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The two-qubit maximally steerable mixed state (MSMS), defined as one that violates to the most degree a
steering inequality for any fixed linear entropy, is derived mathematically here based on the two-setting (three-
setting) linear steering inequality and the two-setting Clauser-Horne-Shimony-Holt–like steering inequality.
Interestingly, the form of the MSMS based on such different steering inequalities obtained here is identical
to the two-qubit maximally nonlocal mixed state (MNMS). It is clearly shown that finding any two-qubit state, of
which the state mixedness exceeds 2/3, thus violating the three-setting steering inequalities, is impossible. The
violation of the inequalities with the Werner state and with the maximally entangled mixed state, respectively, as
well as the relations between their optimal violation and the linear entropy, is also discussed comprehensively. In
particular, within the range ε(ρ) ∈ [0,2/3] of the fixed linear entropy, the Werner state reaches the same violation
as the MSMS does of the three-setting linear steering inequality, but not of the two-setting steering inequalities
(for the latter inequalities the violation with the Werner state is generally less than that with the MSMS). For the
MEMS, the optimal violation is always lower than that of the MSMS for any fixed linear entropy.
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I. INTRODUCTION

In 1935, Einstein, Podolsky, and Rosen (EPR) [1] ques-
tioned the completeness of quantum mechanics (QM) by
introducing the notion of local realism. Many efforts have since
been committed to a deeper understanding of QM, mainly in
consideration of three types of quantum correlations: quantum
entanglement [2], EPR steering [3], and Bell nonlocality [4]. Of
them, the development of quantum entanglement and Bell non-
locality has flourished since 1964 [5]; EPR steering, in contrast,
had even lacked a rigorous formulation until the work in 2007
of Wiseman et al. [6]. After decades of research, physicists
have gradually realized that they are different kinds of quantum
correlations. According to the hierarchy of nonlocality, the set
of EPR steerable states is a subset of entangled states and a
superset of Bell nonlocal states [6]. Nowadays, these concepts
have become the center of quantum foundations and have had
many practical applications in modern quantum information
theory ranging from quantum key distribution [7], communi-
cation complexity [8], and random number generation [9].

During decades of investigation, a great number of fruitful
results on characterizing the properties of these quantum
correlations have been obtained. Most of the results work for
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the pure states, yet extensions to the mixed state are very
limited. This is of concern because the difference between three
such quantum correlations can just be exhibited in mixed states,
as in the work in Ref. [10]. Hence, a deeper understanding
of these quantum correlations in the cases of mixed states is
worthwhile and very necessary. Furthermore, the system under
consideration is usually in a mixed state since environment-
induced noise leading to decoherence is in general unavoidable
in real experiments.

It is known that decoherence, which is detrimental to
the amount of information in a quantum state, is measured
by the purity of the state. To effectively characterize the
role of decoherence in information erasing [11], one needs
to quantify the purity or its complementary property—the
mixedness of the state. Since noise tends to increase the
mixedness of a quantum system, it emerges as an intuitive
parameter to understand decoherence. A natural question that
arises then is how important physical quantities, like quantum
correlations, fare against the mixedness of quantum systems.
A faithful measure of mixedness is the so-called normalized
linear entropy [12–14]. Therefore, it is an intriguing task to
obtain the maximum amount of quantum correlation (Bell
nonlocality, steering, or entanglement) for a given mixedness.

To date, some interesting examples like maximally en-
tangled mixed states (MEMSs), maximally discordant mixed
states (MDMSs), and maximally nonlocal mixed states (MN-
MSs) have been discussed [15–21], but there have been
almost no investigations on maximally steerable mixed states
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(MSMSs) until very recently. McCloskey et al. [22] explored
the MSMS numerically with respect to some well-known quan-
tifiers of steering, namely, the steering ellipsoid, the steering
weight, and the robustness of steering. Except for the above
identification criteria of quantum steering, it is well-known
that steerability can be measured by the violations of Bell-like
EPR steering inequalities. In this paper, we analytically derive
the maximally steerable mixed states with the linear steering
inequality and the Clauser-Horne-Shimony-Holt (CHSH)–like
steering inequality. For comparison, we also investigated the
violation of the inequalities with the Werner state and the
MEMS.

The paper is organized as follows. In Sec. II, the forms
of the MSMSs based on the two-setting linear inequality and
the two-setting CHSH-like steering inequality are derived with
tight and rigorous mathematical proofs. Interestingly, the forms
of the MSMSs based on two such different steering inequalities
are identical which is just the MNMS discussed in Ref. [21].
The performance of the maximal violation of such inequalities
for the Werner state and the MEMS is thoroughly discussed. In
Sec. III, we derive the form of the MSMS based on the three-
setting linear steering inequality. It is the same as that in Sec. II.
Similarly, the performance of the maximal violation of the
three-setting linear steering inequality for the Werner state and
the MEMS is also fully discussed and analyzed. Conclusions
are drawn in Sec. IV.

II. THE MSMSs BASED ON THE STEERING
INEQUALITIES

It is well known that the state of an arbitrary two-qubit
system [23] can be reduced, by local unitary equivalence, to
[24]

ρ = 1

4

(
I +

3∑
i

riσi ⊗ I +
3∑
j

sj I ⊗ σj +
3∑
k

τkσk ⊗ σk

)
,

(1)

where σ1, σ2, and σ3 are the three Pauli matrices, and without
loss of generality we suppose |τ1| � |τ2| � |τ3|. Here we
should note that an arbitrary two-qubit state can be converted
to such a canonical form while preserving the steerability (or
unsteerability), which has been proved in several previous work
[25–27].

Now, our aim is to extract the MSMS from Eq. (1). The
definition of a MSMS is a state that violates a steering
inequality to the most degree for a given linear entropy.
Equivalently, it can also be considered that the MSMS has
the maximal linear entropy among the states which achieve
the same amount of violation of the inequality. Here, we try
to find the states which reach the maximal violation bound
of a well-known two-setting linear steering inequality (the
two-setting CHSH-like steering inequality) and which possess
the maximal entropy in the two-qubit system.

In a seminal paper, Cavalcanti et al. [28] developed an
inequality to diagnose whether a bipartite state is steerable
when Alice and Bob are both allowed to measure n observables
in their sites. Their inequality is usually called the linear
steering inequality [28]. For qubits, we can take Bob’s kth
measurement setting to correspond to the Pauli observable

σ̂k , along some axis uk . By denoting Alice’s corresponding
declared result as the random variable Ak ∈ {+1,−1} for all k,
the EPR-steering inequality is of the following form [29]:

Sn = 1

n

n∑
k=1

〈Akσ̂k〉 � Cn. (2)

The bound Cn is the maximum value Sn can have if Bob
has a preexisting state known to Alice, rather than half of an
entangled pair shared with Alice.

A. The MSMS based on the two-setting linear
steering inequality

Here, we choose n = 2, and the optimal linear steering
inequality reads

〈A1σ̂1′ 〉 + 〈A2σ̂2′ 〉 �
√

2, (3)

where σ̂1′ and σ̂2′ are mutually unbiased bases. This steering
inequality, Eq. (3), is the general form of Eq. (19) in Ref. [3],
which is considered the optimal steering inequality for the
Werner state. Then one may ask: What is the optimal state
that violates Eq. (3) maximally? That is, what is the optimal
state that has the largest degree of steerability?

To address the problem we use the notion of linear entropy,
a measure of state mixedness computed as ε(ρ) = d

d−1 (1 −
Trρ2), with d = 2N . So for the state in Eq. (1) the linear entropy
equals

ε(ρ) = 4

3
(1 − Trρ2) = 1 − 1

3

3∑
i,j,k=1

(
r2
i + s2

j + τ 2
k

)
. (4)

The quantum prediction of the left-hand side of Eq. (3)
equals S2 = 〈Â1σ̂1′ 〉 + 〈Â2σ̂2′ 〉, where the random variable Ai

is replaced with the observable Âi . To obtain the maximal value
of S2, let us assume Alice’s two observables can be expressed
as Ai ≡ 	σ · 	ni , i ∈ 1,2. It is worth noticing that these maximal
values for state (1) are tight [30]:

Max(S2) =
√

2
√

τ 2
1 + τ 2

2 , (5)

which is obtained by choosing the appropriate measurement
directions of Âi .

It is possible to find many states which simultaneously
achieve a given degree of violation. Consider that the MSMS
must possess the maximal entropy. According to Eq. (4), to
maximize the linear entropy, Trρ2 should be minimized; i.e.,
all the coefficients of irrelevant terms of Eq. (1) must be chosen
as zero: ri,sj = 0. The factors concerning the violation are τi ’s.
Hence, we can write a matrix M which can maximally violate
the linear steering inequality:

M = 1
4 [τ1σ1 ⊗ σ1 + τ2σ2 ⊗ σ2]. (6)

Nevertheless, this matrix is not a density matrix, since as we
know the trace of a density matrix always equals 1. By referring
to Eq. (4), the maximal entropy implies the minimal Trρ2, and
so the nonzero entries in the density matrix of the MSMS must
be as few as possible.

To this end, we can only add four unknown coefficients in
the diagonal elements of matrix M to make it a real density
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matrix. Let us denote the four unknown diagonal elements as
f1, f2, f3, and f4. The new matrix M ′ can be written as

M ′ =

⎛
⎜⎜⎜⎜⎝

f1

4 0 0 τ1−τ2
4

0 f2

4
τ1+τ2

4 0

0 τ1+τ2
4

f3

4 0
τ1−τ2

4 0 0 f4

4

⎞
⎟⎟⎟⎟⎠. (7)

As a real density matrix, M ′ must satisfy the trace and positive
definite properties:

f1 + f2 + f3 + f4 = 4, f1f4 � (τ1 − τ2)2,

f2f3 � (τ1 + τ2)2. (8)

Further, the MSMS should always reach the maximal linear
entropy:

ε(ρ) = 4
3

[
1 − 1

16

(
4τ 2

1 + 4τ 2
2 + 4τ 2

3 + f 2
1 + f 2

2 + f 2
3 + f 2

4

)]
� 4

3

[
1 − 1

2

(
τ 2

1 + τ 2
2

)]
. (9)

Obviously, the equality sign is only achieved when f1 =
f4 = (τ1 − τ2) and f2 = f3 = (τ1 + τ2). Hence, the maximal
entropy equals

Max[ε(ρ)] = 4
3 − 2

3

(
τ 2

1 + τ 2
2

)
. (10)

According to Eq. (8), when the equality sign is achieved, we
get f1 = f4 = τ1 − τ2 and f2 = f3 = τ1 + τ2, implying that
τ1 = 1 must be satisfied as well. Therefore, the density matrix
of the MSMS can be expressed as

ρMSMS =

⎛
⎜⎜⎜⎝

1−τ2
4 0 0 1−τ2

4

0 1+τ2
4

1+τ2
4 0

0 1+τ2
4

1+τ2
4 0

1−τ2
4 0 0 1−τ2

4

⎞
⎟⎟⎟⎠. (11)

This is the end of the proof of the MSMS based on the two-
setting linear steering inequality.

Interestingly, the MSMS, Eq. (11), the proof of which is
based on the linear steering inequality, is exactly the same as
the MNMS [21], the proof of which is based on the CHSH
inequality, reading

ρMNMS = 1 + τ2

2
ρ1 + 1 − τ2

2
ρ2, (12)

where τ2 is a measure of admixture between the two orthog-
onal states ρi = |ψi〉〈ψi |, with |ψ1〉 = (|00〉 + |11〉)/√2 and
|ψ2〉 = (|01〉 + |10〉)/√2. Hence, the MSMS, or equivalently
the MNMS, is of real practice and can be seen as a state that
frequently occurs during the experimental state preparation
process.

In fact, the state can be considered as an imperfect Bell state
of a bipartite spin-1/2 composite system with random spin flip-
ping, where τ2 represents a flipping coefficient. For this state,

the maximum Max(S2) equals
√

2
√

1 + τ 2
2 by choosing proper

operators, and the linear entropy equals ε(ρ) = (2/3)(1 − τ 2
2 ),

with ε(ρ) ∈ [0,2/3]. Obviously, the relation between Max(S2)
and the linear entropy ε(ρ) is Max(S2) = √

2
√

2 − (3/2)ε(ρ).
Thus, it has been shown that it is impossible to find a state for
which the mixedness exceeds 2/3, violating the linear steering
inequality (3).

M
a
x
(S

2
)

ε(ρ)

FIG. 1. The maximal violation of the two-setting linear steering
inequality versus the linear entropy for the MSMS (red solid line), the
MEMS (blue dotted line), and the Werner state (red dashed line).

For comparison, we also investigated the performance of
the violation of the linear steering inequality with the Werner
state and the MEMS. First, for the Werner state

ρW = γ |ψ1〉〈ψ1| + 1 − γ

4
I ⊗ I, (13)

where the linear entropy is ε(ρ) = (1 − γ 2), it is easy to get
Max(S2) = 2γ . Similarly, the relation between Max(S2) and
the linear entropy ε(ρ) is Max(S2) = 2

√
1 − ε(ρ), with ε(ρ) ∈

[0,1]. Obviously, for the Werner state, when the linear entropy
is in the range of ε(ρ) ∈ [0,1/2], the steering inequality can be
violated, which presents steering.

Secondly, the two-qubit MEMS reads

ρMEMS =

⎡
⎢⎢⎢⎣

g 0 0 γ

2

0 1 − 2g 0 0

0 0 0 0
γ

2 0 0 g

⎤
⎥⎥⎥⎦, (14)

where g = 1/3 for 0 � γ � 2/3 and g = γ /2 for 2/3 < γ �
1. Specifically, we obtain the following.

(i) For 0 � γ � 2/3, the linear entropy is ε(ρ) = ( 8
9 −

2
3γ 2), with ε(ρ) ∈ [ 16

27 , 8
9 ]. The optimal value of S2 can achieve

Max(S2) = 1
3

√
2 + 18γ 2, and the relation between Max(S2)

and the linear entropy ε(ρ) is Max(S2) = 1
3

√
26 − 27ε(ρ).

(ii) For 2/3 � γ � 1, the linear entropy is ε(ρ) = 8
3 (γ −

γ 2) with ε(ρ) ∈ [0, 16
27 ]. The optimal value of S2 can

achieve Max(S2) = √
2 + 2γ (−4 + 5γ ), and the relation be-

tween Max(S2) and the linear entropy ε(ρ) is Max(S2) =
1
2

√
2[6 + √

4 − 6ε(ρ)] − 15ε(ρ).
In Fig. 1, we plot the maximal violation of the linear steering

inequality versus the linear entropy for the MSMS, the MEMS,
and the Werner state. The red solid line is the violation for the
MSMS. The red dashed line is for the Werner state, when the
linear entropy is in the range of ε(ρ) ∈ [0,1/2], the steering
inequality can be violated which presents steering. The blue
dotted line denotes the MEMS. When the linear entropy is
larger than 0.4266, the MEMS will not violate the linear
steering inequality.
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B. The MSMS based on the CHSH-like steering inequality

Apart from the linear steering inequality, several other
inequalities to identify Einstein-Podolski-Rosen steering have
been proposed and experimentally implemented. Especially,
Cavalcanti et al. [31] proposed a CHSH-like steering inequal-
ity, which is also considered as a very useful criteria of the
quantification of EPR steering [30]. Especially, this steering
inequality links the correlation between Bell nonlocality and
quantum steering [32]. Here we investigate the form of MSMS
based on this CHSH-like steering inequality.

Let us consider a simple scenario in which Alice performs
two dichotomic measurements while Bob performs two mu-
tually unbiased qubit measurements. The CHSH-like steering
inequality can be written as

SCHSH =
√

〈(Â1 + Â2)B̂1〉2 + 〈(Â1 + Â2)B̂2〉2

+
√

〈(Â1 − Â2)B̂1〉2 + 〈(Â1 − Â2)B̂2〉2 � 2, (15)

where the outcomes of each measurement are taken as
{+1,−1}. It was shown recently that the maximal value that
this inequality can reach is 2

√
2 [30], which corresponds to the

Cirel’son bound. For an arbitrary two-qubit state, Eq. (1), the
maximal value of the right side of Eq. (15) equals

Max(SCHSH) = 2
√

τ 2
1 + τ 2

2 . (16)

Then, our task is to answer the following question: What is the
optimal state that violates Eq. (15) maximally and shows the
largest degree of steerability?

Following a procedure similar to the one above, we can
obtain the form of the MSMS based on the CHSH-like steering
inequality. Interestingly, the form we obtain is the same as
the one based on the linear steering inequality (12). Not
only for these inequalities but also for a general CHSH-like
steering inequality defined in Ref. [32], the form of the MSMS
obtained is identical to Eq. (12). The general CHSH-like
steering inequality has a form identical to that of Eq. (15),
except that Bob performs two arbitrary measurements instead.
Due to the form of the maximal violation depend on the

density matrix is identical to Eq. (16). It is very easy to show
that the form of the MSMS is exactly the same as that in
Eq. (12). For this state, the maximal amount of Max(SCHSH)

is 2
√

1 + τ 2
2 by choosing proper operators, and the linear

entropy is ε(ρ) = (2/3)(1 − τ 2
2 ), with ε(ρ) ∈ [0,2/3]. The

relation between Max(SCHSH) and the linear entropy ε(ρ) is
Max(SCHSH) = √

8 − 6ε(ρ). Similarly, it is not possible to find
a state for which the mixedness exceeds 2/3, violating the
CHSH-like steering inequality.

As comparison, we also investigated the performance of the
violation of the CHSH-like steering inequality for the Werner
state and the MEMS. First, for the Werner state, it is easy to
get that the optimal value of SCHSH is Max(SCHSH) = 2

√
2γ .

Similarly, the relation between Max(SCHSH) and the linear
entropy ε(ρ) is Max(SCHSH) = 2

√
2
√

1 − ε(ρ), with ε(ρ) ∈
[0,1]. It is obvious that the Werner state achieves a smaller
violation of the CHSH-like steering inequality than that with
the MSMS, in the range ε(ρ) ∈ [0,2/3] of the linear entropy.

M
a
x
(
S

C
H

S
H
)

ε(ρ)

FIG. 2. The maximal violation of the CHSH-like steering inequal-
ity versus the linear entropy for the MSMS (red solid line), the MEMS
(blue dotted line), and the Werner state (red dashed line).

Secondly, for the MEMS we have the following.
(i) For 0 � γ � 2/3, the optimal value of SCHSH is

Max(SCHSH) = 2
√

2γ , and the relation between Max(SCHSH)

and the linear entropy ε(ρ) is Max(SCHSH) = 2
√

8
3 − 3ε(ρ),

with ε(ρ) ∈ [ 16
27 , 8

9 ].
(ii) For 2/3 � γ � 1, the optimal value of SCHSH is

Max(SCHSH) = 2
√

2γ , and the relation between Max(SCHSH)
and the linear entropy ε(ρ) is ε(ρ) ∈ [0, 16

27 ] and Max(SCHSH) =√
2 + √

2 − 3ε(ρ).
In Fig. 2, we plot the maximal violation of the CHSH-like

steering inequality versus the linear entropy for the MSMS,
the MEMS, and the Werner state. The red solid line is the
violation for the MSMS. The red dashed line is for the Werner
state, showing clearly that when the linear entropy is larger
than 1/2, the Werner state does not violate the inequality. The
blue dotted line denotes the MEMS. When the linear entropy is
larger than 0.5522, the MEMS does not violate the inequality.

Moreover, this result confirms the previous conclusion in
Ref. [32], in which it was shown that all states that are EPR
steerable with CHSH-type correlations are also Bell nonlocal,
and so the MSMS based on the CHSH-like steering inequality
is just the MNMS, which violates the CHSH inequality and the
CHSH-like steering inequality in the whole range. It is easy to
obtain that for both the Werner state and the MEMS, when
γ > 1/

√
2, the CHSH inequality and the CHSH-like steering

inequality can be violated simultaneously. Despite that the
two-setting linear steering inequality (3) is only a sufficient
condition for steerability, the form of the MSMS derived
from it is the same as the one derived from the CHSH-like
steering inequality, implying that the two-setting linear steering
inequality is equally effective with the CHSH-like steering
inequality for certain steering tests. It is in some sense not
strange that the two-setting linear steering inequality is the
optimal steering inequality for the Werner state as shown in
Ref. [3]. For the MEMS, nevertheless, the two-setting linear
steering inequality can be violated when γ > 4/5, while the
CHSH inequality can be violated when γ > 1/

√
2.
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C. The MSMS based on the three-setting
linear steering inequality

Now we choose n = 3, and the optimal linear steering
inequality reads

〈A1σ̂1′ 〉 + 〈A2σ̂2′ 〉 + 〈A3σ̂3′ 〉 �
√

3, (17)

where σ̂1′ , σ̂2′ , and σ̂3′ are mutually unbiased bases. Interest-
ingly, we can find the MSMS form based on this inequality
is also the same as the MSMS that we obtained above, even
though the constraints are different. Here we give the proof.

Similar to the two-setting case, the quantum prediction of
the left-hand side of Eq. (17) equals S3 = 〈Â1σ̂1′ 〉 + 〈Â2σ̂2′ 〉 +
〈Â3σ̂3′ 〉, where the random variable Ai is replaced with the
observable Âi . To obtain the maximal value of S3, we assume
Alice’s three observables can be expressed as Âi ≡ 	σ · 	ni , i ∈
1,2,3; it is worth noticing that these maximal values for state
(1) are tight [30]:

Max(S3) =
√

3
√

τ 2
1 + τ 2

2 + τ 2
3 , (18)

which is obtained by choosing the appropriate measurement
directions of Âi .

Again, according to Eq. (4), let us minimize Trρ2 in order
to maximize the linear entropy. Namely, all the coefficients of
the irrelevant terms of Eq. (1) must be chosen as zero: ri,sj =
0. The factors concerning the violation are τi’s. Hence, we
can write a matrix M which can maximally violate the linear
steering inequality:

M = 1
4 [τ1σ1 ⊗ σ1 + τ2σ2 ⊗ σ2 + τ3σ3 ⊗ σ3]. (19)

Following the same argument below Eq. (6), the nonzero
entries in the density matrix of the MSMS must be as few
as possible. To this end, we can only add four unknown
coefficients in the diagonal elements of matrix M to make it a
real density matrix. Let us denote the four unknown diagonal
elements as f1, f2, f3, and f4. The new matrix M ′ can be
written as

M ′ =

⎛
⎜⎜⎜⎜⎝

f1+τ3

4 0 0 τ1−τ2
4

0 f2−τ3

4
τ1+τ2

4 0

0 τ1+τ2
4

f3−τ3

4 0
τ1−τ2

4 0 0 f4+τ3

4

⎞
⎟⎟⎟⎟⎠. (20)

As a real density matrix, M ′ must satisfy the trace and positive
definite properties:

f1 + f2 + f3 + f4 = 4,

(f1 + τ3)(f4 + τ3) � (τ1 − τ2)2,

(f2 − τ3)(f3 − τ3) � (τ1 + τ2)2. (21)

Further, the MSMS should always reach the maximal linear
entropy:

ε(ρ) = 4
3

[
1 − 1

16

[
4τ 2

1 + 4τ 2
2 + 4τ 2

3 + f 2
1 + f 2

2 + f 2
3 + f 2

4

+ 2τ3(f1 − f2 − f3 + f4)
]]

� 4
3

[
1 − 1

16

[
4τ 2

1 + 4τ 2
2 + 4τ 2

3 + 2f1f4 + 2f2f3

+ 2τ3(f1 − f2 − f3 + f4)
]]

. (22)

Obviously, the equality sign is only achieved when
f1f4 + τ3(f1 + f4) = (τ1 − τ2)2 − τ 2

3 and f2f3 − τ3(f2 +
f3) = (τ1 + τ2)2 − τ 2

3 . Hence, the maximal entropy equals

Max[ε(ρ)] = 4
3 − 2

3

(
τ 2

1 + τ 2
2

)
. (23)

According to Eq. (21), when the equality sign is achieved,
we get f1 = f4 = τ1 − τ2 − τ3 and f2 = f3 = τ1 + τ2 +
τ3, implying that τ1 = 1 must be satisfied as well.
Therefore, the density matrix of the MSMS can be
expressed as

ρMSMS =

⎛
⎜⎜⎜⎝

1−τ2
4 0 0 1−τ2

4

0 1+τ2
4

1+τ2
4 0

0 1+τ2
4

1+τ2
4 0

1−τ2
4 0 0 1−τ2

4

⎞
⎟⎟⎟⎠. (24)

This is the end of the proof of the MSMS based on the
three-setting linear steering inequality (17), where the MSMS
form of Eq. (24) is just the state defined by Eq. (12). Here,
we should note that, as the linear steering inequality in the
three-settings steering scenario is only a sufficient condition
but not necessary, this form may be a subset of all the MSMSs
in the three-setting steering scenario which is still an open
question.

For comparison, we also investigated the performance
of the violation of the linear steering inequality with the
Werner state and the MEMS. First, for the Werner state,
it is easy to get Max(S3) = 3γ . Similarly, the relation be-
tween Max(S3) and the linear entropy ε(ρ) is Max(S3) =
3
√

1 − ε(ρ), with ε(ρ) ∈ [0,1]. Interestingly, the Werner state
can achieve the same optimal violation of the linear steering
inequality as the MSMS with the fixed linear entropy in the
range of ε(ρ) ∈ [0,2/3]. Here we should emphasize that, for
a fixed linear entropy, the state which can make the steering
inequality be violated maximally is not unique. However,
there are no states that can make it be violated higher than
the MSMS.

Secondly, for the MEMS we have the following.
(i) For 0 � γ � 2/3, the linear entropy is ε(ρ) = ( 8

9 −
2
3γ 2), with ε(ρ) ∈ [ 16

27 , 8
9 ]. The optimal value of S3 can

achieve Max(S3) = γ + 1
3

√
2 + 18γ 2, and the relation be-

tween Max(S3) and the linear entropy ε(ρ) is Max(S3) =√
4
3 − 3

2ε(ρ) + 1
3

√
26 − 27ε(ρ).

(ii) For 2/3 � γ � 1, the linear entropy is ε(ρ) = 8
3 (γ −

γ 2), with ε(ρ) ∈ [0, 16
27 ]. The optimal value of S3 can achieve

Max(S3) = γ + √
2 + 2γ (−4 + 5γ ), and the relation be-

tween Max(S3) and the linear entropy ε(ρ) is Max(S3) =
1
4 {2 + 2

√
2[6 + √

4 − 6ε(ρ)] − 15ε(ρ) + √
4 − 6ε(ρ)}.

In Fig. 3, we plot the maximal violation of the linear steering
inequality versus the linear entropy for the MSMS, the MEMS,
and the Werner state. The red solid line is the violation for the
MSMS. For the Werner state, when the linear entropy is in
the range of ε(ρ) ∈ [0,2/3], the result is identical with that of
the MSMS. The red dashed line is for the Werner state when
ε(ρ) ∈ [2/3,1]. The blue dotted line denotes the MEMS. When
the linear entropy is larger than 0.5897, the MEMS will not
violate the linear steering inequality.
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FIG. 3. The maximal violation of the linear steering inequality
versus the linear entropy for the MSMS (red solid line), the MEMS
(blue dotted line), and the Werner state (red dashed line).

Besides, it is worth comparing the performance between
the two-setting steering scenario and the three-setting steering
scenario. The forms of the MSMS derived from the two- and
the three-setting linear steering inequalities are identical. But
for the Werner state in the range of ε(ρ) ∈ [1/2,2/3], the three-
setting linear steering inequality can detect steering, while
the two-setting linear steering inequality cannot. Similarly,
for the MEMS, when ε(ρ) ∈ [0.4266,0.5897], the steerable
can be tested by the three-setting linear steering inequality but
not the two-setting linear steering inequality. The reason for
such a difference is that in the three-setting scenario, the local
parties perform more measurements than in the two-setting
scenario, and hence can detect more entangled states (see also
the blue dotted curves in Figs. 1 and 3).

III. CONCLUSION

In conclusion, we derived the maximal violation of the
two-setting (three-setting) linear steering inequality and the
CHSH-like steering inequality, respectively, with a fixed state
mixedness. Three forms of MSMSs based on such different
steering inequalities were derived mathematically. Surpris-
ingly, the three forms are the same as one another and as the
MNMS in Ref. [21]. The upper bound of their linear entropy
in the range of violating the steering inequalities is 2/3, which
implies it is impossible to find a state other than (1) so that the
state mixedness exceeds 2/3 and violates the inequalities.

As comparison, we also investigated the performance of the
maximal violations of such different inequalities for the Werner
state and the MEMS. First of all, for the two-setting linear
steering inequality and the CHSH-like inequality, when the
linear entropy of the Werner state is larger than 1/2 (i.e., γ =
1/

√
2), there is no violation, which is just corresponding to the

bound of the Bell nonlocality tested by the CHSH inequality.
But for the MEMS, the two-setting linear steering inequality
can be violated when γ > 4/5, while the CHSH-like steering
inequality can be violated when γ > 1/

√
2, coinciding with

the result of the Bell nonlocal test by the violation of the CHSH
inequality. It has been clearly shown that the steerable state
of the MEMS tested by the two-setting linear inequality is a
subset of that of the MEMS tested by the CHSH-like steering

inequality. The reason is that the CHSH-like steering inequality
is the necessary and sufficient condition of steering in the two-
setting steering scenario, but the two-setting linear steering
inequality is only a sufficient condition for steerability in such
a steering scenario. Second, for the three-setting linear steering
inequality, the Werner state with ε(ρ) ∈ [0,2/3] achieves the
same amount of maximal violation as the MSMS does. The
MEMS will not violate the linear steering inequality when its
linear entropy is larger than 0.5897.

Furthermore, it is worth comparing the performance be-
tween the two-setting steering scenario and the three-setting
steering scenario. For the two- and three-setting linear steering
inequalities, identical MSMSs can be derived based on two
such steering inequalities. However, this is not true of the
Werner state while in the range of ε(ρ) ∈ [1/2,2/3], the
steerability of which can be detected by the three-setting linear
steering inequality, but cannot be detected by the two-setting
linear steering inequality. For the MEMS, similarly, when
ε(ρ) ∈ [0.4266,0.5897], the steerability can be detected by the
three-setting linear steering inequality but cannot be detected
by the two-setting linear steering inequality. The reason for
these results is that in the three-setting scenario, the parties
perform more measurements than in the two-setting scenario.
In the three-setting scenario, there are more entangled states
that can violate the steering inequality than in the two-setting
scenario. Besides, we should emphasize again that, as the linear
steering inequality in the three-settings steering scenario is
only a sufficient condition but not necessary, this form may be
a subset of all the MSMSs in the three-setting steering scenario
which is still an open question.

Moreover, it is necessary to discuss the MSMSs with respect
to different steering criteria. In this paper, the forms of MSMSs
were derived based on several different steering inequalities,
while the previous results in Ref. [22] were derived based on
the steering ellipsoid, the steering weight, and the robustness
of steering. It is intriguing to note that while in this paper the
MSMSs take the same form for various steering inequalities,
the MSMSs based on different steering criteria may be different
in general. On the other hand, the MSMSs have interesting
links with the MNMS or the MDMS. For instance, the MSMSs
based on Bell-type steering inequalities are the same as the
MNMS; the MSMS based on the steering ellipsoid or the
steering weight in Ref. [22] is the same as the MDMS in a
large range of ε(ρ) ∈ [0,2/3]. Bell-type steering inequalities
originate from Bell inequalities by detecting Bell nonlocality,
and so the MSMS derived from Bell-type steering inequalities
is closely linked with the MNMS, given that the MSMS and
the MNMS achieve the same maximal quantum violation.
Similarly, the steering ellipsoid is an effective method for
detecting quantum discord [33], and so the MSMS derived
from the steering ellipsoid or the steering weight is closely
linked with the MDMS. Moreover, the MSMS derived from
the robustness of steering is, in general, a different family of
optimal states.

The method we use in the present paper provides a par-
ticularly new perspective to understand the quantum steering
for mixed states. It is reasonable to conclude from our results
that the two-qubit MSMSs are indeed the most noise-resistant
resource for any steering-based quantum information and
computation protocols, such as one-sided device-independent
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quantum key distribution, quantum teleportation and subchan-
nel discrimination, steering-based random number generator,
etc.

ACKNOWLEDGMENTS

C.L.R. was supported by the National Key Research and
Development Program (Grant No. 2017YFA0305200), the
Youth Innovation Promotion Association (CAS, Grant No.

2015317), the National Natural Science Foundation of China
(Grant No. 11605205), the Natural Science Foundation of
Chong Qing (Grant No. cstc2015jcyjA00021), the project
sponsored by SRF for ROCS-SEM (Grant No. Y51Z030W10),
the Entrepreneurship and Innovation Support Program for
Chongqing Overseas Returnees (Grant No. cx017134), and
the fund of the CAS Key Laboratory of Quantum Information.
J.L.C. is supported by the National Natural Science Founda-
tions of China (Grant No. 11475089).

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[3] D. Cavalcanti and P. Skrzypczyk, Rep. Prog. Phys. 80, 024001
(2017).

[4] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner,
Rev. Mod. Phys. 86, 419 (2014).

[5] J. S. Bell, Physics 1, 195 (1964).
[6] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett.

98, 140402 (2007).
[7] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[8] Č. Brukner, M. Żukowski, J. W. Pan, and A. Zeilinger, Phys.

Rev. Lett. 92, 127901 (2004).
[9] S. Pironio et al., Nature (London) 464, 1021 (2010).

[10] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[11] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[12] N. A. Peters, T.-C. Wei, and P. G. Kwiat, Phys. Rev. A 70, 052309

(2004).
[13] M. Horodecki, P. Horodecki, and J. Oppenheim, Phys. Rev. A

67, 062104 (2003).
[14] M. Horodecki and J. Oppenheim, Int. J. Mod. Phys. B 27,

1345019 (2013).
[15] W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, Phys.

Rev. A 64, 030302(R) (2001).
[16] T. C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat,

W. J. Munro, and F. Verstraete, Phys. Rev. A 67, 022110
(2003).

[17] M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, Phys.
Rev. Lett. 92, 177901 (2004).

[18] N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C.
Wei, and P. G. Kwiat, Phys. Rev. Lett. 92, 133601 (2004).

[19] F. Galve, G. L. Giorgi, and R. Zambrini, Phys. Rev. A 83, 012102
(2011).

[20] C. L. Ren, H. Y. Su, Z. P. Xu, C. Wu, and J. L. Chen, Sci. Rep.
5, 13080 (2015).

[21] H.-Y. Su, C. L. Ren, J.-L. Chen, F.-L. Zhang, C. F. Wu, Z.-P.
Xu, M. Gu, S. Vinjanampathy, and L. C. Kwek, Phys. Rev. A
93, 022110 (2016).

[22] R. McCloskey, A. Ferraro, and M. Paternostro, Phys. Rev. A 95,
012320 (2017).

[23] U. Fano, Rev. Mod. Phys. 55, 855 (1983).
[24] S. Luo, Phys. Rev. A 77, 042303 (2008).
[25] M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M.

Demianowicz, A. Acín, and N. Brunner, Phys. Rev. A 92, 032107
(2015).

[26] R. Gallego and L. Aolita, Phys. Rev. X 5, 041008 (2015).
[27] J. Bowles, F. Hirsch, M. T. Quintino, and N. Brunner, Phys. Rev.

A 93, 022121 (2016).
[28] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid,

Phys. Rev. A 80, 032112 (2009).
[29] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde,

Nat. Phys. 6, 845 (2010).
[30] A. C. S. Costa and R. M. Angelo, Phys. Rev. A 93, 020103

(2016).
[31] E. G. Cavalcanti, C. J. Foster, M. Fuwa, and H. M. Wiseman,

J. Opt. Soc. Am. B 32, A74 (2015).
[32] P. Girdhar and E. G. Cavalcanti, Phys. Rev. A 94, 032317 (2016).
[33] M. J. Shi, F. J. Jiang, C. X. Sun, and J. F. Du, New. J. Phys 13,

073016 (2011).

032119-7

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.92.127901
https://doi.org/10.1103/PhysRevLett.92.127901
https://doi.org/10.1103/PhysRevLett.92.127901
https://doi.org/10.1103/PhysRevLett.92.127901
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature09008
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1103/PhysRevA.70.052309
https://doi.org/10.1103/PhysRevA.70.052309
https://doi.org/10.1103/PhysRevA.70.052309
https://doi.org/10.1103/PhysRevA.70.052309
https://doi.org/10.1103/PhysRevA.67.062104
https://doi.org/10.1103/PhysRevA.67.062104
https://doi.org/10.1103/PhysRevA.67.062104
https://doi.org/10.1103/PhysRevA.67.062104
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1103/PhysRevA.64.030302
https://doi.org/10.1103/PhysRevA.64.030302
https://doi.org/10.1103/PhysRevA.64.030302
https://doi.org/10.1103/PhysRevA.64.030302
https://doi.org/10.1103/PhysRevA.67.022110
https://doi.org/10.1103/PhysRevA.67.022110
https://doi.org/10.1103/PhysRevA.67.022110
https://doi.org/10.1103/PhysRevA.67.022110
https://doi.org/10.1103/PhysRevLett.92.177901
https://doi.org/10.1103/PhysRevLett.92.177901
https://doi.org/10.1103/PhysRevLett.92.177901
https://doi.org/10.1103/PhysRevLett.92.177901
https://doi.org/10.1103/PhysRevLett.92.133601
https://doi.org/10.1103/PhysRevLett.92.133601
https://doi.org/10.1103/PhysRevLett.92.133601
https://doi.org/10.1103/PhysRevLett.92.133601
https://doi.org/10.1103/PhysRevA.83.012102
https://doi.org/10.1103/PhysRevA.83.012102
https://doi.org/10.1103/PhysRevA.83.012102
https://doi.org/10.1103/PhysRevA.83.012102
https://doi.org/10.1038/srep13080
https://doi.org/10.1038/srep13080
https://doi.org/10.1038/srep13080
https://doi.org/10.1038/srep13080
https://doi.org/10.1103/PhysRevA.93.022110
https://doi.org/10.1103/PhysRevA.93.022110
https://doi.org/10.1103/PhysRevA.93.022110
https://doi.org/10.1103/PhysRevA.93.022110
https://doi.org/10.1103/PhysRevA.95.012320
https://doi.org/10.1103/PhysRevA.95.012320
https://doi.org/10.1103/PhysRevA.95.012320
https://doi.org/10.1103/PhysRevA.95.012320
https://doi.org/10.1103/RevModPhys.55.855
https://doi.org/10.1103/RevModPhys.55.855
https://doi.org/10.1103/RevModPhys.55.855
https://doi.org/10.1103/RevModPhys.55.855
https://doi.org/10.1103/PhysRevA.77.042303
https://doi.org/10.1103/PhysRevA.77.042303
https://doi.org/10.1103/PhysRevA.77.042303
https://doi.org/10.1103/PhysRevA.77.042303
https://doi.org/10.1103/PhysRevA.92.032107
https://doi.org/10.1103/PhysRevA.92.032107
https://doi.org/10.1103/PhysRevA.92.032107
https://doi.org/10.1103/PhysRevA.92.032107
https://doi.org/10.1103/PhysRevX.5.041008
https://doi.org/10.1103/PhysRevX.5.041008
https://doi.org/10.1103/PhysRevX.5.041008
https://doi.org/10.1103/PhysRevX.5.041008
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1038/nphys1766
https://doi.org/10.1103/PhysRevA.93.020103
https://doi.org/10.1103/PhysRevA.93.020103
https://doi.org/10.1103/PhysRevA.93.020103
https://doi.org/10.1103/PhysRevA.93.020103
https://doi.org/10.1364/JOSAB.32.000A74
https://doi.org/10.1364/JOSAB.32.000A74
https://doi.org/10.1364/JOSAB.32.000A74
https://doi.org/10.1364/JOSAB.32.000A74
https://doi.org/10.1103/PhysRevA.94.032317
https://doi.org/10.1103/PhysRevA.94.032317
https://doi.org/10.1103/PhysRevA.94.032317
https://doi.org/10.1103/PhysRevA.94.032317
https://doi.org/10.1088/1367-2630/13/7/073016
https://doi.org/10.1088/1367-2630/13/7/073016
https://doi.org/10.1088/1367-2630/13/7/073016
https://doi.org/10.1088/1367-2630/13/7/073016



