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Admissible perturbations and false instabilities in PT -symmetric quantum systems
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One of the most characteristic mathematical features of the PT -symmetric quantum mechanics is the
explicit Hamiltonian dependence of its physical Hilbert space of states H = H(H ). Some of the most important
physical consequences are discussed, with emphasis on the dynamical regime in which the system is close to
phase transition. Consistent perturbation treatment of such a regime is proposed. An illustrative application of
the innovated perturbation theory to a non-Hermitian but PT -symmetric user-friendly family of J -parametric
“discrete anharmonic” quantum Hamiltonians H = H (�λ) is provided. The models are shown to admit the standard
probabilistic interpretation if and only if the parameters remain compatible with the reality of the spectrum,
�λ ∈ D(physical). In contradiction to conventional wisdom, the systems are then shown to be stable with respect
to admissible perturbations, inside the domain D(physical), even in the immediate vicinity of the phase-transition
boundaries ∂D(physical).
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I. INTRODUCTION

The conventional textbook formulations of quantum theory
[1] were recently complemented by several innovative pictures
of the quantum world, which may be characterized as a
quasi-Hermitian [2], alias PT -symmetric [3], alias pseudo-
Hermitian, representation of quantum mechanics [4]. Except
for a few technical differences (cf. several more mathematical
updates of the reviews in [5]), all of these methodical innova-
tions were originally aimed at an amendment of the description
of the stable bound states in a closed (i.e., unitary) quantum
system, be it a ferromagnet [6], an atomic nucleus [7], or a
toy-model field [8,9]. All of these innovative, sophisticated
treatments of quantum reality remained compatible with the
quantum theory of textbooks. Still, the mere rearrangement
of mathematical ingredients helped to resolve several old
theoretical problems, say, in relativistic quantum mechanics
[10] or in our understanding of the mechanisms of the quantum
phase transitions [11,12].

The not-quite-expected user friendliness of the new for-
malism [let us call it here, for the sake of definiteness,
PT -symmetric quantum mechanics (PTQM)] inspired huge
parallel progress in multiple neighboring branches of physics.
It ranged from the more traditional quantum theory of reso-
nances in atoms, molecules, and nuclei (and, in general, in any
open quantum system; cf. [13,14]) up to the very successful
modern developments in experimental phenomenology within
classical physics and, first of all, in optics [15]. In the present
paper, we will return to the narrower, old-fashioned versions
of the PTQM philosophy, the basic ideas of which may be
traced back, in retrospective, to the Dyson’s [6] replacement
of a given, “realistic” Hamiltonian h = h† by its manifestly
non-Hermitian isospectral partner,

H = �−1h� �= H †, �†� �= I. (1)
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The Dyson’s key idea was that whenever we manage to
choose the invertible nonunitary mapping � as carrying a
nontrivial information about the system, we may make the
“preconditioned” quasi-Hermitian Hamiltonian (1) computa-
tion friendlier. The price to pay seemed reasonable. In place of
staying in the conventional picture (where the prediction of the
measurements is given by the overlaps ≺ψ |q|ψ� , where |ψ�
is the wave function while symbol q denotes the observable of
interest [16]), one merely changes the Hilbert space (cf., e.g.,
[17] for the more detailed explanations) and one evaluates the
analogous overlaps,

〈ψ |�Q|ψ〉, Q = �−1q�. (2)

Here, the symbol � = �†� = �† > 0 denotes the physical
Hilbert-space metric [2], while the time evolution of the wave
functions is assumed to be generated by the non-Hermitian
Hamiltonian (1) with a real spectrum,

i
d

dt
|ψ〉 = H |ψ〉. (3)

In applications, the Dyson’s trick proved extremely successful,
e.g., in the computational nuclear physics of heavy nuclei [7].
Still, it did not inspire any immediate developments in the
abstract quantum theory itself. One of the reasons can be seen
in the manifest non-Hermiticity of the Hamiltonian,

H † = �H �−1. (4)

Indeed, the naive use of such a “quasi-Hermitian” generaliza-
tion of the conventional Hermiticity opened the Pandora’s box
of mathematical difficulties [18,19]. Most of these questions
are open or remain only partially answered at present [20].

In the context of physics, fortunately, people managed to
circumvent the danger along two alternative lines. In one of
these directions, it was Bender and Boettcher [11] who noticed
that for a family of benchmark toy-model ordinary differential
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operator examples,

H (BB) = − d2

dx2
+ x2(ix)δ, δ > 0, (5)

the spectrum is real. On this ground, it has been conjectured
that the Dyson’s mapping h → H (BB) of Eq. (1) could have
been inverted, returning us, in principle at least, to the safe
waters of the traditional unitary quantum mechanics. An
alternative, mathematically safer approach to the problem has
been accepted in the context of nuclear physics. The authors
of Ref. [2] noticed that the major part of the formal difficulties
disappears whenever all of the eligible operators of observables
are required to be bounded, i.e., H ∈ B(H), etc.

Here we shall follow the latter strategy, leaving the math-
ematically more complete treatment of unbounded models to
mathematicians [21]. Our decision will keep the necessary
mathematical manipulations on an elementary level, facilitat-
ing our study of the question of the stability of a generic PT -
symmetric quantum system with respect to its small perturba-
tions. Our assumptions will be shown to be satisfied, in Sec. II,
by a family of illustrative PT -symmetric finite-dimensional
Hamiltonians H = H (�λ) ∈ B(H) taken from Refs. [22,23].
The variability of the physical parameters of the models is
confined to domain D(physical) ⊂ RJ which is, at any integer
parameter J = dim D, bounded. The bound-state energies are
real and observable inside, and only inside, this domain.

The discrete anharmonic form endows our benchmark
oscillators with a remarkable phenomenological as well as
formal appeal. On the formal side, every Hamiltonian of the
class will be real, asymmetric, tridiagonal, and particularly
suitable for an exhaustive discussion of stability with respect
to perturbations. On the side of phenomenology, our higher-
dimensional matrices H (N) will be shown to be interesting as an
interpolation between the two extreme scenarios, viz., between
the weak- and strong-anharmonicity dynamical regimes. In
the former case, one can split H = H (HO) + H (perturbation) and
use the routine methods, appreciating an equidistant spectrum
in the diagonal unperturbed harmonic-oscillator-like matrix
H (HO). The much more complicated analysis of the latter case
is our present interest.

For our stability-investigation purposes, the choice of the
illustrative toy models initially seemed to be far from op-
timal. The main reason was explained in [24]. Fortunately,
the removal of the obstacle (which lies in the necessity of
construction of the so-called transition matrices) appeared
feasible. The point will be presented and explained in Sec. III.
Another formal merit of the model lies in the boundedness
of its parametric domains D(physical). This feature (proven in
[22]) is welcome as it makes the phase-transition boundaries
∂D(physical) of the stability of the system experimentally as
well as theoretically accessible. It is worth adding that in
mathematics, the elements of the boundary ∂D were given
the name of “exceptional points” (EP) [19]. The original
motivation of the introduction of the concept of EPs appeared in
perturbation theory, where the domains D of parameters were
usually considered complex and, in general, unbounded [19].
In the prevalent Taylor-series form of perturbation expansions,
the knowledge of the (usually, isolated) EP singularities in
the complex domains of couplings then offered a key to the

rigorous determination of the radius of the convergence of the
series.

In the applied perturbation-expansion considerations, the
relevant EPs were almost never real. This reflected the virtually
exclusive interest in self-adjoint Hamiltonians (see, e.g., the
dedicated special issue [25] from 1982 for illustration). In the
broader context of physics it soon became clear that the use of
EPs, real or complex, may go far beyond their auxiliary role in
perturbation theory. One of the best summaries of the situation
was provided during the 2010 international conference “The
Physics of Exceptional Points” in Stellenbosch [26]. All of the
titles of the invited talks shared the generic clause “Exceptional
points and ....” The list of the samples and reviews of differ-
ent physical applications of the EP concept proved impressive.
It involved atoms and molecules in external fields, light-matter
interactions, and the processes of photodissociation, quantum
phase transitions, and the many-particle models, the questions
of stability with illustrations in magnetohydrodynamics, the
results of the experiments with the microwave billiards and
microdisk cavities, plus, last but not least, the study of the Bose-
Einstein condensates and of the generic quantum phenomena
related to the spontaneous breakdown of PT symmetry.

Such a diversity enhances the importance of the EPs in
physics [27]. At the same time, the necessary ad hoc adap-
tations of the related mathematics could lead to misunder-
standings. We shall restrict attention, therefore, to the specific
subset of applications in which a closed quantum system
exhibits a spontaneously unbroken PT symmetry. We shall
assume that the domain D of variable parameters as well as
its EP boundaries are real and bounded. This will enable us to
construct a strong-coupling perturbation recipe in which

H (�λ) = H (�λ(EP )) + V(perturbation). (6)

This means that the unperturbed Hamiltonian will already
be manifestly unphysical and nondiagonalizable, with its
parameters �λ(EP ) ∈ ∂D(physical) not lying inside the domain of
applicability of quantum theory. In Sec. IV, we shall clarify
the apparent contradiction by studying, in detail, the most
characteristic case of the unperturbed Hamiltonian containing
just the single Jordan block of a finite dimension. Admitting
just the finite values K < ∞ of this dimension, we will
simplify the technicalities and we will explain the main specific
features of the resulting singular perturbation theory. We will
show that even when the unperturbed Hamiltonian has the
nondiagonal, unphysical, Jordan-block form, the evaluation
of perturbation corrections themselves remains feasible, com-
paratively user friendly, and fully analogous to the more
conventional degenerate versions of the textbook Rayleigh-
Schrödinger perturbation theory.

The presentation of these methodical results will be com-
plemented, in Sec. V, by the explicit description of pertur-
bation approximations for a few low-dimensional models.
After an exhaustive analysis of these toy models living in
finite-dimensional Hilbert spaces, we will be able to conclude
that the quantum unitary-evolution physics, which is “hidden”
behind the non-Hermitian operators of observables, is sound
and acceptable. In subsequent Sec. VI, devoted to discussion,
we shall point out, in particular, that the problem of the
sensitivity of the results to perturbations is highly nontrivial
and that the key role is played by a self-consistently deter-
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mined, interaction-dependent measure ε of the smallness of
the perturbation.

The last Sec. VII is the summary. We will reemphasize there
that one of the most important consequences of the constructive
use of the perturbation-approximation strategy near the EP
singularities should be seen in the resolution of many puzzles
caused by the non-Hermiticity of the operators and matrices
[28]. In the PTQM setting, the situation is still rather specific
because the new factor which enters the game is the metric
�. Whenever it exists, i.e., whenever the evolution remains
unitary and whenever PT symmetry remains unbroken, the
nontriviality of the metric induces an anisotropy in the physical
Hilbert space H. In other words, in the PTQM setting, the
physical quasi-Hermiticity constraints upon perturbations are
counterintuitive. Still, from the point of view of the control
of stability, these “hidden Hermiticity” constraints remain
fully analogous to the more traditional Hermiticity constraints
encountered in conventional quantum mechanics.

II. BENCHMARK MODEL

In Ref. [28], one finds a number of persuasive examples in
which the knowledge of the spectrum σ (H ) offers extremely
poor and unreliable information about the results of the
evolution which is controlled by a manifestly non-Hermitian
(i.e., in general, non-normal) generator H in Eq. (3). In these
examples, the key role is played by the so-called pseudospectra
σε(H ). They are recommended as the main mathematical tool
of an amendment of the information. In a broad variety of appli-
cations, this tool proved able to characterize the consequences
of the generic small perturbations, i.e., the consequences of the
replacement of H by the set of its perturbed versions H + V

such that V is small, ||V || < ε.
The main weakness of this approach is that it is not

applicable to the PTQM models in which the Hilbert-space
metric is Hamiltonian dependent, i.e., not only nontrivial
[i.e., such that � = �(H ) �= I ], but also anisotropic [i.e.,
such that its spectrum σ (�) is nondegenerate]. Moreover, the
construction of the metric appears prohibitively complicated
in the prevailing majority of the examples with nontrivial
pseudospectra. This implies that the only feasible studies of
the influence of perturbations seem to be restricted to the
matrix (i.e., finite-dimensional) models. Indeed, they trivially
satisfy the above-discussed physical (i.e., bounded-operator)
constraints. In addition, the use of the finite, parameter-
dependent matrices H (N)(λ) will also make the fundamental
linear algebraic time-independent Schrödinger equation

H (N)(λ) |ψ (N)
n (λ)〉=E(N)

n (λ) |ψ (N)
n (λ)〉, n = 0,1, . . . ,N − 1,

(7)
exactly solvable (cf., e.g., [29]). In what follows, we shall there-
fore accept such a strategy of circumventing the functional-
analytic subtleties.

A. Weakly non-Hermitian dynamical regime

For illustrative purposes, we shall use the family

H (2)(a) =
[

1 a

− a −1

]
, H (3)(a) =

⎡
⎣ 2 a 0

− a 0 a

0 −a −2

⎤
⎦,

H (4)(a,b) =

⎡
⎢⎣

3 b 0 0
−b 1 a 0
0 −a −1 b

0 0 −b −3

⎤
⎥⎦,

H (5)(a,b) =

⎡
⎢⎢⎢⎣

4 b 0 0 0
− b 2 a 0 0
0 −a 0 a 0
0 0 −a −2 b

0 0 0 −b −4

⎤
⎥⎥⎥⎦, . . . , (8)

of the real and finite-dimensional tridiagonal matrices. This
set was introduced in Ref. [22]. Besides the user-friendly
nature of these non-Hermitian but PT -symmetric real toy-
model Hamiltonians, their other merits lie in an enormous
phenomenological flexibility (i.e., multiparametric variability)
and in their sparse-matrix tridiagonality with an intuitive
nearest-neighbor-interaction appeal. An additional benefit is
that the set ∂D of all of the relevant phase-transition points
of these models has a smooth and topologically trivial shape
of surface of a certain deformed hypercube with protruded
vertices at any matrix dimension N < ∞ (cf. the proof in [23]).

From the conventional point of view, all of the weakly
non-Hermitian forms of Hamiltonians (8), i.e., of the multi-
parametric illustrative tridiagonal matrices

H (2J ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2J − 1 z 0 . . .

−z
. . .

. . .
. . .

...

0
. . . 3 b 0 . . .

...
. . . −b 1 a 0 . . .

. . . 0 −a −1 b 0 . . .

. . . 0 −b −3
. . .

...
. . .

. . .
. . . z

. . . 0 −z 1 − 2J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

and

H (2J+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2J z 0 0 0 0 0

− z
. . .

. . . 0 0 0 0

0
. . . 2 a 0 0 0

0 0 −a 0 a 0 0

0 0 0 −a −2
. . . 0

0 0 0 0
. . .

. . . z

0 0 0 0 0 −z −2J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)

can be perceived as small and fully regular perturbations of
certain shifted and truncated toy-model harmonic oscillators
having the strictly equidistant spectrum. All of these multi-
parametric toy models are eligible as the generators of the
standard unitary quantum evolution.

B. Strongly non-Hermitian regime

The energy spectra of models (9) and (10) were proven
real and nondegenerate (i.e., in principle, observable) if and
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only if the parameters lie inside a compact physical stability
domain D(J ) [22]. The boundary of this domain of stability
(i.e., the hypersurface ∂D) has been shown to be compact. Its
extreme points of maximal non-Hermiticity were localized,
non-numerically, as lying on a circumscribed hypersphere (at
odd N = 2J + 1) or on a prolate hyperellipsoid (at even N =
2J ).

In the more detailed study [23], it has been found that
the separation of the Hamiltonians into two special cases (9)
and (10) by the parity of their dimension N is not needed.
After a renumbering z → g1, ..., b → gJ−1 and a → gJ

of the couplings, we introduced a redundant parameter t ∈
(0,1) (meaning “time” or “strength of perturbation”) and we
admitted a “slow” (presumably, adiabatic) variability of the
couplings,

gn = gn(t) = gn(0)
√

[1 − ξn(t)],

ξn(t) = t + t2 + · · · + tJ−1 + Gnt
J ∈ (0,1), (11)

gn(0) =
√

n (N − n), n = 1,2, . . . ,J. (12)

This enabled us to specify the shape of the boundary using the
computer-assisted algebra.

During all of our considerations concerning the small,
regular non-Hermitian, alias quasi-Hermitian, perturbations
in Eqs. (9) and (10), we have to keep in mind that our
PT -symmetric Hamiltonian H just provides one of the user-
friendliest representations of some hypothetical, prohibitively
complicated, but entirely traditional self-adjoint operator h

(cf. Eq. (1) or Ref. [2]). Thus, our present non-Hermitian
but PT -symmetric time-evolution Schrödinger equation (3)
must be perceived as strictly equivalent to its hypothetical
and presumably untractable textbook alternatives, with the
equivalence between the two pictures determined by their
mutual “Dyson’s” mapping (1). The difference between the
use of H and h is, in some sense, purely technical. Still,
a strong preference of the use of non-Hermitian H may be
recommended whenever the non-Hermiticities become large,
i.e., typically when the parameters get close to the EP phase-
transition boundary of quantum stability.

The strong-coupling version of models (9) and (10) has
been found to be unitary (i.e., the reality of the spectrum was
guaranteed) if and only if the parameters lie inside a physical
domain D(J ) ⊂ RJ [22]. All of the exceptional points forming
the quantum phase-transition boundary ∂D(J ) could have been
classified by the number K of the energy levels which merge
at them and, subsequently, complexify. Thus, at J = 1, the
domain D(J ) is an interval (with the two energies merging at
its two ends); at J = 2, the domain D(J ) is a deformed square
with the pairs of energies merging at its edges and with all four
energies merging at its four vertices; and at J = 3, we deal with
a deformed cube with protruded edges and protruded vertices,
etc.

In such a visualization of the guarantee of unitarity, the
maximally non-Hermitian extreme taking place at a vertex
represents the merger of the set of energy levels degenerating
to a single real value, gauged, for simplicity, to zero. This is
paralleled by the convergence of every Hamiltonian in the list

(8) to the respective Jordan-block-equivalent matrix,

H
(2)
(EP ) =

[
1 1

− 1 −1

]
, H

(3)
(EP ) =

⎡
⎣ 2

√
2 0

− √
2 0

√
2

0 −√
2 −2

⎤
⎦,

H
(4)
(EP ) =

⎡
⎢⎢⎣

3
√

3 0 0
−√

3 1 2 0
0 −2 −1

√
3

0 0 −√
3 −3

⎤
⎥⎥⎦,

H
(5)
(EP ) =

⎡
⎢⎢⎢⎢⎣

4 2 0 0 0
− 2 2

√
6 0 0

0 −√
6 0

√
6 0

0 0 −√
6 −2 2

0 0 0 −2 −4

⎤
⎥⎥⎥⎥⎦, (13)

etc. Now, we will ask what happens in the vicinity of these
strong-coupling limiting extremes under perturbations, pro-
vided that we stay inside the physical domain D of parameters.

III. PERTURBATION-INDEPENDENT
TRANSITION MATRICES

Let us first recall the definition

HQ = QS (14)

of the Jordan-block representative S of a given non-Hermitian
matrix H . In this relation, the intertwiner Q is called the
transition matrix.

A. Solvable model in two dimensions

In the limit a → 1, the first item in the sequence of real
matrices (8) acquires, after an auxiliary shift of spectrum s,
the most elementary tilded form,

H (2)(a) + sI → H̃0 =
[−1 + s 1

−1 1 + s

]
. (15)

The tilde gets removed when we use prescription (14) and move
to the Jordan-block representative S = Q−1H̃0Q = H0 of the
unperturbed Hamiltonian, with

Q = Q
(2)
(EP ) =

[
1 1

−1 0

]
, H0 = H

(2)
0 =

[
s 1
0 s

]
. (16)

In time-independent Schrödinger equation (7), we now abbre-
viate |ψ1〉 = x and |ψ2〉 = y. For any H = H0 + W , i.e., in
any vicinity of the Jordan block H

(2)
0 , we can now assume

that there exists a measure λ  1 of the smallness of the
perturbation, Wm,n = O(λ). Then, the entirely general real
form of the perturbation,

W =
[
α β

γ δ

]
, (17)

can be inserted in Schrödinger equation (7). This makes it
equivalent to the two linear relations

(α − ε)x + (1 + β)y = 0,

γ x + (δ − ε)y = 0.

032114-4



ADMISSIBLE PERTURBATIONS AND FALSE … PHYSICAL REVIEW A 97, 032114 (2018)

We eliminate y = −(α − ε)x/(1 + β) from the first line, insert
it in the second line, and solve for the exact energy,

ε± = 1/2 δ + 1/2 α ± 1/2
√

δ2 − 2 δ α + α2 + 4 γ + 4 γ β

= ±√
γ + O(λ).

The following conclusions are imminent.
(i) Models with vanishing γ = 0 are less interesting and not

to be discussed immediately.
(ii) For the negative parameters γ < 0 in the perturbation,

we get the manifestly complex energies. The unitarity and
stability will be lost. This is true for an arbitrarily small size
of the perturbation when measured in an usual manner, i.e., in
terms of any conventional norm.

(iii) For positive γ > 0, the first-order corrections are real,
ε± = ±λ1/2 + O(λ). Thus, the parameter lies inside D and
the quantum system itself remains stable, in the leading-order
approximation at least.

(iv) In the higher-order computations, it will be sufficient
to replace the standard Taylor-series perturbation-series ansatz
by the Puiseux series expansion in the powers of λ1/2 (cf. also
Ref. [30]).

B. Tridiagonal nondiagonalizable EP Hamiltonians

The passage through a phase-transition interface is equiva-
lent to the coincidence of parameter λ with its exceptional-
point value λ(EP ). In this limit, one observes a confluence
of eigenenergies and also of the related eigenvectors. The
diagonalizability of the Hamiltonian is lost. A number of
illustrative examples may be found in Kato’s book [19]. Let
us recall that for a Hermitian Hamiltonian H (λ), the EP
singularities λ(EP ) will be complex. They will lie out of the
range of variability of the real parameter λ. From an opposite
perspective, whenever we ask for the existence of the quantum
phase transitions, i.e., for the real EP values λ = λ(EP ),
the non-Hermiticity of the Hamiltonian matrix in its vicinity
becomes necessary.

The phenomenon of the EP-generated phase transition
becomes particulary interesting when the merger of the ob-
servable discrete eigenvalues involves more than two items,
i.e., say, K � 2 energy levels at once. Without the inessential
spectral shift (i.e., with s = 0), we may now rewrite Eq. (14)
as an explicit definition of the “unperturbed” Jordan block
S = H0,

H0 = [
Q

(K)
(EP )

]−1
H

(K)
(EP ) Q

(K)
(EP ). (18)

This formula can be perceived as an introduction of the Jordan-
block-related unperturbed basis. By construction, it will be
composed of the columns of the respective transition matrices.
The construction of these matrices was formulated as an open
problem in Ref. [24]. Now, the solution can be sampled at
K = 3,

Q
(3)
(EP ) =

⎡
⎣ 2 2 1

−2
√

2 −√
2 0

2 0 0

⎤
⎦,

as well as at K = 4 and K = 5,

Q
(4)
(EP ) =

⎡
⎢⎢⎣

6 6 3 1
−6

√
3 −4

√
3 −√

3 0
6
√

3 2
√

3 0 0
−6 0 0 0

⎤
⎥⎥⎦,

Q
(5)
(EP ) =

⎡
⎢⎢⎢⎣

24 24 12 4 1
−48 −36 −12 −2 0

24
√

6 12
√

6 2
√

6 0 0
−48 −12 0 0 0
24 0 0 0 0

⎤
⎥⎥⎥⎦, . . . . (19)

It is also not too difficult to extend this construction using
computer-assisted algebra. We shall need some of these matri-
ces in what follows.

C. Exact solution for K = N = 3

In a way inspired by the second item in (8), let us consider

H̃0 =
⎡
⎣−2 + s

√
2 0

−√
2 s

√
2

0 −√
2 2 + s

⎤
⎦ (20)

as well as its Jordan-block transform

H0 =
⎡
⎣s 1 0

0 s 1
0 0 s

⎤
⎦. (21)

With an additional abbreviation of |ψ3〉 = z, we will again take
into consideration, along the same lines as above, an arbitrary
real-matrix perturbation,

W =
⎡
⎣α ν δ

μ β σ

τ ρ γ

⎤
⎦. (22)

We shall assume that this perturbation is not too large, Wm,n =
O(λ). The Schrödinger equation then evaluates to the three
linear relations,

(α − ε)x + (1 + ν)y + δ z = 0,

μ x + (β − ε)y + (1 + σ )z = 0,

τ x + ρ y + (γ − ε)z = 0,

where we eliminate

y = −xα − xε + δ z

1 + ν

from the first line, insert it in the second and the third lines,
eliminate

z = x(−μ − μν + β α − β ε − ε α + ε2)

−δ β + δ ε + 1 + ν + σ + σ ν

from the second line, insert it in the third line, and, in the
normalization with x = 1, we obtain the ultimate secular
equation

τ−ρ

[
α−ε+δ(−μ−μν + β α−β ε − ε α+ε2)

−δ β + δ ε+1+ν+σ+σ ν

]
(1 + ν)−1

+ (γ − ε)(−μ − μν + β α − β ε − ε α + ε2)

−δ β + δ ε + 1 + ν + σ + σ ν
= 0.
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This equation defines the energies exactly. In the small-
perturbation regime, such an equation can be reduced to its
simplified form,

τ − ρ [α − ε + δ (−μ − μν + β α − β ε − ε α + ε2)]

+ (γ − ε)(−μ − μν + β α − β ε − ε α + ε2) = 0,

and, after further reduction,

τ − ρ [α − ε + δ (−μ − β ε − ε α + ε2)]

+ (γ − ε)(−μ − β ε − ε α + ε2) = 0.

Assuming that 1 � |ε| � |λ|, we get the final formula τ −
ε3 = 0 . We have a choice between three eligible small-
perturbation roots of the same size. Once we select the real
one,

ε = 3
√

τ , (23)

our perturbative bound-state solution remains compatible with
the unitary-evolution requirement. The previous conclusions
need not be modified too much.

(1) The discussion of the models with vanishing τ = 0 will
be skipped again. They might have been discussed, if asked
for, easily.

(2) For a real τ �= 0, there always exists a unique real
leading-order solution. The other two roots are complex and
have to be discarded as incompatible with the unitarity and
with the stability of the evolution.

(3) The generic corrections are proportional to ε = λ1/3

so that, again, the standard Taylor-series perturbation-series
ansatz must be replaced by the Puiseux series.

We have to add that both of the spurious solutions of
the perturbative Schrödinger equation reflect the action of an
inadmissible perturbation under which the system would lose
its operational meaning. Along this line of evolution, the given
Hamiltonian as well as the related physical Hilbert space would
cease to exist. There will also be no operator of metric �.
Consequently, the metric-dependent norm of the perturbation
will be undefined. The related perturbation itself can only be
characterized as unacceptable, mathematically divergent, and
carrying no physical meaning anymore.

IV. GENERAL SINGULAR PERTURBATION THEORY

One of the most characteristic properties of the anomalous
limits H (λ(EP )) of a generic perturbed Hamiltonian (6), with
the EP parameter λ(EP ) being real or not, is that these operators
cannot be diagonalized. This is a key difference from the diag-
onalizable operators H used in the conventional perturbation
calculations. A bridge connecting the two areas is to be sought
in relation (14). It characterizes the action of H in both of
the diagonalizable and nondiagonalizable cases. In the former
scenario, the array Q of the eigenvector columns is complete
and the spectrum-representing matrix S is diagonal plus, in all
of the Hermitian and quasi-Hermitian cases, real. In the latter
scenario, a key to the search for parallels will now be sought
in the low-dimensional examples.

A. Unitarity-compatible perturbations

The general pattern of the behavior of our toy models
near their EP extremes with any K � 2 is now obvious.
We can expect that in the PTQM setting, the perturbation-
correction strategy will therefore prove as productive as in
the various conventional Hermitian theories. We also believe
that its PTQM versions will be able to clarify the essence
of numerous phenomena. In the literature devoted to the
mathematics of non-Hermitian Hamiltonians, one can find a
number of attempts in this direction [31]. Pars pro toto, let
us recall the widespread, above-mentioned conjecture that for
non-Hermitian Hamiltonians, the concept of spectrum is much
less relevant and that its use should be replaced by the more or
less purely numerical constructions of the pseudospectra [28].
We believe that in the very specific PTQM setting, such a type
of scepticism is not entirely acceptable, and that our present
perturbation-approximation concept could be more useful.

Originally, the EPs only served as an insightful tool in
the conventional Hermitian perturbation theory. Recently, the
massive turn of attention of physicists to the simulations of
the quantum phase transitions by the classical-physics means
in the laboratory [32] was also followed by the growth of
interest in the EP-related mathematics [30,33]. For this reason,
we believe that the implementation of the basic ideas of
perturbation theory will prove efficient especially near the
boundaries of stability of the quantum systems exhibiting the
spontaneously unbroken PT symmetry.

B. Jordan block H0 of any finite dimension

With the vector indices running from 1 toK , let us normalize
x = |ψ1〉 = 1, abbreviate |ψj 〉 = yj−1, j = 2,3, . . . ,K , and
introduce an artificial quantity yK = 0. The K × K matrix
Schrödinger equation,

(H0 + W )| �ψ〉 = ε | �ψ〉,
for the K-dimensional ket vector | �ψ〉 with Jordan block H0

(and s = 0) may then be re-arranged into the K × K matrix-
inversion form,

(L + Z)�y = �r, �r =

⎛
⎜⎜⎝

ε − W1,1

−W2,1
...

−WK,1

⎞
⎟⎟⎠, �y =

⎛
⎜⎜⎝

y1

y2
...

yK

⎞
⎟⎟⎠, (24)

with

L = L(ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

−ε 1 0
. . .

...

0 −ε
. . .

. . . 0
...

. . .
. . . 1 0

0 . . . 0 −ε 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

L−1 = L−1(ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

ε 1 0
. . .

...

ε2 ε
. . .

. . . 0
...

. . .
. . . 1 0

εK−1 . . . ε2 ε 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (25)
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and with the ad hoc “shifted” interaction matrix

Z =

⎛
⎜⎝

W1,2 W1,3 . . . W1,K+1

W2,2 W2,3 . . . . . .

. . . . . . . . . . . .

WK,2 WK,3 . . . WK,K+1

⎞
⎟⎠ (26)

representing a small O(λ) perturbation such that the “arti-
ficially added” matrix elements are trivial, Wj,K+1 = 0 at
all j .

We may easily solve Eq. (24) in closed form,

�y = L−1(ε)�r − L−1(ε)ZL−1(ε)�r + · · · . (27)

In a way inspired by the illustrative examples with K � 4,
it also makes sense to assume that the size of the first-order
energy correction ε is small, but still larger than the measure λ

of the smallness of the individual elements of the perturbation
matrix W or Z.

In the first-order approximation, it is sufficient to keep just
the first term of the right-hand side of Eq. (27). As a test, it is
instructive to check that such a solution reproduces all of the
special-case results of the preceding sections.

In both of the exact and approximate settings, our vector �y
contains a not-yet-specified free parameter ε. In fact, the value
of this parameter is not free because it is to be determined from
the last, “artificial quantity” constraint,

yK (ε) = 0. (28)

Precisely such a condition was imposed, at the very beginning
of our considerations, upon the lowermost, redundant auxiliary
component of �y. This is a self-consistency condition which now
plays the role of a secular equation determining all of the real
or complex eligible energies εj , with j = 1,2, . . . ,K .

C. Wave functions

In the K � 4 illustrations of the present constructive recipe,
we saw that in the scale given by λ, the magnitude of the roots
εj can vary with the disappearance of certain elements in the
matrix of perturbations W or Z. Still, in all of these special
cases, we only have to replace the conventional Taylor-type
ansatz by its Puiseux (i.e., fractional-power-series) generaliza-
tion, keeping in mind that the selection between the roots of the
secular equation is the selection between the branches of the
solution which are required to be compatible with the reality
(i.e., observability) of the energies.

In Sec. III, we replaced the standard diagonalizable un-
perturbed Hamiltonian by its singular Jordan-block general-
ization H0. Although this made the conventional Rayleigh-
Schrödinger perturbation expansions inapplicable, their judi-
cious replacement by the Puiseux power series has been shown
to work properly. From the point of view of quantum physics,
the feasibility of such a generalization is fortunate.

Details were displayed for the single occurrence of a K-
dimensional Jordan block H0. The perturbations were as-
sumed, for the sake of simplicity, real and bounded,W = O(λ).
An important byproduct of our analysis was the observation
that the generic formal measure

ε(K) = λ1/K (29)

of the influence of W has to be replaced often by one of its
alternative versions. The reason is that formula (29) only holds
when the lower leftmost matrix element of the perturbation
matrix does not vanish, WK,1 �= 0. Otherwise, another, larger
parameter ε(K) = O(λ1/(K−1)) will arise from the formalism in
a way which will be sampled below. This means that even
if we guarantee that the matrix elements Wm,n = O(λ) are
all “sufficiently small” at all of the subscripts, we come to
the conclusion that the extent of influence of perturbation
W is never sufficiently reliably characterized by the single
parameter. Such an observation extrapolates the above low-
dimensional experience to any K . Its general validity finds its
rigorous proof in the language of Sec. III: The leading-order
truncated version of Eq. (27) implies that at any Jordan-block
dimension K ,

|ψj 〉 = εj−1 + O(εj ), j = 1,2, . . . ,K. (30)

The insertion of this estimate in secular Eq. (28) reconfirms the
generic validity of formula (29). The result leading to formula
(30) contributes to a deeper understanding of the failure of
the naive, norm-determined perception and estimates of the
influence of perturbations. This result indicates that with the
growth of the strength λ of the perturbation, the “unfolding”
of the wave function components proceeds step by step, in
a hierarchical ordering, but in a way which depends on the
detailed matrix structure of the perturbation.

D. Four-by-four matrix illustration

The singular EP nature of our toy-model choices of H0

having the Jordan-block form will be felt by the system even
if we regularize the unperturbed Hamiltonian by its very
small change and shift inside D. For all of the sufficiently
strongly non-Hermitian PT -symmetric Hamiltonians H (λ),
we can expect a survival of the necessity of an appropriate
reinterpretation of the notion of the “sufficient smallness” of
perturbations, reflecting the generic component-suppression
pattern (30). For this reason, the insight provided by the
low-dimensional special cases is still useful.

In the direct continuation of the K � 3 studies, let us now
turn our attention to the next, unperturbed nondiagonalizable
matrix with K = 4,

H̃0 =

⎡
⎢⎢⎣

−3 + s
√

3 0 0
−√

3 −1 + s 2 0
0 −2 1 + s

√
3

0 0 −√
3 3 + s

⎤
⎥⎥⎦. (31)

Once it gets replaced by its two-diagonal Jordan-block alter-
native,

H0 =

⎡
⎢⎣

s 1 0 0
0 s 1 0
0 0 s 1
0 0 0 s

⎤
⎥⎦, (32)

the stability and unitarity can be studied and guaranteed via
the specification of the admissible, nondivergent perturbations,
along the same lines as above. Still, in order to deepen our
insight in the general tendencies, let us now contemplate the
next entirely general real perturbation matrix with 16 free
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parameters,

W =

⎡
⎢⎣

α1 μ2 ν3 δ

β1 α2 μ3 ν4

γ1 β2 α3 μ4

τ γ2 β3 α4

⎤
⎥⎦.

Having added the fourth abbreviation |ψ4〉 = w, we can reduce
the Schrödinger equation to the linear algebraic quadruplet,

(α1 − ε)x + (1 + μ2)y + ν3z + δ w = 0,

β1x + (α2 − ε)y + (1 + μ3)z + ν4w = 0,

γ1x + β2y + (α3 − ε)z + (1 + μ4)w = 0,

τ x + γ2y + β3z + (α4 − ε)w = 0.

In the normalization such that |ψ1〉 = x = 1, we eliminate

y = ε − ν3z − δ w + higher-order corrections,

z = ε2 − ν4w + higher-order corrections,

and

w = ε3 − γ1 + higher-order corrections,

and obtain the secular equation which is rather long but, in the
leading order, degenerates to the quartic polynomial in ε,

τ + γ1ε + γ2ε − ε4 = 0.

This yields the two eligible real roots of the same size,

ε± = ± 4
√

τ . (33)

The spirt of the previous conclusions survives.
(1) The K = 4 case is suitable for an illustration of what

happens when τ = 0. Such a choice yields the single “unde-
cided” option ε = 0 and the modified leading-order relation,

ε3 = γ1 + γ2. (34)

The unitarity will survive when one of the three leading-order
roots remains real.

(2) For τ �= 0, there exist two real leading-order energy
corrections. The other two solutions are complex and they have
to be discarded. The corrections prove proportional to ε± ≈
λ1/4 so that the Puiseux-series ansatz should be employed [33].

In the less restrictive context of open quantum systems, one
only needs the construction of the energies and wave functions.
In the more restrictive framework of the study of the stable
quantum systems considered in the unitary PT -symmetric
setting, it is also necessary to select or construct a suitable
metric operator �. Only such an additional construction makes
the theory complete and testable. In the next section, a few
comments will be made in this spirit.

V. ACCEPTABLE, OPERATIONALLY DEFINED
PERTURBATIONS

The hierarchy (30) of the smallness of the wave-function
corrections is an important innovative result of our singular per-
turbation considerations. Still, new open questions are evoked
by our tacit assumption that the tilded-to-untilded simplifica-
tion of H0 [cf. the transformation of Eq. (15) into Eq. (16), etc.]
does not really change the way of our gauging the size of the

perturbation. With an ambition of giving all of these concepts
a meaningful operational interpretation, we will now return to
the illustrative family (8) of multiparametric non-Hermitian
anharmonic-oscillator-resembling N × N tridiagonal-matrix
Hamiltonians H (�λ) which remain quasi-Hermitian in a certain
well-defined J = [N/2]-dimensional domain D of their free
real parameters.

One of the most relevant questions concerning the perturbed
PT -symmetric systems now reads as follows: How should
we understand the notion of “small” perturbation? We already
know that the answer will depend on whether we insist on
the reality of spectrum (in the unitary quantum theory) or not
(everywhere else). The analysis is perceivably easier in the
latter case because once we follow the Kato’s book and once we
interpret energies as certain analytic functions of the parameter,
we reveal that the reality of the energies (i.e., the unitarity of
the quantum evolution) is lost in any, arbitrarily small, complex
vicinity of a typical (e.g., square-root) EP singularity.

The emergence of such a paradox is not surprising because,
even near the simplest (viz., square-root) EP singularity, the
pair of energies E± ∼ ±√

λ − λ(EP ) lives on a two-sheeted
Riemann surface. For the real parameters, only the values of
λ > λ(EP ) can lie inside D and keep the energies real. We can
say that no perturbation with λ leaving the interior of D can be
considered small. The elementary reason is that for λ /∈ D, the
necessary physical Hilbert space H(H ) in which the physics
is defined does not exist at all.

For λ ∈ D, the construction ofH(H ) need not be unique [2].
This ambiguity will be reflected by the ambiguity of the norm
of a given perturbation, leading to the relevant differences,
especially from the point of view of an experimentalist. We
can only conclude that in contrast to the Hermitian interaction
Hamiltonians, their non-Hermitian analogues need not admit
a clear and reliable separation of perturbations into their
“sufficiently small” and “too large” subcategories.

A. N = 2

For our present toy models, fortunately, the specification
of the interior of D is feasible, sometimes even by purely
non-numerical means [23]. This enables us to pay constructive
attention even to the extreme dynamical scenarios in which the
parameters coincide with, or lie close to, one of the vertices
of the EP boundary ∂D. In its vicinity, naturally, the impact
of the non-Hermiticity of perturbation V is maximal [22].
For illustration, the first, one-parametric Hamiltonian-operator
element of sequence (8) can be reparametrized in light of
Eq. (13) and of Eq. (11) with optional G1 = 1,

H (2)[a(t)]=
[

1
√

1 − t

− √
1 − t −1

]
=H

(2)
(EP ) + V

(2)
(perturbation)(t).

(35)

The Schrödinger equation (7) with λ = O(t), N = 2J , nor-
malization |ψ (2)

1 (t)〉 = 1, and single unknown wave-function
component y = |ψ (2)

1 (t)〉 leads to the two exact bound-state
solutions,

E± = ±√
t, y± = −1 ± √

t√
1 − t

. (36)
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This result confirms the validity of the singular perturbation
theory of Sec. III A. What is now new is the choice of the special
perturbation regime based on the use of single parameter t ∈
(0,1) measuring the strength of the perturbation. This choice
guarantees the reality of the spectrum. Inside D, it interpolates
between the strong-coupling limit of the nondiagonalizable
Hamiltonian H0 at t = 0 and the weak-coupling diagonal-
Hamiltonian limit at t = 1. This choice also determines the
perturbation matrix,

V
(2)

(perturbation)(t) =
[ √

1 − t − 1
√

1 − t − 1
2 − 2

√
1 − t 1 − √

1 − t

]

= t

2

[−1 −1
2 1

]
+ O(t2). (37)

It is rather counterintuitive that the eigenvalues
±

√
2

√
1 − t − 2 + t of this unitarity-compatible interaction

term are purely imaginary. This is a peculiarity which also
extends to the higher matrix dimensions.

B. N = 3

The second one-parametric Hamiltonian in sequence (8)
can be reparametrized in the same manner as above,

H (3)[a(t)] =
⎡
⎣ 2

√
2
√

1 − t 0
−√

2
√

1 − t 0
√

2
√

1 − t

0 −√
2
√

1 − t −2

⎤
⎦

= H
(3)
(EP ) + V

(3)
(perturbation)(t). (38)

In the domain of small t ≈ 0, the three exact bound-state
energies,

E0 = 0, E± = ±2
√

t, (39)

remain small as expected. A similar expectation is also fulfilled
by the order of smallness of the partner of Eq. (22), i.e., by the
N = 3 analog of Eq. (37),

V
(3)

(perturbation)(t) = t

2

⎡
⎣−2 −1 0

4 0 −1
0 4 2

⎤
⎦ + O(t2). (40)

What we detect here is the disappearance of the leftmost lowest
matrix element. This means that we have γ = 0 in Eq. (23) so
that we have to use ε ∼ t1/2 rather than the generic ε(3) ∼ t1/3.
Otherwise, nothing really new is observed at N = 3 since one
of the energies is a t-independent spectator. At the higher J ′s,
for similar reasons, one could therefore restrict attention to the
matrices of even dimensions N = 2J .

C. N = 4

In the leading-order approximation, it is sufficient to work
with the two trivial parameters Gn = 0 in Eq. (11). Along the
same lines as above, we obtain the exact secular equation 9 t2 −
10 ε2t + ε4 = 0 which is solvable in closed form,

E±,± = ±(2 ± 1)
√

t . (41)

Similarly, the routine evaluation of the product[
Q

(4)
(EP )

]−1
H (4)[a(t),b(t)]Q(4)

(EP )

yields the N = 4 analog of formula (40),

V
(4)

(perturbation)(t) = t

2

⎡
⎢⎣

−3 −1 0 0
6 −1 −1 0
0 8 1 −1
0 0 6 3

⎤
⎥⎦+O(t2). (42)

Several consequences can be formulated. First, in the manner
which extends to all of the matrix dimensions N < ∞, the
perturbation expansions will merely contain the integer and
half-integer powers of t . This is connected with the fact that
after the transitions to the Jordan block H0, the leading-order
form of perturbation matrix W remains tridiagonal.

Our choice of the illustrative anharmonic oscillators has
been fortunate in the sense that they all admit the construc-
tion of a smooth path connecting the common, Rayleigh-
Schrödinger-tractable weak-coupling dynamical regime where
gn(t) ≈ 0, i.e., ξn(t) → 1−, with the extremely non-Hermitian
but still safely physical strong-coupling dynamical regime.
Unambiguously, the smallness of the unitarity-compatible
perturbations was then measurable by the smallness of our
“redundant” parameter, t ≈ ξn(t) � 0.

VI. DISCUSSION

One of the most exciting features of any non-Hermitian
but PT -symmetric model, quantum [3] or nonquantum [15],
should be seen in its capability of living near, or passing
through, an instability. The description of these processes
is controlled by Schrödinger equation (3) where the non-
Hermiticity of the (say, single-parameter-dependent) Hamilto-
nian H = H (t) enables us to modify the dynamics by a small
change of t . In particular, a sudden jump can occur from the
unitary-evolution scenario with the real-energy spectrum to a
broken-symmetry dynamical regime [11]. A complexification
of the energies then implies a sudden loss of the unitarity of the
evolution. One of the possible phase transitions, alias “quantum
catastrophes,” [34] is encountered.

In our present paper, we addressed precisely the problem
of suppression and control of the latter type of sensitivity
to perturbations. In a natural continuation of such a study,
one might imagine a further continuation of this develop-
ment of the theory in two directions. In one of them, the
constructions would be extended to the systems with several
Jordan blocks in the Hamiltonian. This would closely parallel
our present approach and the resulting picture would not
leave the textbook framework of unitary quantum theory of
bound states. The admissible generalized, non-Hermitian but
diagonalizable Hamiltonians H (t) would still be required to be
quasi-Hermitian in the sense of Ref. [2]. After an appropriate
amendment of Hilbert space, the evolution of the quasi-
Hermitian system would still be correctly reinterpreted as
unitary. The necessary innovations would be purely technical.

In the second possible branch of future developments,
one might admit that the sophisticated physical Hilbert space
ceased to exist. Besides the solution of Schrödinger equation
(3), the new tasks for the theoreticians will be twofold. First,
whenever the energies remain real even after the phase tran-
sition, a new Hamiltonian-dependent physical Hilbert space
must be constructed (cf., e.g., Refs. [12] for some comments).
Second, in the case of the loss of the reality of the energies, the
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picture of reality cannot be based on the safe and unitary PTQM
theory. Still, the more general, nonunitary interpretations of the
evolution may enter the game as an inspiration of such a type
of future research.

The latter direction of developments will certainly be less
restrictive because the spectra as well as the parameters would
be allowed to be complex. The non-Hermitian and non-quasi-
Hermitian quantum Hamiltonians may then describe the real-
istic resonant and/or open systems. Still, such a nonquantum
type of physics will use the same mathematics. Non-Hermitian
systems with nonreal spectra will exhibit various nonunitary
analogues of the EP-related phase transitions. Even the non-
conservative open quantum systems will feel the presence of
the EPs, and even at a distance, without a direct passage through
the singularity, but still with the influence reconstructed by
perturbative as well as nonperturbative techniques (cf., e.g.,
Refs. [35–37] for further details and references).

In the laboratory, the manifestations of the latter types
of non-Hermiticities may be demonstrated using, e.g., the
framework of classical optics [38]. Thanks to the growing
number of experiment-oriented simulations, multiple deeply
counterintuitive EP-related phenomena may be studied. Pars
pro toto, for a pair of wave modes with the loss and gain
(simulating PT symmetry in the medium), the authors of
Ref. [36] studied the dynamics of a system which is forced to
move along a small circle circumscribing an EP singularity.
They discovered and proved that the adiabatic approxima-
tion must necessarily fail. In their own words, “in contrast
to Hermitian systems, the dynamics cannot be obtained by
perturbative corrections to the adiabatic prediction” [36]. In
light of the formalism developed in our present paper, such
a conclusion might have been modified in the near future.
We believe that in similar situations, the standard or modified
perturbation techniques should be admitted and used as well.
Their implementation might certainly provide a specific insight
into the structures and the dynamics of the system. At the same
time, the choices of the more sophisticated forms and features
of the Hamiltonians will certainly open multiple technical as
well as conceptual questions.

A. Towards the unbounded-operator models

In retrospect, several discoveries and rediscoveries [39]
of the unexpected robust reality of the bound-state energy
spectrum were obtained by the study of the non-Hermitian
ordinary-differential Schrödinger equations. Unfortunately,
the results were treated, for a long time, as a mere mathematical
curiosity [8,40]. The opinions only changed after Bender and
Boettcher [11] noticed that such an anomaly characterizing
the manifestly non-Hermitian quantum Hamiltonian is valid
for the whole class of the next-to-elementary Schrödinger
equations,

− d2

dx2
ψn(x,δ) + x2(ix)δ ψn(x,δ)

= En(δ) ψn(x,δ), ψn(x,δ) ∈ L2(Sδ), n = 0,1, . . . .

(43)

A few years later, it was proved that whenever the exponent
remains non-negative, δ � 0, the reality of the spectrum

survives [41]. One must only choose Sδ as a suitable δ-
dependent, ∩-shaped complex contour. At the not-too-large
exponents, δ < 2, one can even return to the straight real line
and choose Sδ = R again.

1. Phenomenological perspective

Naturally, the reality of the energies at the non-negative
exponents δ � 0 seemed puzzling. It found its intuitive expla-
nation in the P-pseudo-Hermiticity property H †P = PH of
the Hamiltonian, with symbol P denoting the operator of par-
ity. For mathematicians, this means that P is the pseudometric
in an associated Krein space [42]. In the context of physics, the
P-pseudo-Hermiticity of manifestly non-Hermitian Hamilto-
nians can be reinterpreted as the property of PT symmetry
reflecting the mathematically equivalent relation H PT =
PT H , in which T is an (antilinear) operator of time reversal
[11].

ThePT -symmetric quantum Hamiltonians in Eq. (43) with
δ � 0 were widely accepted as eligible generators of unitary
evolution in quantum theory [5]. For a correct probabilistic
interpretation of this process, the fundamental requirement of
the observability of the energies En(δ) ∈ R was only comple-
mented by a phenomenologically well-motivated assignment
of the observability status to a charge (cf. [3] and also the gen-
eral discussion of such a strategy in [2]). The introduction of the
operator of charge C led, ultimately, to a quantum-theoretical
picture in which the Hamiltonians H = H (δ) with δ � 0 are
made quasi-Hermitian [2,18], aliasPCT symmetric,H †PC =
PCH [3]. In this sense, the time evolution associated with
Eq. (43) was made, formally at least, unitary.

2. Quantum physics perspective

The unitarity is lost at δ < 0. The “Hilbert-space-metric”
operator � = PC would cease to exist. In applications, one
then has to speak about one of the best known samples of
the phase transition at δ = 0, better known as a spontaneous
breakdown ofPT symmetry [3]. From such a point of view, the
conventional quantum harmonic oscillator with δ = 0 may be
interpreted as unstable with respect to the perturbations which
would deform the exponent. At δ = 0, the quantum system
described by Eq. (43) will be forced to perform the phase
transition of the first kind [34]. Any perturbation making the
exponent arbitrarily small but negative should be considered, in
this setting, irrespective of its norm, infinitely large and entirely
out of the scope of any consistent unitary quantum theory.

The purely numerical nature of model (43) appeared to be
one of its increasingly serious shortcomings. Even the warmly
welcomed reality of the spectrum at δ � 0 was merely one
of the necessary conditions of the compatibility of Eq. (43)
with its unitary-evolution interpretation. In a rigorous sense,
the status of quantum model (43) is not yet fully clarified.
One of the main reasons for doubts was formulated by Siegl
and Krejčiřík [43]. After a detailed mathematical analysis, the
ordinary-differential model (43) was found not to fit fully in
the framework of the quasi-Hermitian quantum mechanics (cf.
also several compact reviews of the current state of the art
in [5]). The source of potential instability has been found,
at any generic δ > 0, in an anomalously large and next-to-
unpredictable influence of perturbations.
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The difficulties of such type were already predicted by
mathematicians [18]. In our present paper, the resolution of
the problem was based on Ref. [2], i.e., on the exclusive use of
bounded Hamiltonians. Without such a constraint, one would
have to clarify, systematically, all of the relevant mathematical
subtleties. A concise review of the results of such an approach
was written, recently, by Antoine and Trapani [20].

B. Towards the models with complex energies

The description of the latter irregularities has been based on
the study of pseudospectra. Their use may be expected to tame
the anomalies in the majority of the nonquantum applications
of the theory. Among them, let us mention here the discovery
of the failure of the adiabaticity hypothesis for non-Hermitian
Hamiltonians [36]. Recently, this discovery was comple-
mented by a deeper insight in [37]. The slightly modified team
of authors paid attention to the mode switching in waveguides.
In a toy-model-based analysis of the system, they simulated the
evolution by a Schrödinger-type equation (3) with a suitable
complex-symmetric (CS) Hamiltonian H (CS) with complex
spectrum. Surprisingly enough, the authors worked with a
three-parametric family of these Hamiltonians, but they merely
supported their observations by the brute-force numerical cal-
culations. This appeared to be one of the sources of inspiration
of our present perturbation-theory considerations. We were
persuaded that in similar analyses of the emergence of various
non-Hermiticity-related instabilities, quantum or nonquantum,
the direct use of a suitably adapted Rayleigh-Schrödinger
perturbation-expansion technique might prove insightful and
also technically not too difficult.

We believe that in spite of our present restriction of attention
to the mere models with real spectra, one of the eligible
branches of the future study of Hamiltonians H (CS) could be
based on their EP-related split H (CS) = H

(CS)
0 + V (CS), where

H
(CS)
0 = 1

4

[−2 iγ1 γ1 − γ2

γ1 − γ2 −2 iγ2

]
(44)

would have the complex spectrum. Thus, it would still fit in
our present nondiagonalizable scenario based on the use of the
transition matrix

Q(CS) = 1

4

[−iγ1 + iγ2 4
γ1 − γ2 0

]
leading to the complex Jordan-block simplification of Hamil-
tonian (44),

S(CS) = Q−1H
(CS)
0 Q

=
[−1/4 iγ1 − 1/4 iγ2 1

0 −1/4 iγ1 − 1/4 iγ2

]
. (45)

Even though the spectrum is now complex, the method of
perturbing such an EP Hamiltonian remains the same.

Classical physics perspective

In classical physics and optics, the perception of the uni-
tarity is specific, and not of central importance. Recently,
the growth of interest in the Hamiltonians with complex
energies has been motivated by the growing appeal of the direct
experimental relevance of the concept of the spontaneously

broken PT symmetry in a nonquantum setting. The easiness
of the realization of PT symmetry in the form of an interplay
between gain and loss in the optical and/or other media
led to a boom of the study of its multiple counterintuitive
phenomenological features and consequences [15].

In Eq. (43), for example, infinitely many energies cease to
be real when the exponent becomes small but negative. Still,
one observes that the low-lying part of the spectrum remains
real and that there exists an infinite series of the critical negative
exponents,

δ(critical)(1) < δ(critical)(2) < · · · < δ(critical)(M)

< · · · < δ(critical)(∞) = 0,

which are, precisely, the above-mentioned EP singularities. At
these points, the Hamiltonian ceases to be diagonalizable. At
every subscript M , the emergence of the related Jordan block of
dimension K = 2 reflects the degeneracy of the pair of energies
E2M−1 and E2M , which are real at δ > δ(critical)(M) and which
form a complex-conjugate pair at δ < δ(critical)(M) (cf. [11] for
more details).

An analogous situation is encountered with the nondiagonal
Jordan block H

(CS)
0 of Eq. (44). After its small perturbation,

one would have a tendency of forgetting about the EP-related
nondiagonalizability and of a replacement of the nondiagonal
Jordan block H

(CS)
0 by the apparently user-friendlier con-

ventional diagonal matrix of eigenvalues. In this setting, the
recommendation provided by our present paper is opposite—
the unpleasant methodical discontinuity between the EP and
non-EP scenarios is to be solved in favor of the former one.

In this sense, we believe that our present paper might inspire
new perturbative studies. The constructive use of the smallness
of the perturbations has intuitive appeal even near EPs. It might
help in the technically less straightforward non-Hermitian
scenarios, especially for the study of dynamics in the closest
vicinity of the open-system toy-model EP Hamiltonians as
sampled by Eq. (44).

VII. SUMMARY

In Kato’s mathematical perturbation theory [19], the EP
singularities play mainly just the formal role of marks of the end
of the applicability of conventional weak-coupling expansions.
The approximations of the weak-coupling type will necessarily
fail near the EP radius of convergence. Although we often
encounter some of the most interesting physical phenomena
in such a dynamical regime, the authors of the related papers
usually call the strong-coupling dynamics “nonperturbative.”
Such a terminology is misleading. There is no doubt that the
weak-coupling approximations can only be fully successful
sufficiently far from the natural EP boundaries. Still, there exist
many examples of successful perturbation recipes of a strong-
coupling type. One of them has been described and tested in
our present paper.

Our interest in this problem was recently revitalized by the
adiabaticity-failure numerical studies [36,37] as well as by the
papers in which the existence of the non-Hermiticity-related
instabilities was deduced using the ad hoc concept of the
pseudospectrum [28,43,44]. In this context, we imagined that
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all of the similar identifications of the instabilities contain an
internal contradiction because these identifications are made,
exclusively, in the auxiliary Hilbert spaces in which neither
the parametric domain D nor the physical metric operator
� �= I are properly taken into consideration. Thus, in spite
of the well-known fact that the simplification � → I is often
admissible in nonquantum calculations, the difficulty of the
quantum-theoretical necessity of the construction of � �= I is
often being circumvented rather than identified as the main
task.

In the literature, the omission of the correct account of the
anisotropic �′s is often accompanied by the absence of the
attention paid to the “methodical discontinuity” between the
nondiagonalizable nature of the strong-coupling EP limit H0

and the diagonalizability of any Hamiltonian defined inside
the domain D, i.e., after the strong-coupling perturbation is
being turned on. In our present paper, we tried to remove a
mental barrier by having kept the unperturbed Hamiltonian
nondiagonal. Even after the inclusion of the perturbation, we
kept the transition matrices Q unchanged.

The trick of having the same unperturbed basis before
and after the perturbation has been shown to work well.
We showed that it converted our perturbed-EP versions of
the Schrödinger equation, via an appropriate perturbation-
expansion ansatz, into an order-by-order solvable problem. The
resulting non-Hermitian strong-coupling formalism acquired a
self-consistent but still explicit-construction nature.

The main mathematical feature of the whole proposal may
be seen in the fact that the “measure of the smallness” ε of
the separate perturbations has the form which can vary, first
of all, with the size and sign of the individual matrix elements
of the perturbation in question. In addition, the form of the
perturbation approximations has been revealed to also vary
with the dimension K of the particular unperturbed Jordan
block H0. This formed a self-consistency pattern: The value of
the expansion parameter ε has been found to coincide with a
root of a perturbation-dependent secularlike polynomial of the
Kth order. In parallel, parameter ε has been shown to order
the wave-function components, making them arranged in a
“step-by-step-unfolding” hierarchy [cf. Eq. (30)].

In the language of physics, our perturbation-approximation
recipe puts several known facts into an entirely different per-
spective. This was illustrated via our family of PT -symmetric
N × N matrix Hamiltonians of Eqs. (9) and (10). The list of
their remarkable features as available in Refs. [22,23] (and
including their capability of a t-parametrized interpolation
between the weak- and strong-coupling dynamical extremes)
was complemented here by several items. The most remark-
able one of them is seen in an easy constructive tractability
of perturbations in the strong-coupling dynamical regime.
Our models also exhibited a user friendliness in the secular
polynomial context. The “generic” Kth-root value (29) of
the perturbation-weighting parameter ε(K) degenerated, for
our admissible anharmonic oscillator and due to the specific
tridiagonal-matrix structure of perturbations V , to the mere
square-root expression given by Eq. (39) at K = 3 and by
Eq. (41) at K = 4.

We may summarize that our illustrative non-Hermitian
toy models (9) and (10) are sampling, in an almost optimal
manner, the ways of suppression of the various forms of
a phase-transition-onset instability. Counterintuitive as such
resistance against perturbations may seem, its mechanism has
been clarified as caused by the consequent use of the specific EP
unfolding. Among all of the eligible generic energy-correction
roots ε(K) ∼ K

√
λ of the degeneracy-removing secular Eq. (29),

just one or two had to be selected. In other words, one has to
keep in mind the fact that from the point of view of physics,
the perturbation can only be realized in the existing physical
Hilbert space which is characterized by a nonsingular inner-
product metric �. From this perspective, the apparently high
sensitivity of the perturbed spectrum to certain subtle details
of the form of the perturbation should be understood as a mere
mathematical artifact which we have, in our strong-coupling
perturbation approach, fully under control.
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