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We present a general framework for the quantification and characterization of leakage errors that result when a
quantum system is encoded in the subspace of a larger system. To do this we introduce metrics for quantifying the
coherent and incoherent properties of the resulting errors and we illustrate this framework with several examples
relevant to superconducting qubits. In particular, we propose two quantities, the leakage and seepage rates, which
together with average gate fidelity allow for characterizing the average performance of quantum gates in the
presence of leakage and show how the randomized benchmarking protocol can be modified to enable the robust
estimation of all three quantities for a Clifford gate set.
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I. INTRODUCTION

Accurate characterization of errors is critical for verifying
the performance of quantum devices and for prioritizing
methods of error correction to improve the performance of
quantum devices. In recent years there has been great progress
in improving the performance of many types of qubits, with
average gate fidelities exceeding ∼0.999 for one-qubit and
∼0.99 for two-qubit gates being reported in superconducting
qubits [1,2] and trapped ions [3,4]. As thermal relaxation
coherence times T1 increase, it becomes critical to quantify
and measure the leading errors limiting further improvements
in gate fidelities. In many quantum systems so-called leakage
errors are an important factor for further gate optimization.
These types of errors result from the state of a quantum system
leaking out of a predefined subspace to occupy an unwanted
energy level. These types of errors are of particular importance
in the context of fault-tolerant quantum error correction as
they require significant additional resources to correct in a
fault-tolerant manner over standard errors and can greatly
impact the fault-tolerance threshold of certain codes [5–7].
Furthermore, even when very weak or short lived, as the system
returns to the desired subspace these types of interactions can
result in significant logical errors, such as the ac Stark shift
observed in the control of superconducting qubits [8,9].

Leakage errors may be present in any quantum system
where a qubit is encoded in a subspace of a larger quantum
system, as is the case for many qubit architectures including
superconducting qubits [10], quantum dots [11], and trapped
ions [12]. Though there has been significant interest in the char-
acterization and suppression of leakage in quantum systems,
current methods are highly architecture dependent [8,9,13–17],
and while progress has been made (see, e.g., [18,19]), there is
not yet a general framework for quantifying and characterizing
the relevant parameters of interest for an experimenter.

In this paper our goal is threefold: In Secs. II and V we
develop a unified framework for quantifying leakage errors
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which may occur in quantum systems; in Sec. III we extend ran-
domized benchmarking (RB) [20,21] to a leakage randomized
benchmarking (LRB) protocol that estimates leakage errors in
addition to average gate fidelities; in Sec. VI we explore several
canonical examples of leakage errors which may occur in
quantum systems. To quantify leakage, in Sec. II we introduce
measures for leakage in quantum states, and for the quantum
gate we introduce two measures, which we call the leakage
rate L1 and seepage rate L2. The leakage rate quantifies the
average population lost from a quantum system of interest to
states outside the computational subspace, while the seepage
rate quantifies the return of population to the system from those
states. To experimentally estimate these quantities we describe
the LRB protocol in Sec. III and illustrate its application
with a numerical simulation of a transmon superconducting
qubit. We note that this protocol and a similar approach
have recently been demonstrated experimentally in Refs. [22]
and [19], respectively. In Sec. V we discuss the special case
of coherent leakage errors and introduce measures for the
coherence of leakage in quantum states and channels. While
these measures cannot be directly estimated using the LRB
protocol, we prove bounds on these quantities in terms leakage
and seepage. We note that in previous work the combined
leakage-seepage rate L1 + L2 was referred to as a measure
of coherence of leakage [18]; however, this is a misnomer
as leakage and seepage can result from purely incoherent
thermal relaxation processes. We demonstrate and discuss this
in Sec. VI along with several other examples of leakage models
including logical leakage errors, unitary leakage, thermal
leakage, and multiqubit leakage. We summarize in Sec. VII.

Comparison to previous work

There have been previous proposals for generalizing RB
to account for leakage [19,23,24] and also for related bench-
marking protocols to explicitly quantify leakage instead of
average gate fidelity [18]. The difference between our work
and previous protocols is that it is designed to address the
following experimental considerations.
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(i) Our model allows for the robust estimation of the leakage
rate L1, seepage rate L2, and average gate error E of a Clifford
gate set.

(ii) Our model can be implemented in any system capable
of implementing RB with only minor modification.

(iii) The fitting model for parameter estimation from RB
data is a single-exponential decay model.

The LRB protocol is essentially equivalent to the method
recently used [19,22] for characterization of leakage in a
superconducting qubit. However, while that work relied on
the assumption of a phenomenological decay model and direct
measurement of leakage levels, we provide a more rigorous
derivation of the decay model and discuss the assumptions for
its validity. Our method also can be implemented without direct
measurement of the leakage levels.

To contrast our approach with other previous work, in
[23,24] they consider the decay model derived from RB in
the presence of leakage for the case of a qubit or multiqubit
system, respectively, and hence this satisfies condition (ii). This
fails condition (i) as it does not provide a means for estimating
the L1 or L2, only the gate error. Further, since the resulting
decay model is a biexponential in the single-qubit case and a
multiple exponential in the multiqubit case, it fails to satisfy
condition (iii). The proposal of robust estimation of leakage
in [18] satisfies conditions (ii) and (iii) and in particular the
decay model used is equivalent to one part of our proposed
protocol. However, it fails condition (i) as the characterization
parameter reported by this protocol is equivalent to the sum of
what we define as the leakage and seepage rates. It is critical to
estimate these two quantities separately for the characterization
of a quantum gate set in the presence of leakage.

II. QUANTIFYING LEAKAGE ERRORS

Leakage in a quantum system can be modeled by treating the
system of interest as a subspace of a larger quantum system in
which the full dynamics occur. We will call the d1-dimensional
subspace of energy levels in which ideal dynamics occurs the
computational subspace, labeled by X1. The d2-dimensional
subspace of all additional levels that the system may occupy
due to leakage dynamics will be called the leakage subspace,
labeled by X2. Thus the full state space of the system is
described by a (d1 + d2)-dimensional direct-sum state space
X = X1 ⊕ X2. We define the state leakage L of a density
matrix ρ ∈ D(X ) by

L(ρ) = Tr[12ρ] = 1 − Tr[11ρ], (1)

where 11 and 12 denote the projectors onto the subspaces X1

and X2, respectively.
For a quantum state to exhibit leakage it must be introduced

into the system by some physical process, for example, thermal
relaxation or imperfect control errors. In general, we refer
to any system dynamics which results in a change of the
state leakage of quantum system as a leakage error. In the
quantum circuit paradigm imperfect quantum operations may
be described mathematically by completely positive trace-
preserving maps (CPTPs) and thus a leakage error is a special
class of CPTP map that couples the computational and leakage
subspaces. Let E be a CPTP map describing a leakage error. We
can quantify the leakage error in E by how it changes the state

leakage of an input state. However, unlike with state leakage,
we will require two metrics to distinguish between leakage
errors which transfer population to and population from the
leakage subspace. We call these errors gate leakage and gate
seepage, respectively.

Much like with average gate fidelity to quantify typical
gate errors we will generally be interested in the average and
the worst-case gate leakage and seepage. Thus we define the
leakage rate L1 and seepage rate L2 of a channel E to be the
average channel leakage and channel seepage, respectively,

L1(E) =
∫

dψ1L(E(|ψ1〉〈ψ1|)) = L

(
E
(
11

d1

))
,

L2(E) = 1 −
∫

dψ2L(E(|ψ2〉〈ψ2|)) = 1 − L

(
E
(
12

d2

))
,

(2)

where the integrals are taken over the Haar measure of all states
in the computational subspace |ψ1〉 and leakage subspace |ψ2〉,
respectively.

The worst-case gate leakage and seepage rates require
maximizing, rather than averaging, over all input states. We
note, however, that we may bound the worst-case quantities by
average rates, as was shown in Ref. [18],

d1L1(E) � L(E(ρ1)), (3)

d2L2(E) � 1 − L(E(ρ2)), (4)

where dj is the dimension of Xj and ρ1(ρ2) is an arbitrary state
in the computational (leakage) subspace.

In addition to characterizing the amount of leakage intro-
duced by an imperfect gate, it is also necessary to characterize
the performance of the gate within the computational subspace.
A commonly used measure of gate error is the average gate
infidelity E = 1 − F , where F is the average gate fidelity

F (E) =
∫

dψ〈ψ |E(|ψ〉〈ψ |)|ψ〉. (5)

In the presence of leakage we define F by only averaging over
states within the computational subspace

F (E) =
∫

dψ1〈ψ1|E(|ψ1〉〈ψ1|)|ψ1〉 (6)

= d1Fpro(E) + 1 − L1

d1 + 1
, (7)

where we have expressed F in terms of the process fidelity of
E with the identity channel on the computational subspace

Fpro(E) = 1

d2
1

Tr[(11 ⊗ 11)SE ], (8)

whereSE is the superoperator representation of the map E [25].
We suggest that the goal of a partial characterization

protocol of leakage errors is to extract the three parameters L1,
L2, and E. This is a major difference between our approach
and the protocol in Ref. [18], which only aims to learn
a single parameter equivalent to the joint leakage-seepage
rate L1 + L2. Knowledge of the combined leakage rate is
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insufficient to accurately quantify the gate error, and in addition
the relationship between L1 and L2 can vary greatly, depending
on the noise process causing leakage. Three specific cases are
erasure leakage errors, where L2 = 0 and hence any leaked
population is irretrievably lost; thermal relaxation leakage
errors, where L2 � L1 if the computational subspace is the
low-energy subspace of the system; and unital leakage errors
(of which unitary leakage errors are a subset), where the
leakage and seepage rates are no longer independent and satisfy
the equation d1L1 = d2L2.1 We elaborate on this when giving
several example noise models in Sec. VI. We also note that
the definitions of leakage and seepage can be generalized for
leakage to multiple different leakage subspaces by further par-
titioning the leakage subspace into several different subspaces.
We discuss this in more detail in Sec. VI D.

III. CHARACTERIZING LEAKAGE ERRORS

We now show how the RB protocol can be generalized to
include estimation of the leakage and seepage rates in addition
to the average gate fidelity for a Clifford gate set. We call this
generalized protocol leakage randomized benchmarking.

The basic requirements for LRB are the implementation
of a set of gates which form a 2-design on the computational
subspace, the typical set being the Clifford gates, and the ability
to measure the outcome probabilities for a set of orthonormal
projectors {M0, . . . ,Md1−1} which may be used to estimate the
populations of a set of basis states in X1. By summing over all
measurements, we may implement the projection

∑
j Mj = 11

and so this allows for the estimation of the population inX1 and
hence of the state leakage L. In the following we will assume
that this is done with respect to the computational basis. In this
sense it is equivalent to RB, but with additional measurements
and fitting to a different decay model for L. The derivation of
a decay model for L that allows the estimation of the leakage
and seepage rates L1 and L2 requires two key assumptions in
addition to the usual requirements of standard RB.

(i) Twirling over Clifford gates on the computational sub-
space averages out coherences between the computation and
leakage subspace.

(ii) Any population in the leakage subspace is depolarized.
If these assumptions are violated then non-Markovian ef-

fects may appear due to the buildup of coherences between the
leakage and computational subspace and memory effects from
the conditional state in the leakage subspace. While these cases
are beyond the scope of the LRB protocol, we discuss them in
more detail in Sec. V. We note that in many systems of interest
leakage is typically weak and restricted to a one-dimensional
subspace that is off-resonance with the computational subspace
levels. In this case these requirements are trivially satisfied by
the random phases accrued due to off-resonant evolution.

A. The LRB protocol

The LRB protocol is as follows.

1This result follows directly from the definitions for leakage and
seepage. For a given CPTP map E we have d1L1(E) = Tr[12E(11)] =
Tr[12E(1)] − d2(1 − L2(E)). Now, if E is unital then Tr[12E(1)] =
Tr[12] = d2 and hence d1L1(E) = d2L2(E).

(1) Choose a random sequence of m Clifford gates im =
Cm ◦ · · · ◦ C1 and compute the RB recovery operator corre-
sponding to Cm+1 = C†

1 ◦ · · · ◦ C†
m to obtain the RB sequence

i ′m = Cm+1 ◦ im.
(2) Prepare the system in an initial state ρ0 = |0〉〈0| ∈

D(X1), apply the sequence i ′m, and perform a measurement to
obtain an estimate of the probabilities pj (i ′m) = Tr[Mji

′
m(ρ0)],

where the index j ranges over all outcomes of a projective
measurement of the computational subspace (j = 0, . . . ,d1 −
1).

(3) Sum the probabilities pj (i ′m) to obtain an estimate of the
population in X1: p11 (i ′m) = ∑

j pj (i ′m) = Tr[11i
′
m(ρ0)].

(4) Repeat steps 1–3 K times to obtain an estimate of the
average over all Clifford sequences im: pj (m) = Ei ′m[pj (i ′m)],
p11 (m) = Ei ′m [p11 (i ′m)].

(5) Repeat 1–4 for different sequence lengths m.
(6) Fit p11 (m) to the decay model

p11 (m) = A + Bλm
1 , (9)

with 0 � A,B, to obtain estimated values for A, B, and λ1.
Compute the estimate of the average leakage and seepage rates
of the gate set as

L1(E) = (1 − A)(1 − λ1), (10)

L2(E) = A(1 − λ1). (11)

Note that in practice one may put tighter bounds on the
expressions based on estimates for leakage rates using

A ≈ L2

L1 + L2
, (12)

B ≈ L1

L1 + L2
+ εM, (13)

λ1 = 1 − L1 − L2, (14)

where εM is a nuisance parameter quantifying leakage during
measurement (see Appendix A).

(7) Using the fitted value of λ1, fit p0(m) to the decay model

p0(m) = A0 + B0λ
m
1 + C0λ

m
2 , (15)

where 0 � A0 � A, 0 � C0 � 1, and 0 � A0 + B0 + C0 � 1,
to obtain an estimate of the average gate fidelity of the gate set
by

F = 1

d1
[(d1 − 1)λ2 + 1 − L1]. (16)

If leakage is weak (λ1 � λ2 and B � A), then we can reduce
the number of fit parameters and fit directly to the standard RB
decay model, p0(m) = A0 + C0λ

m
2 .

See Appendix A for the derivation of Eqs. (9) and (16) in
steps 7 and 8.

B. Special cases of LRB

We now make two further comments on how LRB may
be implemented in the case where an experimenter (a) is only
able to measure a single two-outcome POVM with high fidelity
and (b) is able to directly measure populations of the leakage
subspace.
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In case (a) LRB may be implemented by modifying the
recover operator Cm+1 for each measurement projector in
step 2. Suppose we may implement a two-outcome measure-
ment with outcomes corresponding to measurement operators
{M0,1 − M0}, and let Uj be the unitary matrix such that
Mj = UjM0U

†
j = Uj (M0). For a given sequence im letC(j )

m+1 =
U†

j ◦ Cm+1 and let i
(j )
m = C(j )

m+1 ◦ im. Then we have

Tr
[
M0i

(j )
m (ρ0)

] = Tr[Mji
′
m(ρ0)] = pj (i ′m). (17)

In case (b), where one has the ability to directly mea-
sure populations of the leakage subspace LRB, steps 1, 2,
4, 5, and 7 are implemented as is, but step 3 is replaced
with a measurement set chosen to correspond to estimates
of the population of the leakage subspace with respect to
some basis

{Nj = |j 〉〈j | : j = 1 + d1, . . . ,d2 + d1 − 1}.
Following this, step 6 is replaced with fitting to the model

p12 (m) = 1 − p11 (m) = 1 − A − Bλm
1 . (18)

This is of course most beneficial when the dimension of
the leakage subspace is less than the computational sub-
space and in particular when the leakage subspace is one
dimensional gives a method of quickly estimating the leakage
rates.

In addition, we note that the LRB protocol subsumes the
various decay models previously presented in the literature.
The modified RB decay model presented in Ref. [23] is
equivalent to the model in Eq. (16) for the case of leakage to a
single level. The protocol presented in Ref. [18] is based on a
1-design average rather than a 2-design and is equivalent to our
model in the case where the recovery operation is not included,
hence replacing the sequence i ′m with im in steps 2–5 in the LRB
protocol. In this case the resulting decay model is equivalent to
the one given in Eq. (9). Finally, the phenomenological decay
model assumed in Ref. [19] is equivalent to an implementation
of the LRB protocol with direct measurements of the leakage
subspace and thus our work provides a theoretical justification
of the assumptions and validity of this model.

IV. SIMULATION

We now demonstrate the application of the LRB protocol
with a simulation of a superconducting qubit. We use a
superconducting qubit as our example as it is one of the most
common systems where leakage is potentially an issue, but we
note that this could be applied to another system in the same
way. We also note that the protocol has also been implemented
experimentally in Ref. [22]

A superconducting qubit is a weakly anharmonic oscillator
which, to a good approximation, can be described by truncating
the system to a three-dimensional Hilbert space.2 In this case
the qubit computational subspace is spanned by the states
{|0〉,|1〉} and the leakage subspace is a single level |2〉. The

2While the results here were simulated using a three-dimensional
Hilbert space, we note that we also simulated leakage with four- and
five-dimensional Hilbert spaces and the results were unchanged.

Hamiltonian for the system in the resonance frame of the
E1 − E0 energy separation is given by

H (t) = H0 + Hc(t), (19)

H0 = −δ|2〉〈2|, (20)

Hc(t) = 1
2�x(t)Hx + 1

2�y(t)Hy, (21)

Hx = |0〉〈1| +
√

2|1〉〈2| + H.c., (22)

Hy = −i|0〉〈1| − i
√

2|1〉〈2| + H.c., (23)

where δ is the anharmonicity and Hc(t) is the time-dependent
control Hamiltonian. We will consider a family of y-only
derivative removal by adiabatic gate (DRAG) corrected pulse
shapes [14] where the x-drive component �x(t) is a truncated
Gaussian pulse and the y-drive component is given by the
scaled derivative

�y(t) = −α

δ

d

dt
�x(t). (24)

The superoperator describing the coherent evolution of the
system is then given by

L(t)ρ = −i[H (t),ρ]. (25)

To include the effects of thermal relaxation, we model
dissipation of the system as cavity relaxation to an equilibrium
state with average photon number n. This is described by the
Markovian photon-loss dissipator [26]

Dc = κ(1 + n)D[a] + κnD[a†], (26)

D[a]ρ = aρa† − 1
2 {a†a,ρ}, (27)

where κ is the relaxation rate of the system, n is the average
thermal photon number, and a and a† are the truncated cre-
ation and annihilation operators, respectively. To compute the
superoperator for a given control pulse we solve the Lindblad
master equation

dρ(t)

dt
= [L(t) + Dc]ρ (28)

over the time-dependent control pulse to obtain the noisy
implementation of a gate

S(t) = T exp

[∫ t

0
dt[L(t) + Dc]

]
, (29)

where T is the time-ordering operator.
For our simulation we compare the LRB estimates of

mean leakage and seepage rates and average gate infidelity
for a single-qubit Clifford gate set to the theoretical values
computed directly from the Clifford gate superoperators. The
noisy Clifford gate set was generated by simulating calibrated
±π/2, X and Y rotation pulses by Eq. (29) for a transmon qubit
with anharmonicity δ/2π = −300 MHz, thermal relaxation
modeled as cavity dissipation with relaxation rate κ = 10 kHz,
and an average photon number at thermal equilibrium of
n = 0.01. We note that constructing the Clifford gates from
±π/2, X and Y pulses as is done in real experiments in general
leads to weakly-gate-dependent errors on the Clifford gates and
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hence this simulation also tests how well the protocol performs
in this regime.

To simulate leakage that occurs during measurement of the
qubit we allow the system to evolve under the dissipator in
Eq. (26) for a typical measurement acquisition time of 5 μs
following the final pulse. The X and Y pulses were simulated
for truncated Gaussian pulses of lengths ranging from 8 to
30 ns with a 4-ns spacing before and after each pulse. We
compare four different pulse types: (i) Gaussian, which has
DRAG parameter α = 0; (ii) DRAG-F, where α is optimized
to maximize average gate fidelity (α ≈ 0.5); (iii) DRAG-L,
where has α is optimized to minimize the leakage rate (α ≈ 1);
and (iv) DRAG-Z, which uses the leakage optimized α from
DRAG-L but also uses an optimized Z-frame change to
maximize average gate fidelity as introduced in Ref. [22].

The LRB protocol was simulated using Clifford sequence
lengths of m = 1,101,201, . . . ,3001 averaging over 100 ran-
dom seeds for each m. The results are shown in Fig. 1. To
illustrate the error in the estimates, Fig. 2 shows the fitted values
and 95% confidence intervals of the fits versus the number of
random Clifford sequences (seeds) averaged for each length
m for the case of the 14-ns pulse used in Fig. 1. Examples
of simulated LRB data used for fitting in Fig. 1 are shown in
Fig. 3.

The results in Fig. 1 show good agreement with the LRB
fitted estimate and the directly computed theoretical values
for leakage, seepage, and infidelity. We note that due to the
leakage rate being over an order of magnitude smaller than
the average gate fidelity, we are able to fit the fidelity RB
curve to a single exponential as with standard RB. We see
that the DRAG-Z and DRAG-F have the greatest improvement
of gate infidelity, approaching the T1 limit for longer pulses,
with DRAG-Z only having an advantage for pulse times shorter
than 14 ns. The DRAG-L pulse shows a marginal improvement
over the Gaussian pulse. This is because the dominant error is a
leakage-induced phase error, rather than the leakage rate itself,
and hence is not corrected by the DRAG-L calibration. When
comparing leakage rates, we see that for all pulses the leakage
rates are typically 1–2 orders of magnitude below the infidelity.
Both the DRAG-L and DRAG-Z pulses saturate the T1 limit
on leakage rates L1 for pulses longer than 14 ns, while the
DRAG-F and Gaussian pulses only approach this limit for
much longer pulses. For the case of seepage, as was discussed
in Sec. VI C 2, we find that it is completely dominated by the
thermal seepage due to T1 relaxation.

These simulations show that in the case of single-qubit
gates in superconducting qubits, leakage-induced errors are
much more important for device optimization than the leakage
rates themselves. Leakage and seepage rates are limited by T1

relaxation; however, if minimizing leakage errors significantly
below the average gate fidelity is a requirement for fault-
tolerant codes, for example, then saturating this leakage T1

limit in combination with the infidelity limit may be a desirable
goal for control design. In this case simple half-DRAG pulses
alone are not sufficient and one must use other methods to
optimize calibration to both remove the leakage-induced phase
error and suppress leakage rates such as the DRAG-Z pulse,
which uses DRAG in combination with Z rotations to remove
phase errors presented in Ref. [22]. Another method is to use
DRAG in combination with a detuned drive term as done in

FIG. 1. (a) Average gate infidelity, (b) leakage rate, and (c)
seepage rate averaged over the single-qubit Clifford gates versus gate
time of the component pulses. Data points are the fitted estimates from
simulation of the LRB protocol with 100 seeds for each length-m
sequence, with shaded regions representing the 95% confidence
interval of the fit. The solid lines are theoretical values computed
directly from the superoperators used for simulation. The dashed
black line shows the theoretical T1 limit given by pure thermal
relaxation noise only.

Ref. [19]. Theoretical approaches to systematically design new
control pulses to achieve this have also been recently proposed
[27].

Finally, we comment on the violation of the assumptions of
the LRB protocol. The key feature of insufficient averaging
of the coherences between the leakage and computational
subspace is oscillations in the leakage decay model. We can
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FIG. 2. (a) Convergence of estimate of average gate infidelity,
(b) leakage rate, and (c) seepage rate vs number of random Clifford
sequences for each gate length used to obtain the average. Data points
are the fitted estimates from simulation of the 16-ns component pulse
from Fig. 1, with shaded regions representing the 95% confidence
interval of the fit.

see this, for example, in the LRB data for the 8-ns pulse decay
curves in Fig. 3, which was the gate set with the largest leakage
rate in our simulation.

V. COHERENT LEAKAGE ERRORS

The leakage metrics in Sec. II all measure incoherent
properties of a quantum system. In particular, the population of
the leakage subspace used as the definition of state leakage does
not inform us about coherences that may exist between states
in the computational and leakage subspaces. Our restriction
to these leakage metrics is a practical one as estimation of
coherent properties of leakage is considerably more difficult.

In the ideal case the LRB protocol acts to project out coherent
leakage terms, and direct estimation requires the ability to
directly measure coherences between the leakage and compu-
tational subspaces. Nevertheless, we now present a theoretical
framework for quantifying coherent leakage errors and show
how these quantities may be bounded by the average leakage
quantities from Sec. II, and later in Sec. VI B we explore a
simple example of a unitary coherent leakage error.

A. Coherence of leakage

Consider a leakage system with state space X = X1 ⊕ X2,
with identity operators 11 and 12 which project a state on the
computational and leakage subspaces, respectively. We can
define a subspace consisting of all states of the form ρ = (1 −
pl)ρ1 + plρ2, which we call the incoherent leakage subspace
(ILS) as it is an incoherent mixtures of states in the leakage and
computational subspaces. The projector onto the ILS is given
by the CPTP map

PI = I1 + I2, (30)

PI (ρ) = 11ρ11 + 12ρ12, (31)

where I1 and I2 are the identity projection channels for the
computational and leakage subspaces, respectively.

For a state ρ, the orthogonal subspace to the ILS is traceless
and consists of only the coherent superposition terms between
states in the computational and leakage subspaces. We will
call this subspace the coherent leakage subspace (CLS). The
projector onto the CLS is given by

PC = I − PI , (32)

PC(ρ) = 11ρ12 + 12ρ11, (33)

where I is the identity channel on the full Hilbert space. We
may use the CLS projection to define a measure to quantify
the coherence of leakage in a density matrix. We define the
coherence of leakage of a state ρ to be

CL(ρ) = ‖PC(ρ)‖1 = ‖ρ − PI (ρ)‖1. (34)

While we could use any suitable matrix norm, the choice of
the 1-norm is to give an operational interpretation of CL(ρ) via
Helstrom’s theorem. For example, consider a pure state ρ =
|ψ〉〈ψ | consisting of a superposition of states in the leakage
and computational subspaces. If the leakage of ρ is given by

L(ρ) = 〈ψ |12|ψ〉 = pl, (35)

we may write

|ψ〉 =
√

1 − pl|ψ1〉 + √
pl|ψ2〉, (36)

where |ψj 〉 ∈ Xj . Hence we have

‖PC(|ψ〉〈ψ |)‖1 = 2
√

pl(1 − pl). (37)

The norm in Eq. (37) equals 1 when pl = 1/2. As one might
expect, this shows that our ability to distinguish coherent
leakage from purely incoherent leakage is maximized when
there is an equal superposition of states in X1 and X2. If pl = 0
or 1, so that the state is entirely in the computational or leakage

032306-6



QUANTIFICATION AND CHARACTERIZATION OF … PHYSICAL REVIEW A 97, 032306 (2018)

FIG. 3. Example decay data for the simulated LRB experiment in Fig. 1. The top row shows the p0 decay curves of the |0〉 state measurement
typically used in RB, while the bottom row shows the p11 decay curve for the trace of the qubit computational subspace. The left, middle, and
right columns are data for 8-, 14-, and 30-ns length component pulses for generating the Clifford gates, respectively.

subspace, then there can be no coherences between the leakage
and computational subspaces and ‖PC(ρ)‖1 = 0.

While the trace distance of the CLS projection has a useful
operational interpretation, it cannot be directly measured from
measurements on the computation subspace alone. We can,
however, prove that Eq. (37) provides an upper bound on the
coherence of leakage.

Proposition 1. Consider a density matrix ρ ∈ L(X1 ⊕ X2).
The coherence of leakage is upper bounded by

CL(ρ) � 2
√

pl(1 − pl),

where pl = L(ρ) is the leakage of ρ.
See Appendix B for a proof.
As shown in Eq. (37), the bound in Proposition 1 is saturated

for a pure state ρ.

B. Coherent leakage rates

The definitions of leakage and seepage rates introduced
in Sec. II quantify the rates at which a CPTP error map E
increases or decreases the amount of state leakage of a given
input state. We now consider how coherent leakage errors can
be introduced into a system. Consider an arbitrary leakage error
channel described by a CPTP mapE . We may use the projectors
for the ILS and CLS from Eqs. (31) and (33) to decompose E
into four channel components

E = PIEPI + PIEPC + PCEPI + PCEPC. (38)

The first term EI ≡ PIEPI is the trace-preserving component
ofE , which we call the incoherent leakage component ofE . The
remaining three terms all result in a traceless output operator.
The incoherent leakage component may itself be expressed as
2 × 2 block mapping between the leakage and computational
subspaces

EI = I1EI1 + I2EI1 + I1EI2 + I2EI2. (39)

The trace-preserving property of E allows us to write Eq. (39)
in terms of the leakage and seepage rates L1 and L2 as

EI = (1 − L1)E11 + L1E21 + L2E12 + (1 − L2)E22, (40)

where

Eij = IiEIj

Tr[1iE(1j /dj )]
. (41)

Equation (40) shows that the incoherent leakage component
EI is the only relevant term for estimating leakage and seepage
rates as defined in Sec. II, and under ideal situations the LRB
protocol from Sec. III projects an arbitrary error channel E
onto this component. If one does not project out the terms that
allow for coherent leakage, then, analogous to our definition
of leakage and seepage rates, we can define two quantities
to measure how much the coherence of leakage of a state
is increased by leakage and seepage. We define the coherent
leakage rate and coherent seepage rate to be

CL1 (E) =
∫

dψ1CL(E(|ψ1〉〈ψ1|)), (42)

CL2 (E) =
∫

dψ2CL(E(|ψ2〉〈ψ2|)), (43)

respectively, where |ψj 〉 ∈ Xj and the integral is taken with
respect to the Haar measure on the computational and leakage
subspaces, respectively. While this expression can be evaluated
exactly for simple examples (such as the unitary leakage
example in Sec. VI B), for more complicated examples we can
always upper bound it by the leakage and seepage rates of the
channel E , which we prove in Proposition 2.

Proposition 2. The coherent leakage rate CL1 (E) and coher-
ent seepage rate CL2 (E) of a CPTP map E are upper bounded by

CLj
(E) � 2

√
Lj (1 − Lj ),

where L1 and L2 are the leakage and seepage rates of E .
See Appendix C for a proof.
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We note that if one attempts to implement the LRB protocol,
but does not successfully project onto the incoherent leakage
channel component, the resulting decay model may exhibit
oscillations due to the coherent leakage terms. We explore this
with a simple example in Sec. VI B 1.

VI. LEAKAGE ERROR MODELS

We now present some example models for leakage errors
in quantum gates. These will cover simple logical models
for erasure and depolarizing leakage for circuit simulations,
dissipative leakage for modeling thermal leakage errors in
physical qubits, and unitary leakage for leakage errors induced
by quantum control.

A. Logical leakage errors

1. Erasure error

The simplest model for a leakage-type error is an erasure
error where with some probability p we completely lose our
qubit. This could, for example, correspond to an atom escaping
a trap or a photon escaping from a cavity or waveguide. To
model this in the leakage framework outlined in Sec. II, we
can represent an erasure channel with erasure probability pl as
a CPTP map

E(ρ) = (1 − pl)ρ + pl|ψ2〉〈ψ2|, (44)

where |ψ2〉 ∈ X2 is a state in the leakage subspace. In this case
the leakage dynamics is entirely incoherent and we can think of
the leakage subspace as a one-dimensional system which keeps
track of the lost population. The leakage and seepage rates
for the erasure channel E are given by L1 = pl and L2 = 0,
respectively.

If we measure the leakage after m applications of the
channel, then the leakage of the output state is given by

pl(m) = L(E◦m(ρ)) = 1 − (1 − pl)
m. (45)

This shows that the state leakagepl approaches 1 asm increases
and in the infinite limit we can say that its population is
contained entirely in the leakage subspace.

2. Depolarizing leakage extension

Erasure errors are not a particularly realistic model for
many architectures, such as spins, atomic systems, or su-
perconducting qubits, where relaxation or other processes
allow the higher-energy levels to continue to interact with the
computational subspace energy levels. We can consider erasure
errors to be a subset of a more general leakage model that we
call depolarizing leakage.

Let E1 be an arbitrary CPTP map on the computational
subspace. We define the depolarizing leakage extension (DLE)
of E1 to be the channel

EL = (1 − L1)E1 + L1D21 + L2D12 + (1 − L2)D2, (46)

where L1 and L2 are the leakage and seepage rates for the
extension, respectively, Dj ≡ Djj , and Dij is a completely

depolarizing map between subspaces L(Xi) and L(Xj ) given
by

Dij (ρ) = Tr[1j ρ]
1i

di

, i,j ∈ {1,2}. (47)

The DLE channel EL is a purely incoherent leakage error as
it removes all information about the leakage dynamics except
for the leakage and seepage rates. The simplicity of this model
could prove useful as a channel extension for including the
effects of leakage in full characterization protocols such as
gate-set tomography [28,29]. The leakage channel components
D12 andD21 act to remove any coherence of leakage in an initial
state and in combination with the completely depolarizing
component D2 on the leakage subspace ensure that there are
no memory effects in the leakage subspace dynamics. This
assumption ensures an exponential model for the state leakage
under repeated applications of the DLE.

Lemma 1. Let EL be a DLE and ρ be the initial system state.
Then the state leakage accumulation model for an initial state
ρ due to repeated actions of EL is given by

L
(
Em

L (ρ)
) = L1

L1 + L2
−

(
L1

L1 + L2
− pl

)
(1 − L1 − L2)m,

where pl = L(ρ) is the state leakage of the initial state.
See Appendix D for a proof.
Notice that the leakage accumulation model in Lemma 1

is independent of the reduced dynamics of the map E1 on the
computational subspace. It only depends on the leakage and
seepage rates of EL. Furthermore, since the leakage in the DLE
is depolarizing, and hence purely incoherent, the coherence of
leakage of the output state is always zero.

3. Depolarizing leakage model

An important subset of DLE channels is the case where
computational subspace component E1 is itself a depolarizing
channel. We call these types of channels depolarizing leakage
models (DLMs) and they are describe by the channel

ED = (1 − L1)[μ1I1 + (1 − μ1)D1]

+L1D21 + L2D12 + (1 − L2)D2, (48)

where 1 − μ1 is the depolarizing probability of the E1 compo-
nent.

A DLM can be constructed from an arbitrary channel by
performing a twirl over the computational subspace, while
depolarizing the leakage subspace. Consider two independent
unitaries U1 ∈ C1 and U2,V2 ∈ P2, where C1 is a set of gates
on the computational subspace which forms a unitary 2-design
and P2 is a set of gates on the leakage subspace which forms
a unitary 1-design. The DLE projection of an arbitrary CPTP
map E is given by the independent average over both these
groups:

ED = 1

|C1||P2|
∑
U1∈C1

∑
U2,V2∈P2

(U1 + V2) ◦ E ◦ (U†
1 + U2) (49)

= W1(E) + D1ED2 + D2ED1 + D2ED2, (50)

whereDj is the completely depolarizing channel on D(Xj ) and
W1 is the twirling superchannel acting on the computational
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subspace as

W1(E11) = μ1I1 + (1 − μ1)D11, (51)

μ1 = d1F (E11) − 1

d1 − 1
. (52)

The utility of twirling in this manner is that the resulting
channel ED will have the same average gate fidelity, leakage
rate, and seepage rate of the original channel E :

F (ED) = F (E), (53)

L1(ED) = L1(E), (54)

L2(ED) = L2(E). (55)

One advantage of considering a DLM instead of a general
DLE is that we can derive a simple expression for the fidelity
decay model for repeated applications of a DLM. This is the
decay model used for LRB, though in the absence of state-
preparation-and-measurement errors,

F
(
Em

D

) = 1

d1

[
1 − pl(m) + (d1 − 1)(1 − p1)mμm

1

]
, (56)

where pl(m) = L(Em
D ) is the DLE leakage accumulation model

given in Lemma 1. While relatively simple, the DLM is of
practical interest as it is the ideal model that LRB attempts to
twirl an arbitrary error channel into.

B. Unitary leakage model

While the DLE and DLM are useful logical models for
considering leakage errors in quantum gates, we can consider
more specific error models based on the control Hamiltonian
used to generate the quantum gate. Unitary leakage is generated
by a Hamiltonian term which couples states in the computa-
tional subspace and leakage subspace. The simplest such case
is generated by an exchange interaction between a state in the
computational subspace |1〉 and a state in the leakage subspace
|2〉. In this case the interaction Hamiltonian is given by

H = 1
2 (|1〉〈2| + |2〉〈1|) (57)

and the resulting unitary leakage error after evolving under H

for time t is given by

U (t) = e−itH = 1 + [cos(t/2) − 1](|1〉〈1| + |2〉〈2|)
+ sin(t/2)(|1〉〈2| + |2〉〈1|). (58)

In this case if we consider a state ρ1 in the computational
subspace, the state leakage after evolution for time t is given
by

L(ρ1(t)) = sin2

(
t

2

)
〈1|ρ1|1〉, (59)

where ρ1(t) = U (t)ρ1 = U (t)ρ1U (t)†. The leakage and seep-
age rates of the unitary channel U (t) as a function of evolution
time are given by

Lj (U (t)) = 1

dj

sin2

(
t

2

)
, j = 1,2. (60)

As mentioned in Sec. II, we have that the leakage and seepage
rates satisfy d2L2 = d1L1.

We find that for this interaction Hamiltonian the state
leakage oscillates as a function of time, which is a distinct
difference from the DLE leakage accumulation model in
Lemma 1. This is because the leakage error is generating
coherent Rabi oscillations between a state in the computational
and in the leakage subspaces. Accordingly, this type of leakage
also generates coherences in the leakage if the initial state has
some population in |1〉 or |2〉. For example, if the initial sate is
ρ1(0) = |1〉〈1| we have that the coherence of leakage at time t

is given by

CL(ρ1(t)) = |sin(t)|. (61)

Furthermore, the coherent leakage rate at time t is given by

CL1 (U (t)) = 2
∣∣ sin

(
t
2

)∣∣{2 − [1 + cos(t)]
∣∣ cos

(
t
2

)∣∣}
3[1 − cos(t)]

(62)

and the upper bound for CL1 from Proposition 2 is

CL1 (U (t)) � 2

d1

∣∣∣∣sin

(
t

2

)∣∣∣∣
√

d1 − sin2

(
t

2

)
. (63)

1. The DLM of a unitary leakage error

We can also consider the perfect depolarizing projection
of a unitary error onto a DLM after a fixed time �t . If we
consider the example unitary leakage error in Eq. (58), then by
inserting the expressions for Lj from Eq. (60) into the leakage
accumulation model in Lemma 1 we have

pl(m) = d2

d1 + d2
− d2

d1 + d2

[
1 − d1 + d2

d2d1
sin2

(
�t

2

)]m

.

If we suppose we have a qutrit leakage model (d1 = 2 and
d2 = 1) then this reduces to

pl(m) = 1

3
− 1

3

[
1 − 3

2
sin2

(
�t

2

)]m

. (64)

Note that after projection onto a DLM this will no longer
generate oscillations.

What happens if we have an imperfect projection due to
not perfectly implementing the required twirling procedure
in Eq. (50)? In this case coherences between the leakage
and computational subspaces may survive and be observed as
memory effects resulting in oscillations in the resulting leakage
accumulation model. We consider this by computing a twirl
over the Clifford group on the computational subspace, where
each perfect Clifford gate is extended to act as the identity on
the leakage subspace U = U1 ⊕ 12. This is followed by an im-
perfect depolarizing of the leakage subspace by a depolarizing
channel with depolarizing probability p,

D(p) = (1 − p)I + p(I1 + D2), (65)

where I is the identity channel on the full Hilbert space and
I1 and D2 are the identity channel and completely depolar-
izing channel on the computational and leakage subspaces,
respectively. The leakage accumulation due to repeated appli-
cations of the resulting imperfectly twirled DLM for different
values of depolarizing strength p is shown in Fig. 4. We
find here that when there is no depolarizing of the leakage
subspace coherent oscillations survive for some time before
being damped out. For a depolarizing strength of 10% these
oscillations are damped out; however, we still observe faster
leakage accumulation than the completely depolarized ideal
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FIG. 4. State leakage accumulation of the imperfect DLM projec-
tion of the unitary leakage error channel in Eq. (58) allowing partial
coherences between the leakage and computational subspaces. This
results in memory effects in the leakage subspace, which may give
rise to the observed oscillations in state leakage. The black dotted
curve is the ideal case of a perfect DLM projection corresponding to
an exponential leakage accumulation model.

case, which would lead to an overestimate of the leakage rate
in L1 = 1

2 sin2(�t/2) in Eq. (64).

2. Weak unitary leakage

Now let us consider a general unitary error model which is
more applicable to many experimental scenarios where unitary
leakage is introduced into a system by imperfections in a
control Hamiltonian. In general, the leakage due to a unitary
term is given by

U (t) = T exp

(
−i

∫ t

0
dt1H (t1)

)
, (66)

where T is the time-ordering operator and H (t) is the time-
dependent Hamiltonian the system evolves under. The leakage
and seepage rates of this interaction are given by

Lj (U (t)) = 1

dj

Tr[12U (t)11U (t)†], j = 1,2. (67)

By expanding U (t) into a Dyson series, we may obtain a
perturbation expansion for the leakage and seepage rates due to
the unitary leakage error. In doing so we find that the second-
order Dyson term is the leading-order contribution to leakage
and seepage rates and is given by

Lj (U (t)) ≈ t2

dj

Tr[12H (t)11H (t)], (68)

where H (t) = 1
t

∫ t

0 dt1H (t1) is the first-order average Hamilto-
nian term of H (t). Hence we can estimate the leakage rates due
to given control pulse by computing the average Hamiltonian
over the pulse shape.

To illustrate this consider the transmon qubit system as used
in Sec. IV. The first-order leakage rate contribution from an
Xπ/2 control pulse is given in Fig. 5. Here we compare the same
DRAG pulse shapes used in Eq. (24) with DRAG parameters
α = 0 (Gaussian), α = 0.5 (DRAG-F), and α = 1 (DRAG-L)

FIG. 5. First-order unitary leakage rate for an Xπ/2 rotation pulse
for a transmon qubit with anharmonicity δ/2π = −300 MHz. The
DRAG-L pulse is not visible on the logarithmic plot as the first-order
leakage rate is 0.

for a transmon with anharmonicity δ/2π = −300 MHz. For
the DRAG-L pulse the first-order unitary leakage is 0.

C. Lindblad leakage models

In the open quantum systems framework CPTP maps are
generated by exponentiation of a Lindblad generator E =
et(H+D), where H and D are the generators of purely unitary
and purely dissipative evolution, respectively,

H(ρ) = − i[H,ρ], (69)

D(ρ) =
∑

k

γkAkρA
†
k − 1

2
{A†

kAk,ρ}. (70)

In a real experiment leakage will not generally be purely
dissipative or purely unitary, but a combination of both;
however, for calibration and gate optimization it is useful to
estimate the relative contributions from both the dissipative
and unitary parts individually. In practice, the dissipative
leakage contribution will be an always-on process that is due
to thermal relaxation or other incoherent interactions and is
typically beyond the experimenter’s direct control. The unitary
contribution, however, will typically be due to control errors
which may be optimized or interaction terms with neighboring
systems which may be decoupled via control. Estimation of
these two quantities may be achieved by considering a short-
time expansion ofE . This is useful, as for many commonly used
models of dissipation the leakage contributions from unitary
and dissipative processes are additive up to second order, which
we prove in the following proposition.

Lemma 2. Let E be a CPTP channel with Lindblad genera-
tors E = exp[�t(H + D)], where the dissipation operators Ak

are all raising or lowering operators

A±k =
∑

j

αj |j ± k〉〈j |.

To second order in �t we have that the leakage and seepage
rates for E are given by

Lj (E) = Lj (Euni) + Lj (Ediss), j = 1,2, (71)
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where Euni and Ediss are purely unitary and purely dissipative
CPTP maps generated by H and D respectively.

See Appendix E for a proof.
One could use Lemma 2 as a coarse way to estimate the

contribution of a unitary leakage error from a LRB experiment
in the presence of an always-on thermal leakage error which
can generally have the relevant dissipation parameters mea-
sured independently. If we return to the LRB simulation in
Sec. IV, for example, dissipative effects were due to thermal
T1 relaxation. Using estimated values for T1 and the average
photon number of the system, we may compute the theoret-
ical dissipative contribution under an appropriate relaxation
model and subtract them from the LRB error estimates to
obtain coarse estimates for the unitary contribution. We now
give some explicit examples of phenomenological dissipation
models which may generate leakage.

1. Simple dissipative leakage

Consider the CPTP map generated by a purely dissipative
leakage model that couples a single state in the computational
subspace |1〉 with a single state in the leakage subspace |2〉.
In this case our Lindblad dissipator consists of two operator
terms

A21 = |2〉〈1|, A12 = |1〉〈2|, (72)

with corresponding rates γ1 and γ2. This first term generates
leakage from the |1〉 state to the |2〉 state at a rate γ1, while
the second term generates seepage from |2〉 to |1〉 at a rate γ2.
For this simple case the resulting error channel, given by the
superoperator inS(t) = etD, can be evaluated analytically. The
leakage and seepage rates for this map as a function of time
are given by

L1(E) = γ1

d1(γ1 + γ2)
(1 − e−t(γ1+γ2)), (73)

L2(E) = γ2

d2(γ1 + γ2)
(1 − e−t(γ1+γ2)). (74)

If we have an initial state ρ, then the state leakage as a function
of time is given by

L(ρ(t)) = L(ρ(0)) + γ1〈1|ρ|1〉 − γ2〈2|ρ|2〉
γ1 + γ2

[1 − e−t(γ1+γ2)].

(75)

We can also consider more general dissipation models; how-
ever, in order to compute the leakage rates in these cases we
will generally have to consider a short-time expansion of the
dissipative superoperator.

2. Thermal relaxation

Let us now consider a physically motivated example of
leakage due to thermal relaxation in a harmonic or weakly
anharmonic oscillator. In such a system thermal relaxation to
an equilibrium state is described by the Markovian photon-loss
dissipator [26]

Dc = γ↓D[a] + γ↑D[a†] (76)

= κ(1 + n)D[a] + κnD[a†], (77)

FIG. 6. Plot of leakage (solid lines) and seepage (dashed lines)
rates vs average photon number at thermal equilibrium for T1

relaxation of a qubit encoded in the two lowest energy levels of a
cavity. The leakage rate is much less than the seepage rate (L1 � L2)
across the plotted photon number range.

where we have defined the dissipation rate κ = γ↓ − γ↑ � 0
and the average photon number of the oscillator

n = γ↑
γ↓ − γ↑

. (78)

The state leakage of the cavity at thermal equilibrium is given
by

L(ρeq) =
(

γ↑
γ↓

)2

=
(

n

1 + n

)2

. (79)

If we consider the error channel for evolution over a time
�t such that κ�t � 1, then to second order we find that the
leakage and seepage rates are given by

L1(E) ≈ κn�t[1 − (3 + 4n)κ�t], (80)

L2(E) ≈ 2(1 + n)κ�t

d2
[1 + (1 − 4n)κ�t]. (81)

Hence in the low photon limit (n � 1) we have that L2(E) �
L1(E). This is illustrated in Fig. 6, where we plot the leakage
and seepage rates vs equilibrium photon number for n =
0−0.1 for values of κ�t = 10−4,10−3,10−2.

Note that for a true cavity d2 = ∞, so we must truncate
the dimension of the cavity to some reasonable number of
excitations. In the low-n limit we may truncate to a qutrit model
(d2 = 1). The rates shown in Fig. 6 are comparable to those
expected for a superconducting transmon qubit which typically
have average photon numbers in the range of n ≈ 10−2−10−1.

D. Multiple leakage subspaces

The leakage errors described in Sec. II report an average
rate for leakage between the computational subspace and
the entire leakage subspace. If the computational subspace
corresponds to a composite system, for example, an n-qubit
system, there may be several different leakage rates to different
levels in the leakage subspace corresponding to leakage of each
individual system or cross-system leakage across components.
For example, in superconducting qubit systems there may be
multiple different leakage rates due to frequency crowding in
the off-resonant leakage levels and crosstalk in system control
[2,30]. In such situations useful characterization may require
a more fine-grained approach.
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For composite systems the definitions for state leakage,
leakage rates, and seepage rates defined in Sec. II naturally
generalize to describe leakage to multiple leakage subspaces
by simply decomposing the leakage subspace into direct sum
subspaces

X2 = Y1 ⊕ · · · ⊕ Ym. (82)

Using this decomposition, we may define m different measures
of state leakage, leakage rates, and seepage rates which are
given by replacing the projector 12 with the projector 12Yj

onto
Yj in Eqs. (1) and (2),

LYj
(ρ) = Tr[1Yj

ρ], (83)

L1Yj
(E) = Tr

[
1Yj

E
(
11

d1

)]
, (84)

L2Yj
(E) = Tr

[
11E

(
1Yj

dYj

)]
, (85)

where dYj
is the dimension of Yj and j = 1, . . . ,m. The

definitions of the total state leakage, leakage rate, and seepage
rate in the full leakage subspace may be expressed in terms of
these multirate definitions as

L(ρ) =
m∑

j=1

LYj
(ρ), (86)

L1(E) =
m∑

j=1

L1Yj
(E), (87)

L2(E) =
m∑

j=1

d2j
L2Yj

(E). (88)

Let us consider a simple example of two-qubit leakage
where we define three leakage subspaces corresponding to only
the first qubit leaking, only the second qubit leaking, and both
qubits leaking. In this case our computational subspace is given
by the tensor product of the computational subspaces of each
of the qubits: 1X1 = 11 ⊗ 11. The leakage subspaces are then
given by

1Y1 = 12 ⊗ 11, (89)

1Y2 = 11 ⊗ 12, (90)

1Y3 = 12 ⊗ 12 (91)

and hence the full leakage subspace is X2 = 1 ⊗ 1 − X1.
In the most general case we could have that each of the Y1

corresponds to a one-dimensional subspace spanned by one of
the leakage basis states of X2. Note that under this assumption
we are ignoring direct interactions between individual leakage
subspaces; any interacting subspaces in this sense should be
considered as a single subspace. An important direction for
future research is to develop characterization methods for these
multiqubit system with multiple leakage subspaces.

VII. CONCLUSION

We have presented a framework for the quantification of
leakage errors, both coherent and incoherent, in quantum

systems and a method for characterizing the average properties
of leakage errors in a quantum gate set by leakage randomized
benchmarking. These tools provide a means for evaluation
of methods for suppressing and correcting leakage errors in
quantum systems.

An important point in characterizing leakage errors in
quantum gates is that two rates are required to specify average
leakage dynamics, the leakage rate out of the computational
subspace, and the seepage rate back into the computational
subspace. We illustrated this with several examples demon-
strating leakage mechanisms due to control errors and thermal
relaxation processes. Further, leakage rates themselves are
not necessarily predictive of the average performance of
quantum gates as specified by the average gate fidelity. This
is because leakage dynamics can induce logical errors within
the computational subspace. This has been well documented
and typically results in a phase error due to population briefly
spending time in an off-resonant leakage level before returning
to the computational subspace by the end of a control pulse.
This can be seen explicitly in our simulation of leakage
randomized benchmarking for a superconducting qubit where
we contrasted Gaussian control pulses with two types of DRAG
pulses designed to correct the phase error and to suppress
leakage rates and has also been studied in recent experimental
works [19,22].

The LRB protocol we presented provides a theoretical
justification for the technique first used in Ref. [19] and in
particular we find that the key assumption for the validity of
the decay model is that twirling the computational subspace
also acts to completely depolarize the leakage subspace. If
this assumption breaks down, then in the presence of coherent
leakage errors, such as those from unitary dynamics, non-
Markovian effects may manifest as oscillations in the LRB de-
cay curves about the ideal exponential model. In the case of the
simple example we considered, even though these oscillations
are quickly damped out by partial depolarization, they could
lead to an overestimate of the leakage and seepage rates of
the system.

While we focused on RB-based characterization methods
in the present article, we comment briefly on full tomographic
methods for gate characterization. Under the assumption that
one cannot directly measure leakage levels, one cannot fully
characterize average leakage dynamics by quantum process
tomography. This is because at best one can only reconstruct
the computational subspace channel component, which in the
presence of leakage is not a trace-preserving map. From this
channel component the leakage rate could in principle be
determined by the subnormalized trace of the reconstructed
channel, but it is not obvious how to estimate the seepage rates.
To estimate leakage and seepage in a tomographic setting one
would have to use a sequence of gates to amplify a leakage
decay model. This could be done using recent additions to the
gate-set tomography protocol which use germ sequences of
increasing length to amplify errors [29]. By combining gate-set
tomography with the depolarizing leakage extension channel
we developed in Sec. VI A 3 one could attempt to reconstruct
the effective channel on the computational subspace along
with the leakage and seepage rates in the case where gate-set
tomography seeds also act to implement a depolarizing channel
on the leakage subspace.
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APPENDIX A: DERIVATION OF THE LRB DECAY MODEL

Consider a leakage system with state space X = X1 ⊕ X2

and a unitary operator U1 ∈ L(X1) that acts on the computa-
tional subspace X1. To extend U1 to a unitary on L(X ) we may
add a unitary U2 ∈ L(X2) such that U12 ≡ U1 ⊕ U2 is unitary.
Ideally, up to a phase this target extension will be the identity
operator (U2 = 12), so that our intended interaction on X1 acts
trivially on X2.

LetU12 represent the quantum channel for unitary evolution
U12(ρ) ≡ U12ρU

†
12. The superoperator representation ofU12 in

the column-stacking convention is given by

SU12 = (U1 ⊕ U2)∗ ⊗ (U1 ⊕ U2) = SU1 + SU2 + Sδ12 ,

where the asterisk denotes complex conjugation, SU1 = (U ∗
1 ⊕

0) ⊗ (Uj ⊕ 0) is a unitary superoperator with support on
L(X1), and similarly for SU2 on L(X2), and

Sδ12 = (U1 ⊕ 0)∗ ⊗ (0 ⊕ U2) + (0 ⊕ U ∗
2 ) ⊗ (U1 ⊕ 0) (A1)

is a superoperator component which acts on the CLS defined
by the projector in Eq. (33). Let Ck be the noisy implementation
of the extension U12,k of the Clifford matrix U1,k on the
computational subspace

Ck = E ◦ U12,k, (A2)

SCk
= SE ◦ (

SU1,k
+ SU2,k

+ Sδ12,k

)
. (A3)

Assumption 1. Here we have assumed a zeroth-order ap-
proximation where the noise channel is gate independent.

As with the case of standard randomized benchmarking,
the decay model derived in this limit should be valid even for
slightly-gate-dependent noise [31,32],3 as was the case in our
simulations in Sec. IV and in experimental implementations in
Refs. [19,22].

Consider now the randomized benchmarking protocol of
choosing a sequence

im = Cm ◦ · · · ◦ C1

of m Clifford gates, where the order of composition is such
that C1 is applied to the system first. The m + 1 gate is chosen
to be the usual recovery operation

Cm+1 = E ◦ Rim ,

where on the computational subspace we have that the recovery
operator satisfies

R1,im = U†
1,1 ◦ · · · ◦ U†

1,m.

The full RB sequence is then given by i ′m = Cm+1 ◦ im.

3We note that consideration of gauge dependence in the fitted decay
parameters that may arise in gate-dependent noise is beyond the
scope of this work, though we expect one could address this using
an approach similar to [31].

The survival probability for an initial state ρ and measure-
ment of an operator M for a gate sequence i ′m are given by

P (1|i ′m M,ρ) = 〈〈
M|Si ′m |ρ〉〉 = Tr

[
M† Si ′m (ρ)

]
. (A4)

For a given length m sequence of Clifford gates, the target
decay model for randomized benchmarking is given by the
average of Eq. (A4) over all equal sequences i ′m:

P (1|m,M,ρ) ≡ Ei ′m [P (1|i ′m M,ρ)]

= 〈〈
M|Ei ′m

[
Si ′m

]|ρ〉〉
. (A5)

To evaluate Eq. (A5) we may express i ′m in terms of unitaries
V1,k = U†

1,1 · · · U †
1,k on the computational subspace so that

Si ′m = SE
(
SU†

1 ···U†
m

+ SU2,m+1 + Sδ12,m+1

)
×

m∏
k=1

[
SE

(
SU1,k

+ SU2,k
+ Sδ12,k

)]
= SE

(
SI1 + SU2,m+1 + Sδ12,m+1

)
×

m∏
k=1

[(
SV1,k

+ SI2 + SPC

)
SE

(
S†
V1,k

+ SU2,k
+ Sδ12,k

)]
.

(A6)

where I2 is the projector onto the leakage subspace and PC is
the projector into the coherent leakage subspace. Next we take
the expectation value over all sequences i ′m:

Ei ′m

[
Si ′m

] = SE
(
SI1 + Ei ′m

[
SU2,m+1

] + Ei ′m

[
Sδ12,m+1

])
× {

Ei ′m

[
SV1,k

SES†
V1,k

]
+ (

SI2 + SPC

)
SEEi ′m

[
S†
V1,k

+ SU2,k
+ Sδ12,k

]
+ Ei ′m

[
SV1,k

SESU2,k

] + Ei ′m

[
SV1,k

SESδ12,k

]}m
.

(A7)

Now, since the Clifford group {U1,k} is a unitary 2-design, we
make use of the twirling identity

Ei ′m

[
SV1,k

SES†
V1,k

] = W1(E), (A8)

where

W1(E) = μ1I1 + (1 − μ1)D1, (A9)

μ1 = d1F E11 − 1

d1 − 1
(A10)

is the twirling superchannel acting on the computational
subspace, I1 is the identity projector on the computational
subspace, and

D1(ρ) = Tr[11ρ]
11

d1
(A11)

is the completely depolarizing channel on the computational
subspace. Since the Clifford group is also a unitary 1-design,
we may also evaluate

Ei ′m

[
SV1,k

] = SD1 . (A12)
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To proceed further we formalize the two assumptions from the
main text.

Assumption 2. We assume that averaging over sequences
averages out the coherences between the computation and
leakage subspace.

Formally, this is the requirement that

Ei ′m

[
Sδ12,k

] = 0, Ei ′m

[
SV1,k

SESδ12,k

] = 0. (A13)

Assumption 3. We assume that averaging over Clifford
sequences depolarizes the leakage subspace.

Formally, this is the requirement that

Ei ′m

[
SU2,k

] = SD2 , Ei ′m

[
SV1,k

SESU2,k

] = SD1SESD2 , (A14)

whereD2 is the completely depolarizing channel on the leakage
subspace.

To ensure that Assumption 2 is satisfied we can consider
averaging over a local phase on one of the subspaces as was
used in previous work [18,23,24]. If one can implement the
superoperator for U−12 = −U1 + U2 with a negative local
phase on U1 (or equivalently on U2), then the average of the
two superoperators is given by

SU12
≡ 1

2

(
SU12 + SU−12

) = SU1 + SU2 . (A15)

We note that it may be difficult to experimentally implement
this local phase difference without control of the leakage sub-
space; however, in practice it appears to make little difference
for weak leakage rates demonstrated in Refs. [19,22]. For
Assumption 3 we note that this is trivially satisfied if the
leakage subspace is one dimensional, as in this case U2,k =
e−φk12, and hence SU2,k

= SI2 = SD2 .
Under Assumptions 2 and 3 we have that average superop-

erator in Eq. (A7) evaluates to

Ei ′m

[
Si ′m

]
= SE

[
SW1(E) + SD1SESD2 + SD1SESD2 + SD2SESD2

]m

= SESm
ED

, (A16)

where ED is given by

ED = (1 − L1)(μ1I1 + (1 − μ1)D1) + L1D21

+ L2D12 + (1 − L2)D2, (A17)

where L1 and L2 are the leakage and seepage rates of E ,
respectively, and we have defined completely depolarizing
channels between the computational and leakage subspace

Dij (ρ) = Tr[1j ρ]
1i

di

, i,j = 1,2. (A18)

To compute Sm
ED

we let Aj/
√

d1 : j = 0, . . . ,d1 − 1 be an
orthonormal operator basis for L(X1), with A0 = 11. In the
qubit case this could be the Pauli basis {11,X,Y,Z}/√2, for
example. The superoperator representations of the identity and
completely depolarizing channels may be expressed in this
basis as

SI1 =
d1−1∑
j=0

1

d1
|Aj 〉〉〈〈Aj |, SD1 = 1

d1
|A0〉〉〈〈A0|.

Hence Eq. (A17) may be written as Em
D = Em

L + Em
F , where

EF = (1 − L1)μ1(I1 − D1),

EL = (1 − L1)D11 + L1D21 + L2D12 + (1 − L2)D22

and we have used the fact that Tr[S†
EL
SEF

] = 0 to expand (EL +
EF )m = Em

L + Em
F .

Since the operators Dij are mutually orthogonal, we can
compute the exponential of the superoperator for EL as a 2 × 2
matrix

Sm
EL

=
(

1 − L1 L1

L2 1 − L2

)m

= 1

L1 + L2

(
L2 L1

L2 L1

)
+ (1 − L1 − L2)m

L1 + L2

(
L1 −L1

−L2 L2

)

and hence for an initial state ρ with L(ρ) = pl we have

Sm
EL

(ρ) =
(

L2

L1 + L2

)
11

d1
+

(
L1

L1 + L2

)
12

d2

+
(

L1

L1 + L2
− pl

)
(1 − L1 − L2)m

(
11

d1
− 12

d2

)
.

(A19)

For the EF component we simply have

Em
F = (1 − L1)mμm

1 (I − D) (A20)

and hence

Em
F (ρ) = (1 − L1)mμm

1 (1 − pl)

(
ρ1 − 11

d1

)
, (A21)

where ρ1 is defined by the projection onto the computational
subspace I1(ρ) = (1 − pl)ρ1.

Next, using the survival probability in Eq. (A5), we consider
outcomes for a set of measurements {Mj } that ideally form a
PVM on the computational subspace (Mj = |j 〉〈j |). Using the
expressions in Eqs. (A19) and (A21), we have

P (1|,m,Mj ,ρ) = Aj + Bjλ
m
1 + Cjλ

m
2 , (A22)

where

λ1 = 1 − L1 − L2, (A23)

λ2 = (1 − p1)μ1, (A24)

Aj = 1

L1 + L2
Tr

[
M

†
jE

(
L2

11

d1
+ L1

12

d2

)]
, (A25)

Bj =
(

L1

L1 + L2
− pl

)
Tr

[
M

†
jE

(
11

d1
− 12

d2

)]
, (A26)

Cj = (1 − pl) Tr

[
M

†
jE

(
ρ1 − 11

d1

)]
. (A27)

By setting M0 = ρ1 as the ideal by measurement this gives the
RB fidelity decay model for j = 0.

For the leakage model we must sum over the survival
probabilities for the set of PVM measurements {Mj }. To allow
for leakage in our measurement we assume a measurement
leakage model given by∑

j

Mj = (1 − q1)11 + q212, (A28)

where q1 and q2 are the measurement leakage and seepage
rates. Using this model for measurement leakage, we have
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∑
j Cj = 0 and hence the summed decay model is given by

P (1|,m,11,ρ) = A + Bλm
1 , (A29)

where

A = L2

L1 + L2
+ L1q2 − L2q1

L1 + L2
, (A30)

B = L1

L1 + L2
− L1(q1 + q2)

L1 + L2
− pl(1 − q1 − q2). (A31)

Let us define two error terms

εM = q1 + pl(1 − q1 − q2), (A32)

εQ = L1q2 − L2q1. (A33)

Then we may rewrite A and B as

A = L2 + εQ

L1 + L2
, B = L1 − εQ

L1 + L2
− εM. (A34)

Hence our estimates of L1 and L2 as computed from A and B

are given by

Lest
1 (A) = (1 − A)(1 − λ1) = L1 − εQ,

Lest
2 (A) = A(1 − λ1) = L2 + εQ,

Lest
1 (B) = B(1 − λ1) = L1 − εQ − εM (L1 + L2),

Lest
2 (B) = (1 − B)(1 − λ1) = L2 + εQ + εM (L1 + L2).

Hence the variance due to using the approximate model is less
using A than B and is given by

Var
(
Lest

j

) = ε2
Q.

APPENDIX B: PROOF OF PROPOSITION 1

Consider the spectral decomposition of a state ρ =∑
a λa|�a〉〈�a|. We can decompose each eigenstate |�a〉 as

|�a〉 =
√

1 − pa|ψ1,a〉 + √
pa|ψ2,a〉,

where 0 � pa � 1 is the leakage of the state |�a〉. The leakage
of ρ is then given by pl = L(ρ) = ∑

a λapa and the projection
onto the CLS is

PC(ρ) =
∑

a

λa

√
pa(1 − pa)(|ψ1,a〉〈ψ2,a| + |ψ2,a〉〈ψ1,a|).

Using the triangle inequality, we have that the trace norm of
PC(ρ) is upper bounded by

‖PC(ρ)‖1

�
∑

a

λa

√
pa(1 − pa)‖|ψ1,a〉〈ψ2,a| + |ψ2,a〉〈ψ1,a|‖1

�
∑

a

2λa

√
pa(1 − pa).

Now, by the concavity of f (x) = √
x we have∑

a

2λa

√
pa(1 − pa) � 2

√∑
a

λa pa(1 − pa)

= 2

√
pl −

∑
a

λap2
a

and by convexity of g(x) = x2 we have

∑
a

λap
2
a �

(∑
a

λapa

)2

= p2
l , (B1)

hence

2

√
pl −

∑
a

λap2
a � 2

√
pl(1 − pl) (B2)

and so ‖PC(ρ)‖1 is upper bounded by 2
√

pl(1 − pl). �

APPENDIX C: PROOF OF PROPOSITION 2

To bound the coherent leakage rate we start with the
coherence of leakage bound from Proposition 1 for the output
state E(|ψ1〉〈ψ1|),

CL1 (E) =
∫

dψ1‖PCE(|ψ1〉〈ψ1|)‖1 (C1)

� 2
∫

dψ1

√
pl(ψ1) − pl(ψ1)2, (C2)

where pl(ψ1) ≡ L(E(|ψ1〉〈ψ1|)). Next, by the concavity of
√

x

we have

CL1 (E) � 2

√∫
dψ1pl(ψ1) −

∫
dψ1pl(ψ1)2 (C3)

= 2

√
L1(E) −

∫
dψ1pl(ψ1)2. (C4)

For the remaining term we can rewrite it as

pl(ψ1)2 = Tr[11E(|ψ1〉〈ψ1|]2 (C5)

= Tr[12 ⊗ 12(E ⊗ E)(|ψ1〉〈ψ1|⊗2)]. (C6)

Using the result that the average over |ψ1〉〈ψ1|⊗n is given by∫
dψ1|ψ1〉〈ψ1|n = �sym

Tr[�sym]
, (C7)

where �sym is the projector on the symmetric subspace ofX⊗n
1 ,

we may then evaluate for the case n = 2 to obtain∫
dψ1|ψ1〉〈ψ1|⊗2 = 11 ⊗ 11 + USWAP1

d1(d1 + 1)
. (C8)

Let {Aj/
√

d1}, with A0 = 11, be an orthonormal operator basis
for L(X1). Then we may rewrite the SWAP unitary as

USWAP1 = 11 ⊗ 11

d1
+

d1−1∑
j=1

Aj ⊗ Aj

d1
(C9)

and so Eq. (C8) becomes∫
dψ1|ψ1〉〈ψ1|⊗2 = 11

d1
⊗ 11

d1
+

d1−1∑
j=1

Aj ⊗ Aj

d2
1 (d1 + 1)

. (C10)

Hence, by returning to Eq. (C6) we have∫
dψ1pl(ψ1)2 = L1(E)2 +

d1−1∑
j=1

Tr[12E(Aj )]2

d2
1 (d1 + 1)

� L1(E)2.
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Thus we obtain the result

CL1 (E) = 2

√
L1(E) −

∫
dψ1pl(ψ1)2 (C11)

� 2
√

L1(E)[1 − L1(E)]. (C12)

The result for seepage follows the same argument. �

APPENDIX D: PROOF OF LEMMA 1

Let E1 ∈ C(X1) be a CPTP map and EL be a DLE of E1. The
state leakage of an initial state ρ after m applications of EL is
given by

L
(
Em

L (ρ)
) = Tr

[
12Em

L (ρ)
] = Tr[ρ(E†

m)m(12)], (D1)

where the adjoint channel E†
L is given by

E†
L = (1 − L1)E†

1 + L1D12 + L2D21 + (1 − L2)D2. (D2)

Since E1 is trace preserving, the adjoint channel E†
1 is unital on

the computational subspace [E†
1(11) = 11] [25]. Hence, since

the initial input is 12,

E†
L(α11 + β12) = [(1 − L1)α + L1β]11

+ L1β + (1 − L2)β]12,

we can represent the superoperator for E†
L with respect to the

bases |11〉〉 and |12〉〉 as a 2 × 2 matrix

SE†
L

=
(

1 − L1 L1

L2 1 − L2

)
. (D3)

Hence we can compute the mth power of SEL
, obtaining

Sm

E†
L

= 1

L1 + L2

(
L2 L1

L2 L1

)

+ 1

L1 + L2

(
L1 −L1

−L2 L2

)
(1 − L1 − L2)m

and hence

Sm

E†
L

(12) =
(

L1

L1 + L2

)
1 − (1 − L1 − L2)m

L1 + L2
(L111 − L212).

Thus we have that

L
(
Em

L (ρ)
) =

(
L1

L1 + L2

)

−
(

L1 Tr[11ρ] − L2 Tr[12ρ]

L1 + L2

)
(1 − L1 − L2)m

= L1

L1 + L2
−

(
L1

L1 + L2
− pl

)
(1 − L1 − L2)m,

where pl = L(ρ). �

APPENDIX E: PROOF OF LEMMA 2

To prove the result of the second-order expansion of S =
e�t(H+D) we must show that the term

〈〈12|(DH + HD)|11〉〉 = 〈〈11|(DH + HD)|12〉〉 = 0. (E1)

Now 〈〈1i |HD|1j 〉〉 = ∑
k 〈〈1i |HD[Ak]|1j 〉〉, where we restrict

ourselves to k-photon ladder operators of the form

Ak =
∑

s

αs |s ± k〉〈s|. (E2)

Since A
†
kAk is diagonal we have that 1iA

†
kAk1j = 0. Further-

more, we have that

Ak1iA
†
k1j = |αs |2|s〉〈s| (E3)

for some s, and similarly for A
†
k1iAk1j . Using this and the

property that H is Hermitian, we have

Tr[Ak1jA
†
k1iH ] = |αs |2〈s|H |s〉 ∈ R. (E4)

Finally, expanding the original expression, we have

〈〈1i |HD[A]|1j 〉〉 = i Tr[A1jA
†1iH ] − i Tr[H1iA1jA

†]

= −2 Im Tr[A1jA
†1iH ]

= 0,

〈〈1i |D[A]H|1j 〉〉 = −〈〈1j |HD[A]†|1i〉〉
= −i Tr[A†1iA1jH ] + i Tr[H1jA

†1iA]

= 2 Im Tr[A†1iA1jH ]

= 0.

�
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