can be beneficial for different purposes in quantum control.

III. PROTOCOL I: A TWO-PULSE SEQUENCE

We first show a two-pulse sequence for B when V1 = V2

and β0 in Eq. (3) is tunable. When |Rj 〉 is a state of neutral
atoms, where j = 0–2, β0 can be tuned by varying the relative
phases among the external control fields.

As illustrated in Fig. 1, Protocol I starts with a π pulse of
Rabi frequencies � on the control and target qubit states |1〉c,
|0〉t, and |1〉t,

{|1〉c ,|0〉t ,|1〉t } 
→ −i{|r1〉c ,|r2〉t ,|r3〉t }. (7)

When � � {V1,V2,Ve}, we have the following map:

{|00〉,|01〉,|10〉,|11〉} 
→ −{i|0r2〉,i|0r3〉,|r1r2〉,|r1r3〉}.
The process above is subject to a residue blockade effect which
can be minimized by increasing � relative to V1(2) and Ve.

Upon completion of pulse 1, a wait period of duration T is
allowed when the two-atom state evolves under the interaction
in Eq. (3):

|r1r2〉 
→ η1e
−iT λ+|λ+〉 + η2e

−iT λ−+iβ0 |λ−〉,
|r1r3〉 
→ η2e

−iT λ+−iβ0 |λ+〉 − η1e
−iT λ−|λ−〉. (8)

Here

λ± = (V1 + V2)/2 ± V ,

|λ+〉 = η1|r1r2〉 + η2e
iβ0 |r1r3〉,

|λ−〉 = η2e
−iβ0 |r1r2〉 − η1|r1r3〉

are the eigenvalues and normalized eigenvectors of Eq. (3),
where V = √

V 2
e + (V1 − V2)2/4 and η1 : η2 = Ve : (2V +

|θ|/π
0.0 0.4 0.8

−2

−1

0

1

FIG. 3. α as a function of |θ | in Protocol I for the B gate with
several values of b01/b02. θ is positive (negative) if b01 − b02 > 0
(b01 − b02 < 0). The other variable φ in the gate is freely tunable.
The horizontal gray line locates α = π/4, a value that satisfies the
condition for another universal gate when φ = π/2 and b01/b02 is
irrational [4].

V2 − V1)/2. For the sake of convenience, a frequently appear-
ing Planck constant is hidden.

Soon after the wait period, another set of external fields
with strengths similar to those in the first pulse is applied, with
a π phase shift in the control fields on the target qubit. The
Rabi frequency on the control is still �, but those on the target
become −�, so as to induce the map

{|r1〉c ,|r2〉t ,|r3〉t } 
→ i{−|1〉c ,|0〉t ,|1〉t }, (9)

which differs from Eq. (7) in that the phase change to a state
of the target qubit is ∓π/2 in Eq. (7) [Eq. (9)].

As can be easily verified, the state evolution from input
to output under the condition of V1 = V2 [or, equivalently,
β1 = ±π/4 in Eq. (6)] is

|00〉 
→ |00〉,
|01〉 
→ |01〉,
|10〉 
→ eiα(−ie−iφ sin θ |11〉 + cos θ |10〉),
|11〉 
→ eiα(cos θ |11〉 − ieiφ sin θ |10〉). (10)

Here

α = π − V1T = π − (b01 + b02)T/2,

θ = VeT = ±|b01 − b02|T/2,

φ = −β0, (11)

where + (−) in θ applies for a positive (negative) Ve. Equation
(10) is exactly gate B in Eq. (1). Here φ is determined by
phases of external control fields and, thus, is tunable and
independent of {α,θ}. α and θ depend on the wait duration and
the interaction strengths b01 and b02 and have a linear relation
with each other:

α = π − b01 + b02

b01 − b02
θ. (12)

When b01 − b02 > 0, α is shown in Fig. 3 as a function of θ

with several sets of b01/b02. As proven in Ref. [4], Eq. (10) is
a useful Barenco gate when α, θ , and φ are irrational multiples
of π and of each other. In the above protocol, θ can be tuned
by choosing an appropriate T to be any irrational multiple of
π , and simultaneously α is an irrational multiple of π at least
for a rational b01/b02, according to Eq. (12). Finally, φ can
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be tuned to any value via variation of the relative phases of
external fields. So, there should be infinite sets of α, θ , and φ

that are irrational multiples of π and of each other.
From Ref. [4], when {α,φ} = {1/4,1/2}π and θ is an

irrational multiple of π , the gate in Eq. (10) also constitutes
a universal set. Equation (12) indicates that θ is an irrational
multiple of π when b01/b02 is irrational and α = π/4. Since
the condition of α = π/4 is readily achievable as indicated by
the horizontal line in Fig. 3, and b01/b02 in a real system can
be an irrational number infinitely near a rational b01/b02 such
as those in Fig. 3, Protocol I can construct the universal gate
in Eq. (2) in addition to the Barenco gate.

A. CNOT and controlled-Y gates

Below, we show that Protocol I can also lead to CNOT

and control-Y gates. Although such gates cannot constitute
a universal set unless single-qubit rotations are brought in,
realization of an “overcomplete” family of universal gates
may be helpful to construct a quantum computing circuit [2].
Meanwhile, though a single quantum gate as a universal set
has certain advantages such as a lower overhead in calibration,
it can be less efficient for certain quantum computation algo-
rithms. In principle, single-qubit rotations together with any
two-qubit entangling gate can build up a quantum computing
network, and an entangling gate which is less challenging to
realize is often the favorite of current interest, which is why
the CNOT gate has received widespread attention.

Protocol I can easily lead to a CNOT gate. As seen from
Eq. (11), when b01 > 0 and b02 = 0, a wait time T = π/b01

in Protocol I leads to α = θ = π/2. Setting β0 = 0 ensures
φ = 0; then the gate transformation of Protocol I in Eq. (10)
becomes

|00〉 
→ |00〉, |01〉 
→ |01〉,
|10〉 
→ |11〉, |11〉 
→ |10〉 (13)

as in a CNOT gate. The requirement for this CNOT gate can
be easily set for neutral atoms. First, the condition b01 > 0
is fulfilled by choosing both |r1〉 and |R1〉 in Eq. (5) from
a common high-lying s-orbital Rydberg state |R0〉. Take
|r1〉 = |R1〉 = |96s1/2, mJ = 1/2, mI = 3/2 as an example;
the calculated [29] interaction coefficient b01 = 36 × 2π THz
(μm/l)6 is about 0.6 × 2π MHz even when the two qubits are
separated by the large distance of l = 20 μm.

The other requirement for realizing a CNOT gate, b02 = 0, is
achievable by choosing |R2〉 from a ground state, since the
interaction between Rydberg and ground states can be ne-
glected. Specifically, if |0(1)〉 = |5s1/2,F = 1(2),mF = −1〉,
one can choose |R2〉 as |5s1/2,F = 1,mF = 1〉, a state that
can be reached from both |0〉 and |1〉 by using detuned
circularly polarized laser fields on an intermediate state, |5p1/2,

F = 1,mF = 0〉. Take |0〉 → |r2〉, for example; its excitation
is shown in Fig. 4, with its effective Rabi frequency �

given by �1�2/
√

2� [29]. Because circularly polarized laser
fields induce transitions between two levels differing in hyper-
fine quantum numbers by �mF = ±1, the laser connecting
|5p1/2,F = 1,mF = 0〉 and |R2〉 in Fig. 4 may also couple
|0(1)〉 leftward to a level with mF = −2. Such a coupling,
however, is negligible via the selected |5p1/2,F = 1〉 manifold
because it does not host a state with mF = −2. Similarly,

FIG. 4. Scheme for constructing |r2〉 so that b02 = 0 in Eq. (6) for
realizing CNOT and control-Y gates. Here � is a detuning that is large
compared with �1 and �2. A similar configuration for |r3〉 is realized
when the two Rabi frequencies on |R1〉 and |R2〉 are �2 and −�2.

the laser addressing |0(1)〉 ↔ |5p1/2,F = 1,mF = 0〉 in Fig. 4
cannot couple |R2〉 with |5p1/2,F = 1〉 since it does not
host a state with mF = 2. Alternatively, level shifting by a
strong enough external magnetic field can be applied to avoid
population leakage if we use a coupling scheme different from
that in Fig. 4.

Protocol I can also realize the controlled-Y gate. Still, we
use a similar setting described above to reach the domain of
b01 > 0 and b02 = 0 so that α = θ = π/2 can be achieved by
choosing a wait duration of T = π/b01. Differently from the
CNOT gate above, here the phase of the laser field shall render
β0 = −π/2 so that φ = π/2. Then Eq. (10) shows that the gate
maps the states according to

|10〉 
→ −i|11〉, |11〉 
→ i|10〉, (14)

while the other two input states, |00〉 and |01〉, are not affected,
realizing the controlled-Y gate.

IV. PROTOCOL II: A SIX-PULSE SEQUENCE

Below, we describe Protocol II, where each of the three
angles {α,θ,φ} depends on model parameters in a manner
different from that in Protocol I. The six-pulse protocol below is
based on V1 	= V2 and β0 = 0 in Eq. (3). A six-pulse sequence
is chosen so as to show details, although we can also adopt
a four-pulse sequence because the first (last) two pulses can
occur simultaneously. For the sake of convenience, we use
pulse k to denote the kth pulse, where k = 1–6.

Pulse 1 is a π pulse on state |1〉c of the control qubit, so that

{|10〉,|11〉} 
→ −i{|r10〉,|r11〉},
while the other two states |00〉 and |01〉 stay intact.

Pulse 2 is a simultaneous π pulse on qubit states |0〉t, |1〉t.
When � � {V1,V2,Ve}, we have the following map:

{|00〉,|01〉, − i|r10〉, − i|r11〉} 
→ −{i|0r2〉,i|0r3〉,|r1r2〉,
|r1r3〉}.

Upon completion of pulse 2, a wait period of duration T is
allowed when the two-qubit state evolves under the interaction
in Eq. (3), where the state evolution is identical to that in Eq. (8),
with β0 = 0.

Pulse 3 maps the states of the target qubit to the ground
states, i.e., inverse to pulse 2:

{|r2〉t ,|r3〉t } 
→ −i{|0〉t ,|1〉t }.
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Pulse 4 is also a π pulse but maps the states of the target
qubit to excited states in a different manner than pulse 2 does:

{|0〉t ,|1〉t } 
→ −i{|r3〉t ,|r2〉t }. (15)

Upon completion of pulse 4, we again allow a
wait period of duration T , so that the four input
states {|00〉,|01〉,|10〉,|11〉} evolve, respectively, to
{i|0r3〉,i|0r2〉,χ1|r1r2〉 + χ2|r1r3〉,χ3|r1r2〉 + χ4|r1r3〉}, where

(χ1,χ2,χ3,χ4) = eiα cos θ (ie−iφ tan θ, − 1, − 1,ieiφ tan θ )

and

α = −T (V1 + V2),

sin θ = 2(η1η2)
{
(η2

1 − η2
2)2[cos(2T V ) − 1]2

+ sin2(2T V )
}1/2

,

cos θ = 1 + 4η2
1η

2
2[cos(2T V ) − 1],

sin φ = 2(η1η2)(η2
1 − η2

2)[cos(2T V ) − 1]/| sin θ |,
cos φ = 2(η1η2) sin(2T V )/| sin θ |. (16)

Pulse 5 is identical to pulse 4 so as to induce a state
transformation inverse to Eq. (15), and finally, pulse 6 is inverse
to pulse 1. As a consequence, the overall effect on the four input
states is described by Eq. (10), which can be represented in the
matrix form of Eq. (1).

Similarly to Protocol I, in Protocol II there are many cases
where α, θ , and φ are irrational multiples of π and of each
other. α, θ , and φ are functions of the three variables V1T ,
V2T , and VeT . For each set {V1,V2,Ve}, when T changes, α

changes linearly, but θ and φ evolve nonlinearly. By choosing
several sets of (V1 : V2 : Ve), we show in Fig. 5 that θ and
φ evolve in different ways, indicating the existence of many
choices of α, θ , and φ that are irrational multiples of π and of
each other.

Protocol II also allows realization of B1 in Eq. (2). The con-
dition {α,φ} = {1/4,1/2}π can be satisfied with T = π/2V

when V1 + V2 = −V /2, where the latter condition requires
−b01/b02 = 5/3 or 3/5. If one realizes B1 by using Rydberg
interaction of neutral atoms, the desired b01/b02 can be reached
either by using external fields to tune the energy gaps between
appropriate Rydberg levels or by introducing another indepen-
dent variable β2 when choosing a superposition state for |R2〉
in Eq. (5),

|R2〉 → cos β2|R2〉 + sin β2|R3〉, (17)

so that the parameter b02 in Eq. (6) becomes tunable by varying
β2,

b02 → b02 cos2 β2 + b03 sin2 β2.

When b02 < b03, the scheme above transfers the former b02

to a new one tunable in the interval [b02,b03]. If Eq. (17) is
adopted, it is necessary to use microwave fields that are strong
enough to suppress the transition from cos β2|R2〉 + sin β2|R3〉
to (cos β2|R3〉 − sin β2|R2〉), as detailed in [30].

V. REALIZATION WITH NEUTRAL ATOMS

We turn to an analysis of the feasibility of realizing the
protocols above with two neutral 87Rb atoms. As for the
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FIG. 5. The two variables θ and φ as a function of α in Protocol II
for the B gate. Here we choose six sets of (V1 : V2 : Ve), shown above
each panel.

qubit states, one can choose from the hyperfine ground states
|0(1)〉 = |5s1/2,F = 1(2),mF = 0〉 for both the control and the
target [21], where {F,mF } constitute the hyperfine notation
of the ground states. For Rydberg states introduced below,
however, we apply the fine structure notation according to the
spectroscopic resolution achieved in experiments.

The interaction defined in Eqs. (3) and (6) can be from
vdWI between neutral atoms, which we briefly introduce here.
When each of two nearby neutral atoms is in a Rydberg state
|R0〉, a strong interaction between the electric dipole moments
of the two atoms can arise. When this interaction energy is
much smaller than the energy gaps to other nearby two-atom
Rydberg states, it causes an overall energy shift b00 [see
Eq. (4)] to the two-atom Rydberg state [23]. Such vdWI can
be several tens of megahertz, which is strong enough to induce
fast quantum dynamics on the single-quantum level [31]. This
means that when one atom is already in a Rydberg state |R0〉, it
is difficult to use resonant fields to excite a nearby atom to |R0〉
unless the applied field is very strong. Based on this blockade
interaction, Ref. [32] proposed two-qubit controlled-phase
gates, one of which was experimentally demonstrated years
ago [21]. Since then, there have been various proposals of
two-qubit controlled-phase (or CNOT) gates based on Rydberg
blockade [33]. Instead of focusing on the blockade mechanism,
this work relies on the exchange interaction of Rydberg atoms,
which has been much less explored either experimentally
[34] or theoretically [29,35,36] for the purpose of quantum
information processing. The exchange interactions used in [29]
and [34–36], however, are limited to the type where the states
of both atoms change simultaneously. In contrast, the exchange

032310-5



XIAO-FENG SHI PHYSICAL REVIEW A 97, 032310 (2018)

process of Eq. (3) in this work only changes the state of the
target qubit.

We illustrate the performance of the gate by choosing

|R0〉 = |R1〉 = |n1s1/2,mJ = 1/2,mI = 3/2〉,
|R2〉 = |n2s1/2,mJ = 1/2,mI = 3/2〉 (18)

for the construction of |rj 〉 in Eq. (5), where n1 and n2

are two different large principal quantum numbers, and mJ

(mI ) denotes the electric (nuclear) spin projection on the
quantization axis. Preparation of a superposition Rydberg state
|r2(3)〉 can be performed via two-photon excitation in the V or
Y’ configuration, as shown in Fig. 2 and detailed in [30] and
[37], although here we need not stabilize the superposition by
extra external fields unless Eq. (17) is used.

A. Intrinsic fidelity

Regarding the gate fidelity F [38], the Rydberg state decay,
blockade errors from incomplete rotations, and population
leakage to levels other than qubit states render imperfect
gate operation characterized by a fidelity error 1 − F . This
error can be estimated from analytical approximations [39].
For example, the decay-induced error can be estimated from
the fact that the population loss due to Rydberg state decay
is proportional to the time staying in a Rydberg state. We
estimate 1 − F by choosing {n1,n2} = {96,102}, a two-atom
distance of 20 μm, a Rabi frequency �/2π = 30 MHz, and an
environment temperature of 4 K. The vdWI for this choice is
given in Appendix A. We let β1 be π/4 and 3π/8 for Protocols
I and II, respectively, since β1 should (should not) be ±π/4
for Protocol I (Protocol II): If |β1| = π/4 in Protocol II, φ

becomes 0, ±π, . . . . We show the variables α, θ , and φ and
the fidelity error rescaled by 103 in Fig. 6 for both Protocol I and
Protocol II, according to Eqs. (11) and (16) and the estimates in
Appendix B. φ in Protocol I is not shown in Fig. 6(a) because it
is determined by phases of external fields. If we instead assume
a temperature of 300 K, a larger error from Rydberg state decay
occurs and the fidelity error 1 − F in Fig. 6 increases to be in
the interval [0.7,5.7]([2.0,12]) × 10−3 for Protocol I (Protocol
II). Here two other error-causing factors have been ignored.
First, we find that errors from the force between the two atoms
when both of them are in Rydberg states can be ignored, as
shown in Appendix B. Second, an extra error EL from the
position fluctuation of the atoms can be neglected too. To show
the smallness of EL, we assume optical tweezer traps created
by single laser beams with wavelength λ = 1.1 μm and waist
w = 3 μm. If the atoms are not cooled to motional ground
states before the gate sequence, numerical calculation as in
[30] and [40] shows that EL ∈ [1.4,52]([1.0,49]) × 10−4 for
Protocol I (Protocol II) when the effective atomic temperature
Ta ∈ [10,200] μK and the trap depth is U = 20 mK. We
also considered a similar setup analyzed in Ref. [40], where
atoms are cooled to motional ground states, and found that
EL < 7 × 10−5 for both Protocol I and Protocol II when
U > 1 μK. So, the error caused by position fluctuation can
be suppressed by sufficient cooling of the atoms.

The gate fidelity in most cases in Fig. 6 is heavily hampered
by the decay probability of Rydberg states, which is mainly
determined by the wait duration T and thus inversely propor-
tional to the vdWI parameters V1, V2, and Ve [see Eqs. (11)

FIG. 6. The solid, dashed, dotted, and dash-dotted curves, respec-
tively, show the three variables α, θ , and φ and the total error (scaled
up by 103) of the intrinsic gate fidelity as a function of T in the B gate
protocols realized with two neutral 87Rb atoms. (a) Protocol I and (b)
Protocol II. The circle on the curve of α in (a) locates the value of
α = π/4.

and (16)]. Appendix A shows that V1, V2, and Ve in Fig. 6
are smaller than 2π MHz, resulting in microsecond-scale gate
times and significant Rydberg state decay. But if we use larger
vdWI by decreasing the qubit spacing, the calculated vdWI can
approach the energy gap to nearby two-qubit Rydberg states
and violates the picture of vdWI. However, it is possible to
tackle this issue via pulse shaping, a technique useful in neutral
atoms [41] as well as solid-state systems [42].

In principle, the intrinsic gate fidelity error in Fig. 6 can
be significantly suppressed by recently proposed schemes. For
example, the blockade error can be removed by exploring ra-
tional generalized Rabi frequencies in detuned Rabi transitions
[40], and population leakage can be reduced in the adiabatic
regime [36]. Our purpose here, however, is to provide simplest
protocols for B so as to inspire further exploration of quantum
information processing by using the interaction in Eq. (3).

B. Tunable operation modes

Four parameters are tunable in the two protocols: the
frequency, intensity, and phase of the laser fields of optical
pulses and the wait duration T between the optical pulses. First,
the interaction coefficients bjk can be adjusted by choosing
different eigenstates in Eqs. (4) and (18) via using lasers
of different frequencies. If the eigenstates |R0〉 and |R1〉 in
Eq. (4) are Rydberg states, but |R2〉 is a ground state, then
we have the condition b02 = 0 for the realization of CNOT and
controlled-Y gates, as described in Sec. III A. Below, we discuss
the tunability when the eigenstates |Rj (k)〉 in Eq. (4) are all
Rydberg states.
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For every set of |Rj (k)〉 in Eq. (4), the angle β1 in Eq. (5)
can be tuned by adjusting the intensity of the laser fields. For
example, when lasers in Fig. 2 are set such that β1 = kπ/2
with an integer k, the noncollinear coefficient Ve disappears in
Eq. (3), which is a case where neither Protocol I nor Protocol
II leads to a Barenco gate. By continuously changing the
magnitudes of the laser fields on the two Rydberg states |R1(2)〉
in Fig. 2(a) [or Fig. 2(b)], the mixing angle β1 in the definition
of |r2〉 [or |r3〉] can be continuously changed. When β1 = π/4,
V1 = V2 is achieved and Protocol I can be realized.

The ratio between V1, V2, and Ve can be tuned by changing
the mixing angle β1 in Protocol II, so that the scaling of the
angles α, θ , and φ can behave in distinct ways, shown in Fig. 5.
For instance, when b01 � b02 > 0, we have (V1 : V2 : Ve) ≈
(cos2 β1 : sin2 β1 : sin β1 cos β1), which includes at least two
cases: V1 > Ve > V2 and V2 > Ve > V1. Similarly, if b01 >

−b02 > 0, we can realize another pair of cases: Ve > V1 >

V2 and Ve > V2 > V1. When b01 ∼ b02 > 0, adjusting β1 can
lead to V1 > V2 > Ve and V2 > V1 > Ve, covering all cases in
Fig. 5.

Furthermore, the angle β0 in Eq. (5) can be tuned by
adjusting the relative phases of laser fields on the two Rydberg
states |R1(2)〉 in Figs. 2(a) and 2(b). This is crucial for Protocol
I: although the angles α and θ in Eq. (1) are determined by the
wait duration T , the angle φ is determined by phases of the
laser fields, shown in Eq. (11).

Finally, the wait duration T in both protocols can be varied,
so that the angles α and θ in Protocol I and all three angles, α,
θ , and φ, in Protocol II can be tuned.

In summary, when the frequency, intensity, and phase of
the laser fields and the wait duration between laser pulses are
tuned, various sets of the three angles in the Barenco gate can
be realized.

C. Experimental prospects

High-fidelity realization of the above protocols depends on
the availability of strong enough pulsed lasers, since the block-
ade error can be suppressed only when � � {V1,V2,Ve}. Take
the analysis leading to Fig. 6, for example, where V1,V2,Ve �
0.36 × 2π MHz; a two-photon Rabi frequency larger than
3 × 2π MHz in π pulses of the protocols is preferable. This
is, in principle, possible: Refs. [43] and [44] reported coherent
GHz-rate Rabi oscillations between ground and nS1/2 Rydberg
states with n � 30 via laser pulses of nanosecond duration on a
rubidium (cesium) vapor. For single cold atoms, π pulses at a
Rabi frequency of 7 × 2π MHz between ground and 58d3/2

states of 87Rb were used in Ref. [45]. Since the Rydberg
states in our example are relatively high, we assume that a
Rabi frequency of �/2π = 5 MHz can be easily realized for
a conservative estimate. With such an �, we find that 1 − F
in Fig. 6(a) [Fig. 6(b)] increases by 6 × 10−3 [32 × 10−3].

Stable laser sources are also required to achieve the pre-
dicted gate performance in Fig. 6. Our protocols require the
establishment of the superposition states defined in Eq. (5),
whose preparation depends on correctly setting the magnitude
and phase of the laser fields in Fig. 2, provided that the
laser frequency is stable enough [46,47]. We take Protocol
I as an example to estimate the precision necessary for the
parameters of the laser fields to reach the gate fidelity in

Fig. 6. If the phase from the dipole matrix element is fixed
to be 0, then β0 in Eq. (3) is determined by the phases
of the laser fields. Suppose the relative fluctuations of the
laser phase and the laser Rabi frequency are bounded by ς1

and |δ�k/�k| � ς2; then the phase term β0 and interaction
coefficients V1, V2, and Ve in Eqs. (3) and (6) have relative
errors of up to 2ς1 and 2ς2, respectively, leading to relative
errors of 2ς1 for φ and 2ς2 for π − α and θ in Eq. (11)
of Protocol I. Furthermore, incorrect laser Rabi frequency
and timing also impact the accuracy of the Rabi pulse area,
resulting in population leakage to Rydberg states unless their
added effects cancel. During pulses 1 and 2 in Protocol I,
the population transfer errors are about (πδ�k/2�k)2 and
(πδt/2t)2 for incorrect Rabi frequencies and timing in a pulse
duration of t , respectively. Because (πδ�k/2�k)2 ∼ ς2

2 , the
latter errors are negligible compared with those of the angles
π − α and θ . As a consequence, one needs the fluctuations
of the laser phase and electric field bounded by |δβ0/β0| +
|δ�k/�k| � 10−3 to achieve the gate fidelity predicted in
Fig. 6. The phase fluctuation of laser beams can be made much
smaller than 10−3 [39,48], but the intensity fluctuation of the
lasers was several percent in typical experiments on Rydberg
quantum gates [45,49]. Nevertheless, lasers with root-mean-
square intensity noise of less than 0.1% were recently realized
in the preparation of Rydberg states of 39K [50], indicating the
possibility of realizing high-fidelity Barenco gates in the near-
future. Alternatively, numerical simulation in [51] showed
that optimal control may be used to identify pulse sequences
that are inherently robust to fluctuations of Rabi frequencies.
Nevertheless, it is an open problem to implement these tech-
niques in our Barenco gates to realize the gate performance in
Fig. 6.

Severe atom loss during the gate sequence is another
issue in current Rydberg gate experiments [21,22,49,52–54],
and such loss may be from unwanted couplings that result
in populating Rydberg states other than the targeted ones
[22]. One possibility leading to unwanted couplings is level
mixing due to stray electric fields [33,55], which can be
suppressed by microwave-induced dressing of Rydberg states
[56]. Another possibility is multiple cycles of rise and fall of
optical lasers [22], a problem that may be partly avoided by
exploiting gates that use only one pulse for qubit entanglement
[32,57–59].

VI. CONCLUSIONS

In conclusion, we propose two protocols to realize a
universal quantum gate B based on a tunable noncollinear
interaction of the form V |r1r2〉〈r1r3| + H.c. We show that
this noncollinear interaction is achievable for a quantum
system that exhibits a usual blockade interaction of the form∑

j,k bjk|RjRk〉〈RjRk|, such as Coulomb blockade in quan-
tum dots or Rydberg blockade in neutral atoms. Among the
three angles α, θ , and φ inB, φ is freely tunable via adjustment
of the phases of external fields in the first protocol, while the
other two angles in the first protocol and all three angles in
the second protocol can be tuned by adjusting the interaction
coefficients and wait durations. In particular, the first protocol
can also lead to CNOT and controlled-Y gates. Analyses of
the gate protocols using Rydberg interaction in neutral atoms
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show that the gate operation time can be in the microsecond
regime with an intrinsic fidelity error of the order of 10−3. Such
an intrinsic fidelity, however, is achievable only if technical
problems do not occur, which is an open problem at the
moment.
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APPENDIX A: INTERACTIONS IN THE EXAMPLE OF B

WITH NEUTRAL ATOMS

We consider two-photon transitions from ground states to
Rydberg states via the intermediate hyperfine level |5p1/2,

F = 1,mF = 1〉 and choose (n1,n2) = (96,102). Then
the vdWI coefficients are [29] C6(|R0R1〉) = 35.71 × 2π

THz μm6 and C6(|R0R2〉) = −10.07 × 2π THz μm6. There
is an exchange interaction between |R0R2〉 and |R2R0〉
with a tiny vdWI coefficient, C ′

6 = −5 × 2π GHz μm6,
which can be neglected. The character of the interaction
transfers between resonant dipole-dipole interaction and
vdWI at about 5 μm. We choose a two-atom distance
of l = 20 μm to guarantee a picture of vdWI. Then
{b01,b02} = {0.558, − 0.157} × 2πMHz, and we have the
following interaction strengths in units of 2πkHz,

V1 = 558 cos2 β1 − 157 sin2 β1,

V2 = 558 sin2 β1 − 157 cos2 β1,

Ve = 715 sin β1 cos β1.

APPENDIX B: GATE FIDELITY ERROR

The excited states of atoms can experience decay, the
Rabi frequency � is not infinitely large compared with the
blockade V1(2), and there can be population leakage out of the
computational basis. The force between the two atoms can also
induce drift of the atomic spacing. When the atoms are captured
by optical dipole traps before and after the gate sequence, the
distance between the two atoms can vary from the ideal l. These
several factors cause errors in the gate operation. We denote an
input state by a wave function |�in〉 and the output state by a
density matrix ρout, which can be different fromB|�in〉〈�in|B†.
Then the fidelity of the gate can be defined as

F = 〈�in|B†ρoutB|�in〉,
where the overbar means an average over all possible input
states. Take Protocol I as an example; the Rydberg state decay,
finiteness of �, and population leakage lead to errors that can

be, respectively, approximated by [30,39]

Ede = ( π
�

+ T )(τ1 + τ2)/2

τ1τ2 + sin2 β1 cos2 β1(τ1 − τ2)2
+

( π

2�
+ T/2

)
/τ1,

Ebl = 2
V 2

1 + V 2
2

�2
,

Ele = �2

�2
1

+ �2

2�2
2

,

where τj is the lifetime of state |Rj 〉, j = 1,2. Here,
�1(2)/2π = 1.8(1.5) GHz is the detuning for the dominant
leakage channel. For example, the level nearest to |R0〉 that
can be transferred from the 5p1/2 state is |94d3/2,mJ = 1/2,

mI = 3/2〉, with a detuning of �1/2π = 1.8 GHz.
During the wait periods, because both atoms are in Rydberg

states, entanglement between motional states and internal
states may arise. This effect, however, is negligible. For
example, if two atoms are in the state |R0R1〉 = |R1R1〉, a force
−6C6(|R0R1〉)/l7 arises. With this force, the relative speed be-
tween the two atoms changes by |δv| = 6C6(|R0R1〉)TRy/μl7,
where μ is the mass of the atom and TRy is the time for
which the atoms are in the Rydberg states. For TRy = 1 μs
and l = 20 μm, we have δv = 7.6 × 10−4 m/s. If the initial
relative speed is 0, the two-atom separation will change by
about 3.8 × 10−4 μm after one gate cycle, which is negligible
compared with l.

For gate fidelity errors caused by distance fluctuation of the
atoms, we note that the parameters characterizing a trap include
the trap depth U , the oscillation frequencies {ωx,ωy,ωz},
and the averaged variances of the position {σ 2

x ,σ 2
y ,σ 2

z }. We
consider the case where the motional state of a trapped neutral
atom is thermal, i.e., kBTa/2 � h̄ωj , j = x,y,z, where kB is
the Boltzmann constant and Ta is the effective temperature
of atoms. For an optical tweezer created by a single laser
beam of wavelength λ and waist w that propagates along z,
we have σ 2

x = σ 2
y = w2

4
Ta

U
, σ 2

z = ξ 2σ 2
x , ξ = √

2πw/λ, where
U and ξ are the potential depth and anisotropy factor of the
trap, respectively [39]. The position distributions of the two
qubits depend on {σ 2

x ,σ 2
y ,σ 2

z }. In different runs of the gate, the

fluctuation of the atomic location adds an extra error EL to the
total gate fidelity error, which can be numerically evaluated
by Monte Carlo integration [30]. For {w,λ} = {3.0,1.1} μm,
T = 0.5 μs, and U = 20 mK, numerical calculation shows
that it is in the interval of [1.4,52]([1.0,49]) × 10−4 for
Protocol I (Protocol II) when Ta ∈ [10,200] μK. We also
considered a similar setup analyzed in Ref. [40], but with
atoms cooled to motional ground states, and analyzed EL as a
function of the trap depth U . Numerical calculation shows that
EL < 7 × 10−5 for both protocols when U > 1 μK. These
analyses mean that one can suppress the error caused by
position fluctuation through laser cooling of atoms.
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