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Reference system and not completely positive open quantum dynamics
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Open quantum dynamics in a tripartite scenario including a system, its environment, and a passive reference
is shown to resolve several open questions regarding not completely positive (NCP) dynamical maps as valid
descriptions of open quantum evolution. The steering states of the system and the environment with respect to the
reference, reduced down to a dense, compact set of states of the system alone, provide a well-defined domain of
action for a bonafide dynamical map describing the open evolution of the system. The map is not restricted to being
completely positive but it preserves the positivity of all states in its domain. NCP open dynamics corresponding
to different initial configurations of the tripartite system are explored.
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I. INTRODUCTION

Information delocalized across multiple, identifiable, sub-
systems is a feature of quantum mechanics that leads to several
subtle effects in the open dynamics of the individual subsys-
tems. It seems increasingly clear that the flow of information
may be just as important as the flow of matter, energy, and
momentum in determining the dynamics of a quantum system
evolving in contact with a quantum environment [1–3]. Such
dynamics with low-dimensional quantum systems evolving in
contact with a micro- or mesoscopic environment having quan-
tum features can be a theoretical as well as experimental testbed
for the interplay between information flows and mechanics. In
this paper we consider the connection between information
flows and the nature as well as domain of action of dynamical
maps that describe finite time open evolution of a quantum
system. We see that information that may lie delocalized across
the system, its environment, and the rest of the universe prior
to the start of the particular open dynamics of the system that
is of interest can have a bearing on the nature of the observed
dynamics.

While the time evolved state of an isolated quantum system
is given by a unitary transformation acting on its initial state,
the corresponding transformation for an open quantum system
is described by a dynamical map [4] defined from the set of
density matrices to itself. The map has to be trace preserving,
Hermiticity preserving, and its action should be positivity
preserving on the set of states it is defined on. However, a
stronger condition of complete positivity [5] is often proposed
as being required of the map [6–9]. The most widely accepted
argument for complete positivity of the map involves the
introduction of an arbitrary “blind” and “dead” reference or
witness system [10] which does not interact with the system of
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interest when it is evolving in contact with its environment. A
dynamical map acting on the system can potentially transform
the density matrices corresponding to certain joint states of the
system and the reference into matrices that are not positive
if the map is not completely positive (CP). This potential
pitfall is taken as one of the reasons to assert that reduced
dynamics of the system should be described in terms of CP
maps exclusively. If the initial state of the system S and its
environment E is a product state of the form ρS ⊗ ηE , where
ηE is a fixed state of E, the reduced dynamics induced by
the joint unitary evolution of S and E is CP. In the presence of
initial system-environment correlations, the reduced dynamics
is however not necessarily CP [11–15]. Is complete positivity
really required and, if so, what kind of initial correlations
between the system and environment, in general, guarantee
CP reduced dynamics? A complete answer to this question is
still not forthcoming [16–20].

By considering the role of the reference system R in
greater detail and by using an information theoretic framework
involving a tripartite approach in place of the usual bipartite
one allowed Buscemi [21] to identify a more general set of
conditions under which the reduced dynamics is CP as well as
to define the domain of action of such a CP dynamical map.
In [21], the observation that not completely positive (NCP)
reduced dynamics may lead to violation of (classical) data and
energy processing principles [22–27] is leveraged to recover
CP dynamics by assuming that the quantum data processing
inequality (DPI) always holds. When the initial tripartite state
of R, S, and E, denoted as ρRSE , constitutes a short Markov
chain with I (R : E|S) = 0 the reduced dynamics on S is
always CP and the dynamics does not violate the quantum DPI.
Here I (R : E|S) is the quantum mutual information between
R and E conditioned on S with

I (A : B) ≡ S(ρA) + S(ρB ) − S(ρAB),

and S(ρ) = −tr(ρ log2ρ). The quantum mutual informa-
tion quantifies all the correlations including the delocalized
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quantum information shared across the two systems. When
I (R : E|S) = 0 the reduced dynamics on S induced by arbi-
trary unitary dynamics of the SE subsystem is always CP and
the dynamics does not violate the quantum DPI. The quantum
DPI is the condition

I (R : S) � I (R : S ′),

where I (R : S) is the quantum mutual information between
R and S before the open evolution of S in contact with E

and I (R : S ′) is the mutual information after. The domain
of action of the CP dynamical map is the reduced steering
set of S obtained by tracing out E from the set of steering
states of SE due to R [28,29].

The assumptions that the initial tripartite state forms a short
Markov chain and that the quantum DPI is satisfied by the
dynamics are not physically mandated or motivated. Relaxing
them puts into context several of the recent works attempting
to understand the role of initial correlations between S and E

in open system dynamics [11–20,30]. The key observation is
that the reduced set of steering states of S projected down
from the tripartite RSE system provides the natural set on
which the open dynamics is to be considered when it is NCP.
By bringing in the idea of quantum steering ellipsoids [31]
we are able to build on the results presented in [21] that
focuses on the conditions under which CP dynamics arises.
Even if the assumptions that lead to CP dynamics in [21] are
relaxed we show that a valid dynamical map still exists, thereby
successfully addressing a long-standing question that was first
highlighted in [13]. We also give a constructive procedure
for identifying the domain of action of such maps. By going
beyond the traditional confines of CP reduced dynamics we are
able to see the role of delocalized quantum information shared
between the three systems not only in producing NCP reduced
dynamics but also in giving a natural explanation and domain
of action for it.

The remainder of this paper is structured as follows. In the
next section we give a general proof of our main result. In
Sec. III we discuss our result putting it in context with respect
to previous attempts to understand NCP open dynamics. Ex-
amples are numerically investigated in the subsequent section
and our main findings are summarized in Sec. V.

II. DOMAIN OF DEFINITION OF NCP REDUCED
DYNAMICS

The set of system-environment states that can be steered
from a given joint state ρRSE is given by

SSE(ρRSE) :=
{

TrR[(PR ⊗ 1S ⊗ 1E)ρRSE]

Tr[(PR ⊗ 1S ⊗ 1E)ρRSE]

}
, (1)

where PR ∈ L+(HR) is the set of all positive semidefinite
linear operators acting on HR , the Hilbert space of R. The
set in Eq. (1) represents all the states of the SE subsystem that
are obtained from a single tripartite state ρRSE by the action of
all possible positive semidefinite operators PR on R followed
by tracing out of the reference system. This represents the set
into which the SE system can be steered by operations on
R alone [28,29]. Let R, S, and E be quantum systems with
finite-dimensional Hilbert spaces of dimensions NR , NS , and
NE , respectively. The N2

J − 1 generators of the special unitary

group in NJ dimensions, SU(NJ ), along with the identity
matrix in NJ dimensions form an operator basis in terms of
which any complexNJ × NJ matrix can be expanded. We label
the traceless generators of SU(NJ ) as F i

J , where J = R, S, or
E. The generators satisfy the commutation relations,[

Fa
J , F b

J

] = if abc
J F c

J , a,b,c = 1,2, . . . ,N2
J − 1,

where f abc
J are the structure constants of SU(NJ ) which, in

turn, are completely antisymmetric with respect to exchange
of indices. We choose the normalization of the generators so
that (

Fa
J

)2 = 1J ,

where 1J is the NJ × NJ unit matrix. In terms of the generators
of SU(NJ ) we can write ρRSE as

ρRSE = 1

NRNSNE

(
1R ⊗ 1S ⊗ 1E

+ aiF
i
R ⊗ 1S ⊗ 1E + ej1R ⊗ F

j

S ⊗ 1E

+ enS+k1R ⊗ 1S ⊗ Fk
E

+ enS+nE+nS (j−1)+k1R ⊗ F
j

S ⊗ Fk
E

+ Tj,iF
i
R ⊗ F

j

S ⊗ 1E + TnS+k,iF
i
R ⊗ 1S ⊗ Fk

E

+ TnS+nE+nS (j−1)+k,iF
i
R ⊗ F

j

S ⊗ Fk
E

)
, (2)

where nJ ≡ N2
J − 1. Here i = 1, . . . ,nR , j = 1, . . . ,nS , and

k = 1, . . . ,nE . All the parameters defining the state can be
packaged into a matrix as

� =
(

1 �aT

�e T

)
, (3)

where � has (nS + 1)(nE + 1) rows and nR + 1 columns. We
can write an arbitrary positive operator on R as

Ê = XμF
μ

R ,

with X2
0 � ∑

i X
2
i , X0 > 0, and the greek index μ taking on

values 0,1, . . . ,nR with F 0
R ≡ 1R . Using the fact that F i

R are
traceless matrices squaring to the identity operator, we see that
the steering state of SE corresponding to the application of Ê

on R is then given by the vector �eX = �X as

ρX
SE = TrR(ÊρRSE)

= 1

NSNE

(
eX

0 1S ⊗ 1E + eX
j F

j

S ⊗ 1E + eX
nS+k1S ⊗ Fk

E

+ eX
nS+nE+nS (j−1)+kF

j

S ⊗ Fk
E

)
. (4)

with

eX
j = ej + Tj,iXi = �j,μXμ,

eX
nS+k = enS+k + TnS+k,iXi = �nS+k,μXμ,

eX
nS+nE+nS (j−1)+k = enS+nE+nS (j−1)+k+TnS+nE+nS (j−1)+k,iXi

= �nS+nE+nS (j−1)+k,μXμ. (5)

Normalizing the SE reduced state and considering SLOCC
(stochastic local operations and classical communications)
transformations on R that do not change the steering set on
SE lets us set �a = 0 and X0 = 1 giving eX

0 = 1 as shown in
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[31]. The reduced steering set of S obtained by tracing out E

from ρX
SE has states of the form

ρX
S = 1

NS

(
1S + �j,μXμF

j

S

)
. (6)

The joint unitary evolution of S and E is represented in
terms of its action on the operator basis furnished by the
tensor products of SU(NJ ) generators (including F 0

S ≡ 1S and
F 0

E ≡ 1E) corresponding to each subsystem as

UF
ζ

S ⊗ F
η

EU † = u
ζη

αβF α
S ⊗ F

β

E ,

where ζ,α, = 0, . . . ,nS and η,β, = 0, . . . ,nE . The unitarity
condition U †U = UU † = 1 means that

u
αβ

00 = u00
αβ = δα0δβ0.

On application of the unitary, states in the steering set of SE

are transformed to

ρ̃X
SE = 1

4

(
1S ⊗ 1E + eX

j u
j0
lβ F l

S ⊗ F
β

E + eX
j u

j0
0m1S ⊗ Fm

E

+ eX
nS+ku

0k
αmFα

S ⊗ Fm
E + eX

nS+ku
0k
l0 F l

S ⊗ 1E

+ eX
nS+nE+nS (j−1)+ku

jk

0m1S ⊗ Fm
E

+ eX
nS+nE+nS (j−1)+ku

jk

l0 F l
S ⊗ 1E

+ eX
nS+nE+nS (j−1)+ku

jk

lmF l
S ⊗ Fm

E

)
,

with j,l = 1, . . . ,nS and k,m = 1, . . . ,nE . Tracing out E from
the state above (keeping only the terms with 1E = F 0

E), we
obtain the states in the reduced steering set of S as

ρ̃X
S = 1

2

[
1S + (

eX
l ul0

j0 + eX
nS+ku

0k
j0

+ eX
nS+nE+nS (l−1)+ku

lk
j0

)
F

j

S

]
,

after exchanging the summed over indices j and l. Using
Eq. (5), we can write the coefficient of F

j

S in the above equation
as �̃j,μXμ, where

�̃j,μ = ul0
j0�l,μ + u0k

j0�nS+k,μ + ulk
j0�nS+nE+nS (l−1)+k,μ.

So we have

ρX
S → ρ̃X

S = 1
2

[
1S + �̃j,μXμF

j

S

]
. (7)

This is the central result of this paper. We can get an intuitive
understanding of Eq. (7) by noting that the projection operators
on R characterized by Xμ commute with U acting as 1R ⊗ USE

on ρRSE . So the transformation induced by U on each point of
the reduced steering set of S is independent of the particular
Xμ from which it came and the initial state of S in Eq. (6) is
connected to the final state in Eq. (7) by the transformation

�j,μ → �̃j,μ. (8)

The matrix �, as mentioned earlier, is a way of writing the
joint state of R, S, and E. It follows that Eq. (8) is essentially
the transformation of the tripartite RSE state due to the action
of 1R ⊗ USE . The action of the induced dynamical map on
S is then to transform each point in the reduced steering set
generated from the tripartite state � to the corresponding point
characterized by the same Xμ in the reduced steering set of �̃.
Both reduced steering sets are subsets of the set of all states of
S and significantly the one corresponding to the initial tripartite

state ρRSE is the domain on which the dynamical map induced
by unitary SE evolution is defined irrespective of whether the
map is CP or NCP.

III. ROLE OF THE REFERENCE SYSTEM

The main result contained in Eq. (7) is significant because
it answers a question that has lingered ever since NCP open
dynamics was considered as a possibility backed by experi-
mental evidence [13]. If the condition that the system and the
environment is initially in a product state of the form ρS ⊗ ρE ,
which is a necessary and sufficient condition for complete
positivity of the reduced dynamics of S, is relaxed, then is there
even a valid dynamical map that can be defined consistently?
For the description of open quantum dynamics in terms of a
map to be useful in any sense, it has to apply to a compact
and dense set of states of S. It should be possible to pick a
sufficient number of linearly independent states from this set to
do quantum process tomography [8,32,33] and reconstruct the
dynamical map. In the presence of initial correlations between
S and E it was not clear whether such a set of states exists.
Even if it did exist how would one define it?

In [11], it was shown that if the initial state of SE is an
entangled two qubit state, then the transformations on the
states of S induced by unitary evolution of SE is NCP in
general. However, starting from a particular initial state of SE

we obtain only the transformation of a particular state of S.
Such a transformation does not constitute a map but only a
“point transformation.” Such point transformations obtained
could be elevated to the status of a dynamical map acting
on a well-defined, dense subset of states of S because it was
positivity preserving on all states of S that were “consistent”
with the specification of the initial entanglement between S

and E irrespective of the choice of unitary evolution of SE. In
the present notation, this translates to the statement that once
the coefficients eX

nS+nE+nS (j−1)+k are fixed, then the coefficients
eX
j that define the reduced state of S cannot take all the possible

values such that
∑

j (eX
j )2 � 1, while still keeping ρX

SE positive.
It was precisely on this subset of states corresponding to
allowed values of eX

j —termed the “compatibility domain”—
that the transformation was positivity preserving and it could be
elevated to a dynamical map defined on this domain. However,
several open questions remained. For instance, it is possible to
choose eX

nS+nE+nS (j−1)+k such that eX
j would also be uniquely

fixed. In this case only a point transformation acting on a single
system state can be obtained and not a map.

Another serious conceptual issue that remained was that, for
every choice of eX

j consistent with some fixed eX
nS+nE+nS (j−1)+k ,

the coefficients determining the state of E, eX
nE+k can also

end up being automatically constrained. This would mean that
for each state of S in the domain of action of the map, the
corresponding initial state of the environment would have to
be chosen in a manner that depends on the state of S in order to
elevate a point transformation of interest to a map. There was no
clear justification for assuming that states of the environment
arise in a manner that depends on the system state just so that
an NCP dynamical map with a well-defined domain of action
would be observed in an experiment.
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Approaching the problem using steering states provides
a clear, elegant, and aesthetically pleasing resolution to the
question whether there can be a consistent mathematical
definition of NCP dynamics with an unambiguous physical
interpretation. An arbitrary unitary acting on any state in the
steering set of SE will induce a transformation that is positivity
preserving on the corresponding reduced steering set of S

obtained by tracing out E. Furthermore, a given unitary acting
on SE steering set will induce the same transformation on all
the states in the reduced set of S as can be seen from Eq. (8).
The set of states on which the transformation acts is dense and
compact, which means that the transformation can be treated
as a bonafide dynamical map with a well-defined domain.
Operationally this also means that one can reconstruct the map
from observing the transformation occurring to a sufficient,
finite number of linearly independent initial states of S and
using the techniques of quantum process tomography [8,32].
Since the steering set of SE from which the domain of action
of the maps follows is itself derived from a single state of
RSE, there is no longer any mystery in having the initial state
of the environment dependent on the state of S. The choice
of projection (Xμ) on R that does the steering determines
the states of both S and E together and associated with each
state of S there can be unique states of E. Where R remains
independent of both S and E in ρRSE , no steering is possible and
so no dynamical map is obtained. In a quantum tomography
setting such a scenario cannot arise since, at the very least, the
role of R is taken by the instrument or agency that initializes
the states of S as discussed below.

It is useful to imagine that R is a preparation device [30]
which, like any good “reference” system, by definition, does
not interact with S during the open dynamics of interest when
S and E are interacting. R necessarily interacts with S prior to
its open evolution but with respect to its interaction with E we
have the following four cases.

(1) R and E do not interact with each other at all at any
point in time.

(2) R does not interact with E prior to the preparation of
the initial state of S but subsequently while the joint evolution
of S and E is happening, R is interacting with E.

(3) R and E interact prior to the preparation of the initial
state of S but not afterward.

(4) R and E interact both before and after the preparation
of the initial state of S.

In all of the above four cases no assumption is made about
the initial state of the SE subsystem and the two could very
well be in an entangled state even after R has performed the
state preparation on S. In the first two cases, R, S, and E form
short Markov chains. Initially there is no delocalized quantum
information shared between R and E. However, in the second
case, the subsequent dynamics is not guaranteed to satisfy the
quantum DPI because the interaction between R and E during
the joint SE evolution can produce a flow of information from
R to S through E in those cases where R remains entangled
with S even after preparation. So it appears as though even if
the initial S, E state is a factorized state one may be able to
obtain NCP reduced dynamics for S. However, this is a false
positive since the joint effect of the SE interaction during the
dynamics of interest and the RE interaction is to generate a
coupling between S and RE. So, in this case, even if R and E

happen to be distinct physical systems, one of which interacts
with S only during the initial state preparation and the other
only after the initial state preparation, RE has to be treated as
the environment of S. Since S can have shared nonclassical
correlations with this composite environment at the point of
time when the initial state preparation is deemed to be done,
the subsequent dynamics can be NCP [11]. The role of the
true reference system will have to be played by the rest of the
universe in this case.

In case (3), the initial state of RSE does not necessarily
constitute a short Markov chain and so one expects the reduced
dynamics of S to be NCP. Indeed the joint effect of the RS and
RE interactions before and during the preparation of the initial
state of S typically puts SE in a state in which there are initial
shared nonclassical correlations between the two subsystems.
Case (4) is another false positive that needs to be discounted
because R again effectively becomes a part of the environment
of S during the open evolution and so we cannot treat it either
as a valid preparation device or as a good reference system.

TreatingR as the preparation devices lets us also see the kind
of results one should expect in a quantum process tomography
experiment. The initial SE state is of the form ρS ⊗ σE only
if R and S do not interact with E during the preparation. This
is possible only in case (1), once the false positive given by
case (2) wherein R is both preparation device and environment
is discounted. An alternate possibility is that E can be a
large “thermal” system on which interaction with R and S

have negligible effect. Even if the initial state is ρS ⊗ σE ,
the preparation device R has to be perfect and ideal for it to
initialize or steer S into any one of the states in its Hilbert space.
However, with an imperfect preparation device, one may still
get sufficient number of linearly independent initializations of
S to reconstruct a dynamical map which in turn will be CP.

A restricted version of case (3) is considered in [21] where
the preparation device can produce entangled initial states of
SE. However, at the end of the preparation procedure, R has no
residual correlations with E even if it has correlations with S

so that RSE forms a short Markov chain. The quantum DPI is
satisfied by the subsequent dynamics in case (3) because R and
E do not interact after preparation. The reduced dynamics is
CP in this case but its domain is limited to the reduced steering
set of S. Case (3) is more general in the sense that RSE need
not form a short Markov chain at the time of preparation of
the initial state of S. Our key result is that the NCP map or a
map that is not positive even that will be obtained through
process tomography involving such preparations still has a
valid interpretation and a well-defined domain of action. It
may be noted that case (3) is considered through an alternative
but relatively cumbersome approach in [30] using the language
of preparation maps.

When S is a single quantum system and when we are
concerned about its open dynamics over short time periods,
its immediate environment is more often than not in itself
microscopic or mesoscopic. The action of preparing an initial
state of S not affecting the state of E in any way is an
exceptional scenario in this case and in this sense so is CP
reduced dynamics of the system. It is more reasonable to
assume that right at the end of each preparation there is a
certain amount of quantum information delocalized across
S, E, and R, where R is effectively the quantum parts of
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the preparing device and I (R : E|S) �= 0. The device R, by
definition, plays no further part in the joint evolution of S

and E. Furthermore, in any particular realization of the open
dynamics, which, for instance, could be trials in a quantum
process tomography experiment, R is projected onto particular
states by those processes that put preparing devices in human
readable, classical states [34] and announce that a particular
preparation has been done. This last step puts the SE subsystem
into one of its steering states.

IV. THREE QUBIT EXAMPLES

Next we consider illustrative examples wherein R, S, and
E are qubits. The special case where R, S, and E are qubits
is obtained in a straightforward manner by replacing the
generators F i

J with σ i
J where the σ i’s are the Pauli spin

operators and replacing the structure constants, f abc
J , with the

Levi-Civita symbol εabc. The three qubit state ρRSE can then be
written in the form

ρRSE = 1
8

(
1R ⊗ 1S ⊗ 1E + aiσ

i
R ⊗ 1S ⊗ 1E

+ ej1R ⊗ σ
j

S ⊗ 1E + e3+k1R ⊗ 1S ⊗ σ k
E

+ e6+3(j−1)+k1R ⊗ σ
j

S ⊗ σ k
E

+ Tj,iσ
i
R ⊗ σ

j

S ⊗ 1k + T3+k,iσ
i
R ⊗ 1S ⊗ σ k

E

+ T6+3(j−1)+k,iσ
i
R ⊗ σ

j

S ⊗ σ k
E

)
, (9)

with i,j,k in this case running over the values 1,2,3. The
arbitrary positive operator on R can be written as Ê = Xμσ

μ

R

with X0 set to unity using the SLOCC freedom and 1 =
X2

0 � ∑3
i=1 X2

i . Here the greek indices run over the four
values 0, . . . ,3 with σ 0 ≡ 12×2. The steering state of SE

corresponding to the application of Ê on R is given by the
16 × 1 vector �eX = �X as

ρX
SE = 1

4

(
eX

0 1S ⊗ 1E + eX
j σ

j

S ⊗ 1E + eX
3+k1S ⊗ σ k

E

+ eX
6+3(j−1)+kσ

j

S ⊗ σ k
E

)
. (10)

The reduced steering set of S consists of the states

ρX
S = 1

2

[
1S + eX

j σ
j

S

]
, eX

j = �j,μXμ. (11)

Our main result in Eq. (7) tells us that joint evolution of the SE

system described by a unitary U leads to the reduced system
state,

ρ̃X
S = 1

2

[
1S + �̃j,μXμσ

j

S

]
, (12)

where

�̃j,μ = ul0
j0�l,μ + u0k

j0�3+k,μ + ulk
j0�6+3(l−1)+k,μ, (13)

with

Uσ
μ

S ⊗ σ ν
EU † = u

μ,ν
α,βσ α

S ⊗ σ
β

E .

A. Pairwise entangled initial state

We consider a particular case wherein ρRSE has RS and RE

entanglement. To generate such a state, we start from a three
qubit pure product state,

τRSE = |abc〉〈abc|,

FIG. 1. Reduced steering set of S obtained from that of SE

generated from a tripartite RSE state with RS and RE entanglements as
given by the concurrence values CRS = 0.3677, CRE = 0.1102, and
CSE = 0 is the ellipsoid (yellow) near the south pole of the Bloch
sphere. This is the set on which the NCP dynamical map induced
by unitary evolution of SE with VSE = exp[2i(σS

2 ⊗ σE
2 )] acts. Here

σJ
i are the Pauli spin operators acting on the J th qubit. The map

transforms the initial steering set to the larger (pink) ellipsoid.

a,b,c = 0,1 and apply two unitary transformations as

ρRSE = URE[URSτRSEU
†
RS]U †

RE.

The first operation produces RS entanglement and the second
one produces RE entanglement. However, the two operations
together can entangle SE also and so the state is passed through
a controlled entanglement breaking channel to remove this
entanglement. The state is brought to the canonical form in
which ρR = 1R/2 by the SLOCC operator (2ρR)−1/2 ⊗ 1SE .
Finally, a postselection on to states with the desired types of
entanglement is also done. The state ρRSE could still have resid-
ual nonclassical correlations (as quantified by, for instance, the
quantum discord) between S and E but no entanglement. Using
this procedure we generate a RSE state with pairwise entangle-
ment given by the concurrence values CRS = 0.3677, CRE =
0.1102, and CSE = 0. The � matrix corresponding to the
numerical density matrix ρRSE is generated and the first four
elements of the vector �eX = �X gives the reduced steering set
of S. This reduced steering set is shown in Fig. 1. Four linearly
independent initial states belonging to the reduced steering set
of S are generated by choosing the four linearly independent
values (1,0,0), (−1,0,0), (0,1,0), and (0,0,1) for �X noting that
the transformation that gives the corresponding state in the
reduced steering set of S is linear. The linear independence of
the four states obtained in the reduced steering set is verified
numerically to discount certain pathological scenarios.
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We now fix the SE dynamics to be one generated by a
Hamiltonian proportional to σS

2 ⊗ σE
2 and apply the unitary

1R ⊗ VSE , where VSE = exp[2i(σS
2 ⊗ σE

2 )] on ρRSE we get the
transformed state ρ̃RSE from which again the reduced steering
states of S can be obtained using the same procedure as above.
The transformed set of states corresponding to the action of a
unitary on the steering states of SE is also shown in Fig. 1.

The four transformed states corresponding to the initial
linearly independent set can easily be obtained and these initial
and final states allow us to find the 16 elements of the matrix
A in (ρ̃X

S )ij = Aij ;i ′j ′ (ρX
S )i ′j ′ by straightforward inspection.

Rearranging this matrix as Bii ′;j ′j = Aij ;i ′j ′ we obtain the
B-matrix form [4] of the dynamical map corresponding to
the open evolution of S. The reduced dynamics in B-matrix
form has eigenvalues (2.3838,0.2288, − 0.5704, − 0.0422)
with the negative eigenvalues indicating that the dynamical
map is NCP. This is also seen from Fig. 1 in that the map
transforms the reduced steering set of S to a larger set and is
not contractive in nature.

From this example we see that starting from a single state of
RSE we obtain a compact reduced steering set for S which gets
transformed to another such set that lies well within the state
space of S as a result of the possibly NCP reduced dynamics
generated by an arbitrarily chosen SE coupling. We have also
outlined how such a map may be obtained through a quantum
process tomography experiment that traces the evolution of a
sufficient number of linearly independent initial states of S.

B. Minimally parametrized initial RSE state

A unitary transformation of the form VSE = exp[iω(σ2 ⊗
σ2)] acting on the SE states of the type given in Eq. (10) induces
the following transformation on the Bloch vector components
of S:

eX
1 → eX

1 cos(2ω) − eX
14 sin(2ω),

eX
2 → eX

2 ,

eX
3 → eX

3 cos(2ω) + eX
8 sin(2ω).

Since the transformation depends only on eX
8 and eX

14 apart
from the Bloch vector components of S, we consider next a
minimally parametrized RSE state that produces a nontrivial
dynamical map by setting

e1 = e3 = P,

e5 = Q,

e8 = e14 = E,

T2,i = T5,i = T8,i = T14,i = T ,

and all other parameters in Eq. (9) equal to zero. Having E =
PQ ensures SE separability in ρRSE , while T2,i and T5,i ensure
that the initial state has nonclassical correlations in the RS

and RE subsystems. For this three parameter family of states
ρRSE(P,Q,T ) with

eX
8 = eX

14 = PQ + T (X1 + X2 + X3),

we can systematically study the interdependence of the Marko-
vianity of the initial tripartite state as quantified by I (R : E|S),
the degree of violation of the quantum DPI and the NCP nature
of the reduced dynamics. The degree of violation of DPI is

FIG. 2. Scatter plot of I (R : E|S), the DPI violation ν, and
the negativity of the dynamical matrix Bneg for the minimally
parametrized tripartite states ρRSE(P,Q,T ) corresponding to all al-
lowed values of P , Q, and T that keep the density matrix positive. In
the plot, the values of P , Q, and T range from −1 to 1 in steps of 0.025.
For each such ρRSE generated, the DPI violation ν is maximized over
the parameter ω of the unitary SE coupling VSE and the corresponding
Bneg is computed.

quantified by the difference between the mutual information
between R and S before and after the joint SE evolution under
VSE as ν = max(0,I (R : S ′) − I (R : S)) and the NCP nature
of the map is quantified by the negativity of the B matrix
defined as

Bneg =
∑

j

|λj | − 2,

where λj are the eigenvalues of the B matrix and its trace is 2.
In Fig. 2 a scatter plot of these three quantities for ρRSE(P,Q,T )
for all allowed values of B, C, and T is shown. For each such
initial state the parameter ω in VSE is chosen so as to maximize
ν. We see that the violation of the quantum DPI is more when
there is more delocalized information between R and E in
the initial system indicating that this shared information can
flow to S during the joint evolution of S and E. In all the
cases considered, the open evolution of S is NCP but the
negativity of the B matrix does not seem to have a definite
relationship to I (R : E|S) and ν at least for the set of unitary
transformations VSE considered. This is primarily because we
are considering only a restricted set of unitary transformations
on the SE system. The maximization of the DPI in this case is
only over ω and not over all possible unitary transformations
of the SE subsystem. The fixed choice for the type of unitary
transformation limits the scope of redistribution of the initial
delocalized information during the course of the dynamics.
The particular dynamics that brings maximum possible shared
information between R and E into S is not the one that has the
largest negativity of the reduced dynamics of S but it still is
NCP in nature.

C. Random initial RSE states

In our third numerical example, 70 000 initial ρRSE states are
generated with no SE entanglement using the same procedure
as with the first example. After applying a randomly generated
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FIG. 3. Scatter plot of I (R : E|S), the DPI violation ν, and the
negativity of the dynamical matrix Bneg for around 70 000 randomly
generated states ρRSE with no initial SE entanglement. The DPI
violation is maximized over 3000 random unitaries each.

SE unitary acting as 1R ⊗ VSE on ρRSE we compute the DPI
violation using the initial state and the transformed state ρ̃RSE .
We maximize the quantum DPI violation over 3000 instances
of randomly generated two qubit unitary matrices for each
randomly generated initial state. The B-matrix form of the map
corresponding to the unitary that gives the maximal violation of
the quantum DPI is computed and its negativity is calculated.
In Fig. 3 a scatter plot of I (R : E|S) of the initial state against
the maximal violation, ν of the quantum DPI, and the negativity
of the corresponding B matrix for the 70 000 trials is shown.
Here we see that ν is higher for higher values of I (R : E|S) in
the intitial state and Bneg is large when both I (R : E|S) and ν

have high values.
From Fig. 3 we see that, as the DPI violation increases and as

the initial mutual information between R and E increases, the
negativity of the B matrix also rises on an average. Generation
of the random initial states fails around 30% of the time
to produce a state with the desired kinds of nonclassical
correlations (only between RS and RE). The successful trials
also fail less than 1% of the time because they lead to a reduced
steering set in the Bloch sphere of states of S that is one or two
dimensional. In these cases, the strategy of reconstructing the
B matrix by taking four linearly independent projectors on
R to produce four linearly independent states in the reduced
steering set of S fails. These failed trials are characterized by
non-numerical or non-Hermitian B matrices based on which
such trials are weeded out. Reduced steering sets that are very
small also lead to numerical errors that typically lead to very
large (order of 102) values for Bneg. These are also removed by
limiting the range over which Bneg is plotted.

Sections of the scatter plot in Fig. 3 are given in Fig. 4.
Unlike in the second example, we see clear connections
between the three quantities I (R : E|S), Bneg, and ν. As before
the violation of the quantum DPI increases with increasing
I (R : E|S) of the initial state. The corresponding Bneg is also
seen to increase. From the last panel in Fig. 4 we see that larger
violations of the quantum DPI typically tend to generate NCP
dynamical maps with greater negativity. The numerical data
suggests lower and upper bounds on each of the quantities as

FIG. 4. Projections of the scatter plot given in Fig. 3 for around
70 000 randomly generated states showing the inter-relationships
between I (R : E|S), ν, and Bneg.

functions of the others. These bounds remain to be explored
analytically.

V. CONCLUSION

The reference system in the form of either a preparation
device or the rest of the universe is a ubiquitous and unavoid-
able element in the analysis of any quantum process tomog-
raphy experiment. Under only very specific conditions can
we completely ignore the effects of the delocalized quantum
information that can exist across the system, its environment,
and the reference. For discussing what could show up as a result
of a quantum process tomography experiment we limited R

to be the preparation device. Ideal preparation devices and/or
very large environments on which both R and S has negligible
effect can guarantee an initial product state of SE leading to
CP maps defined on the entire state space of S. The ideal
preparation device will allow one to initialize the system of
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interest in any desired initial state and in particular into a
complete linearly independent set of initial states on which
the effect of the environment can be studied. After interaction
with the large environment, state tomography on the final states
corresponding to the initial set would reveal a CP dynamical
map.

However, if the preparation device is nonideal in that it
cannot remove all initial correlations between S and E, then it
can initialize S only into a subset of available states. Sufficient
number of linearly independent initial states may still be
accessible to experimentally reconstruct a dynamical map,
which then is likely to be NCP but still positivity preserving
on the subset of states that can be prepared by R. Only in
those subset of cases where the initial imperfect preparation
in no way affects E do we get a CP dynamical map as in
[21] because RSE forms a short Markov chain. With recent
advances in the control and manipulation of single quantum
systems like, for instance, a single atom in a crystal or an ion
among few others, the immediate environment is also mostly
quantum in nature consisting of a few other atoms, photons, or
ions. In this case the nonideal classical preparation device is
more likely than not affecting E as well as S during the initial
preparation. In this case also sufficient number of linearly
independent initial states of S would be accessible to enable
quantum process tomography. However, as shown in our main
result the dynamical map reconstructed from the observations
is going to be NCP but with a very well-defined interpretation
and domain of action.

Accepting NCP maps as a bonafide description of open
system dynamics opens the door for a wider discussion on the
connections between CP versus NCP dynamics and Markovian
versus non-Markovian evolution. Recently proposed measures
of non-Markovianity [22,27,35,36] would allow one to explore
to what extent non-Markovian behavior follows from NCP
dynamics. Starting from the Kraus representation of a CP
dynamical map and assuming divisibility one can obtain
the Gorini-Kossakowski-Sudarshan-Lindblad master equation
[37,38] that gives a continuous description of the open dynam-
ics of the system of interest. An analogous master equation
with some crucial differences in the signs of various terms can
be obtained if one starts with an NCP map instead [39]. In

general, the dynamics generated by such master equations are
expected to be non-Markovian. Exploration of this connection
between non-Markovian dynamics and NCP maps, however,
goes much beyond the scope of this paper and is not included
here.

In the present paper, R, S, and E are limited to being finite-
dimensional quantum systems. Extension to cases where the
subsystems—in particular, R and E—are infinite dimensional
remains to be done. However, there are no assumptions made
in proving the main result that suggest that it may not be
applicable in the case where either E or R, or both, are quantum
systems with a continuum of levels. Prior to extending our
formal proof to such cases, we first have to extend the idea
of steering ellipsoids to those cases. Since doing so, in itself,
would form a substantial body of work, we leave it as work to
be done in the future. As far as finite-dimensional systems are
concerned, our main result is a statement about the nature of
the initial state of the system and the environment augmented
by the presence of a passive reference system. This means
that the open quantum dynamics obtained for each one of
the large number of models of SE interaction available in
the literature [1] can be recomputed by adding the reference
and considering interesting initial RSE states that are plausible
within the assumptions of the model to obtain the conditions
under which NCP dynamics will be observed. There are no
changes to the SE coupling and dynamics in the models since
R remains passive.

It may be noted that a careful analysis of reported quantum
tomography experiments like, for instance, Ref. [40] reveals
that often NCP maps are actually suggested by data but
the conceptual difficulties that existed previously regarding
interpreting such dynamics meant that the observed map was
approximated with a suitable CP dynamical map. The results
presented in this paper clear up all these conceptual and
technical difficulties regarding NCP dynamics.
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