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Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and
postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose
how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically
distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states.
Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for
arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation
number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark
effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled
cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show
how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to
be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.
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I. INTRODUCTION

It would seem impossible that the outcome of a measure-
ment of a quantum observable could yield an average that is
outside the eigenvalue range associated with the observable
spectra. Yet such a paradoxical situation was predicted by
Aharonov, Albert, and Vaidman in their paper entitled “How
the result of a measurement of a component of the spin of a spin
1/2 particle can turn out to be 100” [1]. The situation arises
for the outcomes of so-called weak measurements [1–15].
Weak measurements are measurements that couple weakly
to the quantum system being measured, so as to give a
minimal disturbance to that system. In their paper, Aharonov,
Albert, and Vaidman explained how one can perform a weak
measurement of the spin σz of a spin-1/2 particle and obtain a
result where the average 〈σz〉 exceeds 100.

The paradoxical measurement outcomes that lead to the
strange predictions are called quantum weak values [1–15].
Weak values arise as the outcomes of weak measurements on
systems prepared by preselection and postselection. The weak
values are created by the phenomenon of quantum interference
and have been used to interpret quantum mechanics in sce-
narios where quantum interference leads to counterintuitive
predictions [3,11,12,16]. The weak measurements and weak
values also have practical applications, for precision measure-
ments and in providing a means to monitor a quantum system
with a demonstrably minimal disturbance to that system [3].
For this reason, weak measurements have been used to test
Leggett and Garg’s form of macrorealism and microrealism in
experiments that show violation of Leggett-Garg inequalities
[3,7–15].

The topic of weak values has attracted much interest. The
experimental prediction of Aharonov, Albert, and Vaidman
has been realized at the level of a spin-1/2 system by Pryde
et al., who demonstrated weak values for a photonic qubit
[4]. Their weak measurement scheme involved a single photon
interacting with the photonic qubit in a process that created an

entangled state. The experiment detected weak values outside
the eigenvalue range for the spin σz defined by the polarization
of the photon.

Goggin et al. applied the weak measurement of Pryde et al.
in an experiment that demonstrated failure of the Leggett-
Garg premises for the microscopic photonic system [9]. The
Leggett-Garg premises are: first, that the system must be,
prior to any measurement, in one spin state or the other
(“up” or “down”); and, second, that a measurement can in
principle be performed on the system to determine which spin
state the system is in, without interfering with the subsequent
two-state spin dynamics [17]. The measurement perceived by
Leggett and Garg is called the noninvasive measurement. The
connection between quantum weak values and the violation
of Leggett-Garg inequalities was formalized by Ruskov et al.,
Jordan et al., and Williams and Jordan, who showed that if a
weak measurement is used as the noninvasive measurement,
then the violation of the inequalities is associated with the
appearance of weak values [7,8].

While there has been much progress and insight gained into
quantum mechanics using weak values, to date this has not
been fully extended to mesoscopic or macroscopic systems
[18,19]. Weak measurements have been used to probe quantum
states and to demonstrate violation of Leggett-Garg inequali-
ties in superconducting circuits [10,14]. Williams and Jordan
proposed the implementation of a weak measurement with
quantum weak values for solid-state qubits, that could be gen-
eralized to macroscopic superconducting systems based on the
assumption of a macroscopic qubit [8]. This was followed by an
experimental observation of weak values for a superconducting
circuit [6]. However, to our knowledge, there has been no
experimental report of quantum weak values for superposition
states involving even moderate numbers of photons or atoms.
The potential for weak values in mesoscopic atomic systems
was illustrated by Huang and Agarwal [20], who studied the
quantum interference arising from two close-lying atomic co-
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herent states, and showed how the phase shift due to the quan-
tum interference can be amplified using weak measurements.

In this paper, we consider a quantum weak-value gedanken
experiment that applies to NOON states, given as [21,22]

|NOON〉 = dN |N〉a|0〉b + d0|0〉a|N〉b. (1)

Here |N〉a and |N〉b are number states for two atomic or
photonic modes (that we denote by a and b) and d0 and dN

are probability amplitudes. We give a model for a quantum
measurement of the two-level spin of the two-mode quantum
system, the two-level spin being defined as Ŝz/N where Ŝz is
the two-mode Schwinger operator for the occupation number
difference between the two modes. The interaction due to the
measurement couples a meter system to the quantum system,
with a coupling strength γ , creating an entanglement between
the meter and quantum system [23,24]. For a Bose-Einstein
condensate (BEC), this can be realized as a nondestructive
phase contrast imaging measurement based on the ac Stark
effect [24]. In the limit of large γ , a final homodyne detection
would collapse the quantum system into a state of definite spin,
thus completing the von Neumann measurement process. For
weak coupling γ , this collapse does not take place and the
system is minimally disturbed by the measurement. For all γ ,
however, the average spin 〈Ŝz〉 can be correctly evaluated.

Similar to Ref. [8], we demonstrate weak values by consid-
ering a unitary evolution from a time t2 to a time t3 that rotates
the probability amplitudes associated with the NOON state,
while retaining the two-state nature of the system. The weak
values are obtained by postselecting the result for the measure-
ment at time t2, given a result at time t3. We show that the two-
state NOON unitary evolution can be realized to an excellent
approximation by the Hamiltonian used to model two trapped
Bose-Einstein condensates with a Josephson coupling, in cer-
tain parameter regimes that include nonlinear effects [25–32].
In fact, by solving the two-mode nonlinear Josephson Hamil-
tonian, we find that weak values are predicted over a range
of parameter values, including where the system is not the
ideal NOON state at time t3, but rather a superposition of two
mesoscopically distinguishable states with a range of outcomes
for Ŝz. This suggests an experimental realization to be feasible.

The proposed weak measurement opens a way to test
mesoscopic realism using weak values and NOON states. This
is because a measurement can be constructed for the system
at a time t2 that can be justified as noninvasive for the test of
the Leggett-Garg inequality. We give details of how one can
experimentally demonstrate the noninvasiveness of the weak
measurement, and give predictions for such an experiment,
confirming the connection between the observation of weak
values and the violation of the Leggett-Garg inequalities for
a macroscopic superposition. A preliminary description of
this proposal for a Leggett-Garg test of macrorealism and/or
mesorealism has been presented in Ref. [33].

The paper is organized as follows. In Secs. II and III we
give details of the model for the weak measurement of the
spin Ŝz/N . In Sec. IV we show how the weak values emerge
for the postselected spin at time t2. The Leggett-Garg test
of mesorealism and the Josephson Hamiltonian is explained
in Sec. V. In Sec. VI, we give predictions for weak values
and violation of Leggett-Garg inequalities using the Josephson
model in the nonideal case.

FIG. 1. Schematic of an experiment to detect weak values for
NOON states: A system is prepared in a NOON state at the time t2.
Here, the preparation involves N bosons in a mode a incident on a
nonlinear medium at time t1 as described in Secs. IV and V. A second
mode b is initially in a vacuum state. The nonlinear interaction is
modelled by the Hamiltonian HI given by Eq. (35). This interaction
is symbolized by the nonlinear beam splitter NLBS1, where θ denotes
the time of interaction t2 − t1 in scaled units (see main text). The spin
Si is defined to be +1 or −1 according to the sign of the mode number
difference at time ti . Once the NOON state is prepared by the first
nonlinear beam splitter, a weak measurement M of the spin S2 takes
place at time t2, as depicted by the purple shading. The measurement
interaction is described by the Hamiltonian HM given by Eq. (3). After
the measurement, the system evolves under the action of HI for a time
denoted φ (in scaled units), as symbolized by the second nonlinear
beam splitter NLBS2. Assuming a near-instantaneous measurement
M , the time φ is t3 − t2 in scaled units. After the second interaction,
a strong measurement of S3 takes place at time t3. Weak values are
observed when the value 〈S2〉S3=1 of the spin S2 conditional on the
result S3 = 1 exceeds the eigenvalue bounds given by |〈S2〉| � 1.

II. A NONDESTRUCTIVE MEASUREMENT OF SPIN

We consider a two-mode bosonic system. The boson cre-
ation and destruction operators for the modes are â†,â and b̂†,b̂
respectively and we will denote the modes by the symbolsa and
b. The operators Ĵ z = (â†â − b̂†b̂)/2, Ĵ x = (â†b̂ + b̂†â)/2,
Ĵ y = (â†b̂ − b̂†â)/2i, N̂ = â†â + b̂†b̂ are the Schwinger spin
operators (we take h̄ = 1). For convenience, we introduce the
population (number) difference operator Ŝz = 2ĴZ . Thus,

Ŝz = â†â − b̂†b̂ = n̂a − n̂b, (2)

where n̂a = â†â and n̂b = b̂†b̂. The objective is to give a
(noninvasive) measurement of the spin Ĵz (or Ŝz) of the two-
mode system. The two-mode system could be a Bose-Einstein
condensate (BEC) in a double-well potential [25–29,32], a
two-component BEC where each component is associated with
a distinct atomic level and a distinct mode [31], or a two-mode
photonic state [21]. In the weak-value gedanken experiment
that we discuss in Sec. III, a weak measurement is to be
performed at a time t2 (Fig. 1).

We consider the nondestructive measurement M of Ĵz =
Ŝz/2, described by the measurement Hamiltonian [23,24]

HM = h̄GŜzn̂c/2. (3)

The measurement is performed by coupling the two-mode
system to an optical field. The field is modelled as a single
mode with boson operator ĉ and number operator n̂c = ĉ†ĉ.
The optical “meter” field is prepared in a coherent state |γ 〉 and
coupled to the two-mode system for a time τ . The measurement
interaction is modelled by the Hamiltonian HM where G is the
coupling constant.

In this paper, we consider systems that are eigenstates of
the total number N̂ = â†â + b̂†b̂. We denote the total number
of bosons (atoms or photons) as N . Assuming a pure state,
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the general form of the two-mode state immediately prior to
measurement is

|ψ〉in =
N∑

m=0

dm|m〉a|N − m〉b, (4)

where dm are probability amplitudes. As a first step, we
consider how to measure 〈Ŝz〉 of this state. The output after
the measurement is given by

|ψ〉out = e−iHMτ/h̄
∑
m

dm|m〉a|N − m〉b|γ 〉c

=
N∑

m=0

dm|m〉a|N − m〉b|γ eiGτ (N−2m)〉c. (5)

The output state after a measurement interaction time τ =
π/2NG + 2πK where K is a nonnegative integer is therefore

|ψ〉out =
N∑

m=0

dm|m〉a|N − m〉b|γ eiπ(N−2m)/2N 〉c. (6)

Homodyne detection on the optical system enables measure-
ment of the meter quadrature phase amplitude p̂ = (ĉ − ĉ†)/i.
For γ large, the different values of Ŝz are measurable by
outcomes for p̂ and the two-mode system after the homodyne
measurement collapses to a state of definite Ŝz. This is the
limit of a strong, projective measurement. More generally, for
all values of γ , it can be shown based on the work by Ilo-Okeke
and Byrnes [24] that

〈Ŝz〉 = − 1

2γ
〈p̂〉. (7)

The average of p̂ gives the value for the average of the
Schwinger spin Ŝz of the incident two-mode state. This relation
is true for all values of γ including the limit where γ → 0,
called the weak measurement limit. A detailed analysis of the
measurement model as applied to a BEC system is given in
Ref. [24].

III. A WEAK MEASUREMENT ON NOON STATES

Our interest in this paper is where the incident state (4)
before the measurement M is a macroscopic or mesoscopic
superposition state. Specifically, we consider the case where
the two-mode system (4) is the ideal NOON state given by

|ψ〉in = d0|0〉a|N〉b + dN |N〉|0〉b. (8)

In this case, the outcome of the measurement Ŝz is either N

or −N . For later convenience, we suppose the measurement is
made on the system at the time t2, so that the state |ψ〉in before
the measurement is created at time t2 (Fig. 1). We define S2

to be the outcome of the normalized measurement Ŝ defined
as Ŝ = Ŝz/N at this time t2. More generally, we define the
measurement of Ŝ at time ti to be Ŝi and the corresponding
outcome to be Si .

Where the input state (4) prior to the measurement M is the
NOON state (8), the final state (6) after the measurement M

can be written

|ψ〉 = d0|0〉a|N〉b|iγ 〉c + dN |N〉a|0〉b| − iγ 〉c. (9)

This state describes an entanglement of the two-mode quantum
system with the meter field. The two outputs (the two-mode
state and the meter field) are next spatially separated, and a
measurement is then made of the quadrature p̂ = 1

i
(ĉ − ĉ†)

of the meter field. For γ large, the two different values ±N

for Ŝz (and hence of S2) are measurable by the different
sign of the outcomes for p̂. The two-mode system after
the homodyne measurement collapses to a state of definite
Ŝz, either the eigenstate |N〉a|0〉b with eigenvalue N or the
eigenstate |0〉a|N〉b with eigenvalue −N .

A measurement of the meter quadrature p̂ thus yields a
measurement of the spin S2. We can evaluate 〈p̂〉 directly from
(9) to give the relationship

〈p̂〉 = 2γ (|d0|2 − |dN |2)

= −2γ 〈S2〉. (10)

Details are given in the Appendixes. Here we have used 〈S2〉 =
|dN |2 − |d0|2, which is the expectation value of S2 for the initial
two-mode state (8). We see that 〈S2〉 = − 1

2γ
〈p̂〉 consistent with

the general result (7) given in Ref. [24]. The average of p̂ will
give the value for the average of the Schwinger spin of the
incident two-mode state.

We suppose as in Fig. 1 that the measurement M takes place
at a time t2. The time t1 is reserved for earlier events that lead to
the preparation of the NOON state at time t2. We next consider
that the two-mode state evolves for a time t under an interaction
Hamiltonian HI , and that a projective measurement is made at
the later time t3. The Hamiltonian is unspecified at this stage,
except that it conserves the total particle number N . We will
consider that the measurement time τ is small compared to
the later evolution time t , so that we take t = t3 − t2. Under
the evolution due to HI , the output state (6) [or (9)] produced
immediately after the measurement at time t2 evolves to a new
state at the time t3. The Hamiltonian HI is such that the two-
mode state |m〉a|N − m〉b evolves to the state given by∑

n

c(m)
n |n〉a|N − n〉b, (11)

where c(m)
n are probability amplitude constants. The final output

state including the meter field is

|ψ(t3)〉 =
∑
m

dm|γ eiπ(N−2m)/2N 〉c
∑

n

c(m)
n |n〉a|N − n〉b.

(12)

An experimentalist can measure S3 at the final time t3. The
experimentalist can also measure the outcome p of the mea-
surement p̂ of the meter field, and obtain the correlation 〈pS3〉.
We next evaluate 〈pS3〉 and compare with 〈S2S3〉.

In this section, we take the case where just prior to the
measurement at time t2 the two-mode system is in the NOON
state (8). At time t3, after measurement and after the subsequent
evolution, the overall state is given by Eq. (12) which we
simplify as

|ψ(t3)〉 = d0|γ e+iπ/2〉c
∑

n

c(0)
n |n〉a|N − n〉b

+ dN |γ e−iπ/2〉c
∑

n

c(N)
n |n〉a|N − n〉b. (13)
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We evaluate 〈pS3〉 = 〈ψ(t3)|pS3|ψ(t3)〉. Using that

〈S2S3〉 = |dN |2
(

−
∑

n<N/2

∣∣c(N)
n

∣∣2 +
∑

n>N/2

∣∣c(N)
n

∣∣2
)

− |d0|2
(

−
∑

n<N/2

∣∣c(0)
n

∣∣2 +
∑

n>N/2

∣∣c(0)
n

∣∣2
)

(14)

we find

〈S2S3〉 = − 1

2γ
〈pS3〉. (15)

Details of the calculation are given in the Appendixes. In
summary, if immediately prior to measurement at time t2 the
two-mode system is in the generalized NOON state (8), then
we have confirmed the relation (15). This relation is true for
all values of the measurement coupling strength γ . The weak
measurement result where γ → 0 gives the same average as
the strong (projective) measurement result (large γ ).

The expression (15) enables a weak measurement strategy
to be employed for a Leggett-Garg test of macroscopic or meso-
scopic realism. The measurement M at time t2 is made with
a very small γ . The measurement can then be demonstrated
to be noninvasive in the limit of γ → 0. The average 〈pS3〉
can be determined accurately by measuring over many trials,
to give an accurate value for 〈S2S3〉 that can be used to test the
LG inequality. This approach was used in the experiment of
Goggin et al., for N = 1 [9].

IV. WEAK VALUES

Continuing with the case where we make a weak measure-
ment at time t2 on a NOON state (8), we now show how weak
values emerge from the weak measurement (Fig. 1). In the case
where the system is in a NOON state, the possible values ofSi at
time ti are +1 and −1. Where the values of Ŝz may be different
to ±N at time t3, as is the case for nonideal states examined in
Sec. VI, we define the binned measurement S̃3 made at time t3
to be +1 if the outcome Sz of Ŝz satisfies Sz � 0, and −1 if Sz <

0. To realize quantum weak values, we will evaluate the mean
value for S2, given that the result +1 is detected for the postse-
lected measurement of S̃3. Weak values are observed when the
value 〈S2〉S̃3=1 of the spin S2 conditional on the postselected
result S̃3 = 1 exceeds the eigenvalue bounds given by |〈S2〉| �
1. Although we do not adopt the convention here, to emphasize
that the weak value is obtained by conditioning on the postse-
lected result, we point out that the notation 1〈S2〉 is often used.

At time t3, after the weak measurement and after the
subsequent evolution, the state is given by Eq. (12). We expand
into a superposition of states giving a positive value of S̃3 and
states giving a negative value of S̃3:

|ψ(t3)〉 = d0|γ e+iπ/2〉c
∑

n�N/2

c(0)
n |n〉a|N − n〉b

+ dN |γ e−iπ/2〉c
∑

n�N/2

c(N)
n |n〉a|N − n〉b

+ d0|γ e+iπ/2〉c
∑

n<N/2

c(0)
n |n〉a|N − n〉b

+ dN |γ e−iπ/2〉c
∑

n<N/2

c(N)
n |n〉a|N − n〉b. (16)

Here we have allowed that a state more general than a NOON
state may be generated at time t3. An experimentalist can
measure S3 at the final time t3 and postselect for the outcome
S̃3 = 1. Where the system at time t3 is in a NOON state, the
postselection is conditional on S3 = 1. The experimentalist can
also measure p̂ of the meter field, and obtain the mean value
for the outcomes p (and hence the inferred S2) conditional
on the result S̃3 = 1. We denote these conditional moments as
〈p〉S̃3=1, or 〈S2〉S3=1. We see that

〈p〉S̃3=1 =
∫

pP (p,S3 � 0)dp

P (S3 � 0)
, (17)

where

P (S3 � 0) =
∫

P (p,S3 � 0)dp. (18)

Using the general state given in Eq. (16) we obtain

P (p,S3 � 0) = |d0|2|〈p|γ e+iπ/2〉|2
∑

n�N/2

|c(0)
n |2

+ |dN |2|〈p|γ e−iπ/2〉|2
∑

n�N/2

|c(N)
n |2 + Int,

(19)

where

Int = d∗
0 dN 〈γ e+iπ/2|p〉c〈p|γ e−iπ/2〉

∑
n�N/2

c(0)∗
n c(N)

n

× d∗
Nd0〈γ e−iπ/2|p〉c〈p|γ e+iπ/2〉

∑
n�N/2

c(N)∗
n c(0)

n

(20)

is a quantum interference term. In fact

〈p|γ e±i(π/2)〉 = exp
(−p2

4 + γ 2e±iπ

2 − γ 2

2 − ipγ e±i(π/2)
)

(2π )1/4

(21)

and |〈p|γ e±iπ/2〉|2 = e−(p/
√

2−√
2γ )2√

2π
. Hence we can evaluate the

conditional moments once we specify the evolution during the
time from t2 to t3.

In the next section, we consider an evolution HI that gives
rise to a violation of a Leggett-Garg inequality. We will restrict
to this case. We thus consider the interaction Hamiltonian HI

defined in Sec. V that evolves an initial state |0〉a|N〉b at time
t2 into the state

cos(t3 − t2)|0〉a|N〉b + i sin(t3 − t2)|N〉a|0〉b (22)

at the later time t3. Here time ti is expressed in suitably scaled
units, which will be defined in the next section. The interaction
also evolves the state |N〉a|0〉b at time t2 into the state

i sin(t3 − t2)|0〉a|N〉b + cos(t3 − t2)|N〉a|0〉b (23)

defined at time t3. Hence we substitute in the expression (16)

c
(0)
0 = cos(t3 − t2),

c
(0)
N = i sin(t3 − t2),

c
(N)
0 = i sin(t3 − t2),

c
(N)
N = cos(t3 − t2). (24)
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All other coefficients are zero. In this case, S̃3 = S3 since an
ideal NOON state is created at time t3. Using Eq. (17), we find

P (p,S3 � 0) = |d0|2
∣∣c(0)

N

∣∣2

√
2π

e−(p/
√

2−√
2γ )2

+ |dN |2∣∣c(N)
N

∣∣2

√
2π

e−(p/
√

2+√
2γ )2 + Int.

(25)

Hence∫
pP (p,S3 � 0)dp = 2γ

(|d0|2
∣∣c(0)

N

∣∣2 − |dN |2∣∣c(N)
N

∣∣2)

= −γ cos2 θ, (26)

where we note the interference terms do not contribute to this
term, since

∫ ∞
−∞ exp (−p2

2 − 2γ 2)pdp = 0. Also,

P (S3 � 0) = |d0|2
∣∣c(0)

N

∣∣2 + d∗
0 dNc

(0)∗
N c

(N)
N e−2γ 2

+ d∗
Nd0c

(N)∗
N c

(0)
N e−2γ 2 + |dN |2∣∣c(N)

N

∣∣2

(27)

which simplifies to

P (S3 � 0) = 1
2

(
1 − sin θe−2γ 2)

. (28)

We find

〈S2〉S3=1 = − 1

2γ
〈p〉S3=1

= cos θ

1 − sin θe−2γ 2 . (29)

The form of this result agrees with that derived by Williams and
Jordan, based on a similar two-state evolution and assuming
a stroboscopic “kicked” weak quantum nondemolition (QND)
measurement [8,34].

As one example that is relevant to tests of Leggett-Garg
inequalities, we consider where the initial state prepared at
time t2 is a generalized NOON state with amplitudes dN =
cos(θ/2) and d0 = i sin(θ/2). We select θ = π/3 and t3 − t2 =
π/4. The limits of 〈S2〉S3=1 for γ → 0 and γ → ∞ are then
3.73 and 0.5 respectively. The threshold for the weak value
where 〈S2〉S3=1 > 1 is γ < γ0 given by γ0 = 0.5241. In Fig.
2 we plot the value 〈S2〉S3=1 versus γ . Weak values that are
outside the eigenvalue range of |〈S2〉S3=−1| � 1 are evident for
where γ < γ0.

In a similar fashion, we calculate the prediction for
〈S2〉S3=−1. Calculation gives∫

pP (p,S3 < 0)dp = 2γ
(|d0|2

∣∣c(0)
0

∣∣2 − |dN |2∣∣c(N)
0

∣∣2)
(30)

and

P (S3 < 0) = |d0|2
∣∣c(0)

0

∣∣2 + |dN |2∣∣c(N)
0

∣∣2

+ d∗
0 dNc

(0)∗
0 c

(N)
0 e−2γ 2 + d∗

Nd0c
(N)∗
0 c

(0)
0 e−2γ 2

(31)

0
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0.2

0.3
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FIG. 2. Weak values for NOON states: The measured value of
〈S2〉S3=1 and 〈S2〉S3=−1 versus the measurement strength γ for θ =
t2 − t1 = π/3 and φ = t3 − t2 = π/4. The predictions for 〈S2〉S3=1

show values outside the eigenvalue range bounded by ±1, for all
γ < 0.5241.

leading to

〈S2〉S3=−1 = − 1

2γ
〈p〉S3=−1

= cos θ

1 + sin θe−2γ 2 . (32)

For the choice θ = π/3, we find 〈S2〉S3=−1 < 0.5 for all γ ,
implying no weak value prediction for these parameters.

V. LEGGETT-GARG TEST USING WEAK
MEASUREMENTS

One may consider a Leggett-Garg test of macroscopic real-
ism using NOON states and the weak measurements proposed
in this paper. Leggett and Garg proposed to test macroscopic
realism, by considering a two-state system where the two states
are in some sense “macroscopically distinct,” e.g., a cat that
is dead or alive [17]. Leggett and Garg defined two premises
that embody the meaning of macroscopic realism. The two
premises are summarized in the Introduction.

Leggett and Garg (LG) showed how the two premises
[referred to as macrorealism (MR)] constrain the dynamics of
a two-state system. Considering three successive times t3 >

t2 > t1, the variable Si denotes which of the two states the
system is in at time ti , the respective two states being denoted
by Si = +1 or −1. The Leggett-Garg premises imply the
Leggett-Garg inequality [8,17]

〈S1S2〉 + 〈S2S3〉 − 〈S1S3〉 � 1. (33)

Defining the parameter LG ≡ 〈S1S2〉 + 〈S2S3〉 − 〈S1S3〉, the
Leggett-Garg inequality is also expressible as −3 � LG � 1.
It is also possible to define the “no disturbance” or “no
signaling in time” condition given by the equality

dσ = 〈S3|σ 〉M − 〈S3|σ 〉 = 0. (34)

Recent work shows that this condition is also implied by the
Leggett-Garg macrorealism premises, where M represents the
noninvasive measurement [35,36]. Here 〈S3|σ 〉M (and 〈S3|σ 〉)
is the expectation value of S3 given that the measurement M

is performed (or not performed) at time t2, conditional on
the system being prepared in a state denoted by σ at time t1.
The Leggett-Garg inequalities are predicted to be violated for
quantum systems [10,17].

Figure 1 illustrates the proposed Leggett-Garg experiment
based on the NOON states and weak measurement. The
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FIG. 3. Near-ideal two-state dynamics: We show the mesoscopic
two-state oscillation predicted for the Hamiltonian HI with N = 5
and g/κ = 2 and time t is in units of κ−1. The blue solid (red dotted)
line is the probability that 5 (0) bosons are found in the mode a, upon
measurement of the number n̂a at time t . The black dashed line gives
the sum of the two probabilities.

system at time t1 is prepared in a state with definite spin
S1 = 1. The system we consider evolves at time t2 to a
NOON state (8). The measurement M given by (3) is made
on this state at time t2. The measurement M can be made as
a weak measurement, or as a strong projective measurement,
depending on the value of γ . In fact because the state at time
t1 is deterministically prepared in the state with positive spin,
〈S1S2〉 = 〈S2〉 and 〈S1S3〉 = 〈S3〉. In this proposal, the 〈S2S3〉
is measured using a weak measurement M of S2 at time t2 and
a strong measurement of S3 at time t3.

We consider that between times t1 and t2, and from after the
measurement at time t2 until time t3, the system evolves accord-
ing to the Josephson two-mode Hamiltonian [25,28,30,31]

HI = 2h̄κĴx + h̄gĴ 2
z . (35)

The κ represents the intermode coupling and g the nonlinear
self-interaction due to the medium. Regimes exist where a two-
state oscillation (of period TN ) takes place (Fig. 3) [28,32].
If the system is prepared in |N〉a|0〉b at time t1, then, in this
parameter regime, at a later time t2 the state vector is to a good
approximation given by (apart from an overall phase factor)

|ψ(t)〉 = cos(t2 − t1)|N〉a|0〉b + i sin(t2 − t1)|0〉a|N〉b. (36)

Here ti = E
t ′i /h̄ is the time defined in scaled units so that t ′i
is the actual time in seconds and E
 is the energy splitting of
the energy eigenstates |N〉a|0〉b ± |0〉a|N〉b under HI . In one
state, |N〉a|0〉b, all N bosons (atoms) are in the mode a and in
the second state, |0〉a|N〉b, all bosons (atoms) are in the mode
b [28]. As in Fig. 1, we suppose that the system also evolves
under this unitary evolution from t2 (after the measurement M)
to t3. However, between times t1 and t2, we note that the NOON
state at time t2 might be prepared by a different method [21].

The two-time correlation for a measurement of spin Si at
time ti followed by a later measurement of spin Sj at time tj is
〈SiSj 〉 = cos [2(tj − ti)]. This is independent of the outcome at
time ti , which determines whether the system is projected into
|N〉a|0〉b or |0〉a|N〉b. Choosing t1 = 0, t2 = π/6, t3 = π/3, it
is well known that for this two-time correlation the quantum
prediction is LG = 1.5 which gives a violation of (33) [17].
Alternatively, one can select the values t1 = 0, t2 = π/6 and
t3 = 5π/12 in units of E
/h̄, to give a value LG = 1.37.
Figure 3 shows solutions of the Hamiltonian HI for N = 5

and g = 2, confirming the correlation functions that give
violations of the Leggett-Garg inequality in this regime.

In any experimental test of the Leggett-Garg inequalities,
the question becomes how to perform the ideal noninvasive
measurement at the time t2. For any real measurement made at
time t2, it could be argued that the measurement is not in fact
noninvasive, and therefore that the Leggett-Garg inequalities
would not apply. The approach taken here, which is well
documented in the literature, is to perform a weak measurement
at time t2 [7–9,14]. We will show that the weak measurement in
the limit of γ → 0 can be justified as noninvasive for the input
state at time t2, and yet yields the required average 〈S2S3〉 for
the test of the Leggett-Garg inequality. While this provides a
convincing test of the Leggett-Garg macrorealism, we point out
that alternative approaches are possible. The “clumsiness” of
a measurement can be accounted for, by performing additional
measurements and using a modified Leggett-Garg inequality
[36,37]. This approach is useful for strong measurements
where γ is large, and has been applied to superconducting
qubits [36]. The recent papers of Zhou et al. [38] and Formag-
gio et al. [39] demonstrate violation of modified Leggett-Garg
inequalities based on the assumption of stationarity.

Our proposed experiment is as follows. We assume in this
section that we do indeed generate the ideal statistics of the
two-state system, so that the evolution is given by Eq. (36).
After preparation in the state |N〉a|0〉b at time t1, the system
evolves for a time t2 − t1 = θ/2. The state at time t2 is therefore

|ψ(t2)〉 = cos
θ

2
|N〉a|0〉b + i sin

θ

2
|0〉a|N〉b. (37)

We then assume the time t3 is such that t3 − t2 = π/4.
In this gedanken experiment, we distinguish between mo-

ments that are measured with the weak measurement M

occurring at the time t2, or not. The former moments are
denoted by the subscript M . In Fig. 4, the correlation functions
〈S1S2〉M = 〈S2〉M , 〈S1S3〉M = 〈S3〉M , and 〈S2S3〉M are plotted
versus θ . We note that for all γ ,

〈S2〉M = 〈S2〉 = − 1

2γ
〈p〉 = cos θ. (38)

This value is independent of γ , i.e., whether the measurement
at time t2 is a weak measurement or a strong measurement.
The moment

〈S2S3〉M = − 1

2γ
〈pS3〉 = cos[2(t3 − t2)] (39)

is also independent of γ and is independent of θ . Hence we
can write 〈S2S3〉 = 〈S2S3〉M , although we note that the mea-
surements made with smaller values of γ will have increased
statistical error [9]. In this paper, we examine the case where
t3 − t2 = π/4 and hence 〈S2S3〉 = 0 for all γ .

A significant difference occurs, however, between 〈S1S3〉M
and 〈S1S3〉. We see that without the measurement M at time
t2, the moment is

〈S1S3〉 = cos[2(t3 − t1)] = − sin θ. (40)

For a finite γ with the measurement M occurring at the
intermediate time t2, we calculate the 〈S1S3〉M as follows:

〈S1S3〉M = P (S3 � 0) − P (S3 < 0)

= − sin θe−2γ 2
. (41)

032123-6



WEAK MEASUREMENTS AND QUANTUM WEAK VALUES FOR … PHYSICAL REVIEW A 97, 032123 (2018)

-1

0

1

-1

0

1

6

6

0 2 4

0 2 4 0 2 4 6
-1

0

1

0 2 4 6
-1

0

1

FIG. 4. Correlations associated with the violation of the Leggett-
Garg inequality: The graphs show 〈S1S2〉M , 〈S2S3〉M , 〈S1S3〉M , and
〈S1S3〉. The 〈SiSj 〉M are evaluated with the measurement at time t2 as
illustrated in Fig. 1. The 〈S1S3〉 is evaluated without a measurement
at time t2. The averages 〈S1S2〉M and 〈S2S3〉M are independent of the
strength γ of the measurement M . By contrast, 〈S1S3〉M → 〈S1S3〉
only when γ → 0.

The relevant probabilities were defined and calculated in the
previous section. In Fig. 4, it is clear that as γ → 0, 〈S1S3〉M →
〈S1S3〉, indicating a minimal disturbance of the system being
measured by the weak measurement. This no-disturbance can
be measured in a control experiment, and is used to justify the
noninvasive nature of the measurement M for the purpose of
testing the Leggett-Garg inequality, given as

〈S1S2〉M + 〈S2S3〉M − 〈S1S3〉M � 1. (42)

By contrast, there is a distinct difference between 〈S1S3〉M and
〈S1S3〉 for γ large, which corresponds to a strong projective
measurement of the spin S2 at time t2. In Fig. 5 we plot the
difference dσ = 〈S1S3〉M − 〈S1S3〉 as the disturbance equality
given by Eq. (34) [35,36].
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FIG. 5. Measure of disturbance for the weak measurement: We
calculate the value of the moments 〈S1S3〉M and 〈S1S3〉. The difference
is defined as the disturbance dσ , plotted here for different values of
the measurement strength γ .
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FIG. 6. Correlation between violation of the Leggett-Garg in-
equality and weak values: The top graph shows 〈S2〉S3=1 vs θ . In
the left lower graph, we plot LG = 〈S1S2〉M + 〈S2S3〉M − 〈S1S3〉M .
In the right lower graph, we plot LG = −〈S1S2〉M − 〈S2S3〉M −
〈S1S3〉M defined with the sign of S2 changed. The Leggett-Garg
inequalities are violated when LG > 1. This corresponds to a weak
value regime, observed when |〈S2〉S3=1| > 1.

In Figs. 6 and 7 we plot the violation of the Leggett-
Garg inequality by plotting the Leggett-Garg parameter LG =
〈S1S2〉M + 〈S2S3〉M − 〈S1S3〉M versus θ , for different values
of measurement strength γ . At θ/2 = π/6, the optimal value
of LG = 1.37 is possible for small γ . The violation is possible
because for small γ the measurement is noninvasive. For
sufficiently strong γ , violations are not possible using this
particular approach with the inequality (42), because the
invasive measurement acts on the system at time t2 causing
a collapse of the wave function into a state of definite spin.
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FIG. 7. As for Fig. 6, but here the top graph shows 〈S2〉S3=−1. In
the left graph, we plot LG = 〈S1S2〉M − 〈S2S3〉M + 〈S1S3〉M defined
with the sign of S3 changed. In the right graph, plotted is LG =
−〈S1S2〉M + 〈S2S3〉M + 〈S1S3〉M defined with the signs of S2 and S3

changed.
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FIG. 8. Violation of the Leggett-Garg inequality and weak values
for nonideal evolution after time t2: Plots show the weak values and
violation of the Leggett-Garg inequality as for Fig. 6, but where
the state generated at time t3 evolves after time t2 according to
the Hamiltonian HI . Here N = 5, g = 2 (top and lower left), and
g = 104.43 (top and lower right). We choose t3 − t2 to correspond in
real time to one quarter of the two-state oscillation period, TN/4.

The violations that occur in the weak measurement regime are
directly associated with the presence of weak values [8]. The
correlation between the weak values and the violation of the
Leggett-Garg inequality is evident in Figs. 6 and 7.

VI. WEAK VALUES WITH NONIDEAL STATES

A. Ideal NOON state at time t2

Let us assume an ideal generalized NOON state has been
generated at time t2. This is not unrealistic for small N > 1.
For example, for N = 2 the Hong-Ou-Mandel effect creates a
NOON state [21,22]. Proposals for more macroscopic NOON
states use conditioning on measurements of Ĵz [40]. However,
for the generation of the quantum state according to the
dynamics of HI , the state formed at t3 is not an ideal NOON
state. We examine the effect of this on the weak values and the
violation of the Leggett-Garg inequalities.

First, we note that the pure general input state at time ti is
of the form

|ψ〉in =
N∑

m=0

dm|m〉a|N − m〉b (43)

given by (4). It is straightforward to show that 〈Si〉 = − 1
2γ

〈p〉
for all input states of this type where the total number N of
bosons is fixed. This means that the expression can be used in
the more general case for the evaluation of the spin averages.
This is also true of the 〈S2S3〉 where the state at time t2 is the
NOON state.

To evaluate the weak values accounting for the general
evolution with HI , we consider the generalized equations
(16)–(19) that allow for a nonideal state at time t3. Specifically,
the Hamiltonian HI is such that the two-mode state |0〉|N〉
evolves to the state given by

∑
n c(0)

n |n〉|N − n〉 and two-mode
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FIG. 9. As for Fig. 8, but with the parameters defined in Fig. 7.
Here N = 5, g = 2 (top and lower left) and g = 104.43 (top and
lower right).

state |N〉|0〉 evolves to the state given by
∑

n c(N)
n |n〉|N − n〉

where c(m)
n are constants. In Figs. 8–10, we plot the predictions

for 〈p̂〉S3=1 where we use the values of the precise coefficients
c(N)
n and c(0)

n generated by the evolution with HI , for N = 5 and
N = 10. These have been evaluated by the numerical program
that yielded the plots of Fig. 3. The oscillation time is given by
TN = 2π

ωN
where ωN = 2h̄g N

(N−1)! (
κ
g

)N [28].
The weak values and Leggett-Garg violations are tolerant

to the nonideal coefficients, at least for smaller N . For larger
N corresponding to a BEC, it is known that the parameter
regime for oscillation is more difficult to achieve, a phe-
nomenon known as macroscopic quantum self-trapping [26].
This regime may not be impossible however using alternative
realizations of the nonlinear Josephson Hamilton [41–43].

B. Nonideal NOON state at time t2

We conclude by noting that where the state at time t2 is
not an ideal NOON state, evaluating 〈S2S3〉 by way of the
measurement given by HM is more subtle. To illustrate, let us
consider where the two-mode state immediately prior to the
measurement at time t2 is

|ψ〉 = dna
|na〉a|N − na〉b + dN−na

|N − na〉a|na〉b. (44)
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FIG. 10. As for Fig. 8, with parameters defined as for Fig. 6. Here
N = 10, g = 6.6.
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In this case, the state immediately after the measurement at
time t2 is

|ψ〉 = dna
|na〉a|N − na〉b|γ eiπ(N−2na )/2N 〉c

+ dN−na
|N − na〉a|na〉b|γ e−iπ(N−2na )/2N 〉c

(45)

based on Eq. (6). We consider that the state |na〉a|N − na〉b,
(|N − na〉a|na〉b) evolves as described by a Hamiltonian to
the state

∑
n c(na )

n |n〉a|N − n〉b(
∑

n′ c
(N−na )
n′ |N − n′〉a|n′〉b) in

a time t3 − t2. We then find (see the Appendixes)

〈pS3〉 = −2γ sin
( π

2N
(N − 2na)

)
〈S2S3〉. (46)

This is similar to the earlier result (15) except that the
measurement strength is diminished by the sin factor. The
calculation indicates that where a general superposition (4) is
prepared at time t2, the simple weak measurement relation of
type (15) does not hold. A more careful analysis is required to
place a bound on the value of 〈S2S3〉 given the measured 〈pS3〉.
This is feasible, but will not be addressed in this paper. The
result (46) is useful however. This is because in some cases,
the mesoscopic superposition state (44) is easier to prepare
than the NOON state. It has been shown that the state (44) is
generated over shorter time scales than the traditional NOON
state, in BEC systems [26,28]. Considerations of time scale are
important where decoherence effects are significant.

VII. CONCLUSION

In summary, we have demonstrated the possibility of detect-
ing quantum weak values using NOON states. We consider a
specific nondestructive measurement of the Schwinger spin,
defined as the population difference for two levels with a
bosonic occupation. This measurement can be realized for
atomic systems using an ac Stark shift [24]. The measurement
is also applicable to states prepared in polarization modes, as in
polarization squeezing experiments, where the observables are
defined in terms of Stokes operators [44]. The measurement in
the limit of small coupling corresponds to a weak measurement
of the Schwinger spin, meaning that it gives the correct average
spin for the prepared quantum state, but with a vanishingly
small disturbance of the state. By analyzing the case where
the measurement is made on a quantum system prepared in
a NOON state, we demonstrate how one can detect quantum
weak values for the NOON states, for all N . The detection
of the weak values is made possible by a unitary evolution
of the quantum system after the measurement, as given by
the nonlinear two-mode Josephson Hamiltonian. This gives a
way to demonstrate the existence of quantum weak values, for
bosonic mesoscopic and macroscopic superposition states.

The work of this paper suggests a Leggett-Garg test of
mesorealism or macrorealism using NOON states. In this
case, the measurement of a two-time correlation involving
the weak measurement is required. We have discussed how
to demonstrate the noninvasiveness of the weak measurement
for the purpose of a Leggett-Garg test, and have examined the
feasibility of the experiment using the Josephson model, with
nonideal parameter values.

Finally, we note that regimes associated with more general
parameters of the Josephson model do not always lead to a
second NOON superposition state being created at the time t3.
The outcomes for the Ŝz are not simply ±N but can be spread
between these values. We comment that tests of quantum
weak values and of the Leggett-Garg inequality may still be
possible, using the approach of overlapping regions presented
in Refs. [33,45].
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APPENDIX A: CALCULATION OF 〈S2〉
We can evaluate 〈p〉 from (9), using that p̂ = 1

i
(ĉ − ĉ†),

thus

〈p〉 = |d0|2〈γ eiπ/2|p|γ eiπ/2〉 + |dN |2〈γ e−iπ/2|p|γ e−iπ/2〉.
(A1)

Next, we use the result for the inner product of coherent states
〈α|β〉 = exp [α∗β − |α|2/2 − |β|2/2], to find

〈α|p|β〉a = 1

i
(β − α∗) exp[α∗β − |α|2/2 − |β|2/2]

(A2)

and hence

〈γ e−iπ/2|p|γ e−iπ/2〉 = −2γ,

〈γ eiπ/2|p|γ eiπ/2〉 = 2γ. (A3)

This implies

〈p〉 = 2γ (|d0|2 − |dN |2)

= −2γ 〈S2〉. (A4)

Here we have used that 〈S2〉 = |dN |2 − |d0|2, which is the
expectation value of S2 for the initial two-mode state (4) for
the NOON state. We see that

〈S2〉 = − 1

2γ
〈p〉. (A5)

The average of p will give the value for the average of the
Schwinger spin of the incident two-mode state.

APPENDIX B: CALCULATION OF 〈S2 S3〉
We suppose that the Hamiltonian HI is such that the two-

mode state |m〉a|N − m〉b evolves to the state
∑

n c(m)
n |n〉a|N −

n〉b where c(m)
n are constants. The final output state including

the meter field is

|ψ(t3)〉 =
∑
m

dm|γ eiπ(N−2m)/2N 〉c
∑

n

c(m)
n |n〉a|N − n〉b.

(B1)
We next evaluate 〈pS3〉 and compare to 〈S2S3〉. We take the
case where prior to the measurement at time t2 the two-mode
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system is in the NOON state:

|ψ〉 = d0|0〉a|N〉b + dN |N〉a|0〉b. (B2)

At time t3, after measurement and after the subsequent evolu-
tion, the state is given by Eq. (B1) which we simplify as (13).
We evaluate 〈pS3〉 = 〈ψ(t3)|pS3|ψ(t3)〉, using (A3). Here it
is useful to define Ŝ3|m〉a|N − m〉b = sgn(2m − N )|m〉a|N −
m〉b where sgn(S) is +1 if S � 0, and −1 otherwise. From
(A2) we see that

〈γ e−iπ/2|p|γ eiπ/2〉c = 0 = 〈γ eiπ/2|p|γ e−iπ/2〉c.

Hence we obtain

〈pS3〉 = |d0|22γ

(
−

∑
n<N/2

∣∣c(0)
n

∣∣2 +
∑

n>N/2

∣∣c(0)
n

∣∣2
)

− |dN |22γ

(
−

∑
n<N/2

∣∣c(N)
n

∣∣2 +
∑

n>N/2

∣∣c(N)
n

∣∣2
)

.

(B3)

Using that 〈S2S3〉 is given by Eq. (14), we find

〈S2S3〉 = − 1

2γ
〈pS3〉. (B4)

APPENDIX C: CALCULATION FOR THE
NONIDEAL CASE

We consider that the state |na〉a|N − na〉b evolves
as described above by a Hamiltonian HI to the state∑

n c(na )
n |n〉a|N − n〉b in a time t3 − t2. Similarly, the state

|N − na〉a|na〉b evolves to
∑

n′ c
(N−na )
n′ |N − n′〉a|n′〉b. Hence

S3|ψ(t3)〉 = dna
|γ e+iπ(N−2na )/2N 〉c

×
∑

n

c(na )
n sgn(2n − N )|n〉a|N − n〉b

+ dN−na
|γ e−iπ(N−2na )/2N 〉c

×
∑
n′

c
(N−na )
n′ sgn(N − 2n′)|N − n′〉a|n′〉b.

(C1)

Therefore

〈pS3〉 = 2γ sin
( π

2N
(N − 2na)

)

×
(∣∣dna

∣∣2 ∑
n

∣∣c(na )
n

∣∣2
sgn(2n − N )

− ∣∣dN−na

∣∣2 ∑
n′

∣∣∣c(N−na )
n′

∣∣∣2
sgn(N − 2n′)

)

= −2γ sin
( π

2N
(N − 2na)

)
〈S2S3〉. (C2)
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