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The computability of the quantifier of a given quantum resource is the essential challenge in the resource
theory and the inevitable bottleneck for its application. Here we focus on the measurement-induced nonlocality and
present a redefinition in terms of the skew information subject to a broken observable. It is shown that the obtained
quantity possesses an obvious operational meaning, can tackle the noncontractivity of the measurement-induced
nonlocality and has analytic expressions for pure states, (2 ⊗ d)-dimensional quantum states, and some particular
high-dimensional quantum states. Most importantly, an inverse approximate joint diagonalization algorithm,
due to its simplicity, high efficiency, stability, and state independence, is presented to provide almost-analytic
expressions for any quantum state, which can also shed light on other aspects in physics. To illustrate applications
as well as demonstrate the validity of the algorithm, we compare the analytic and numerical expressions of various
examples and show their perfect consistency.
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I. INTRODUCTION

Quantum mechanical phenomena such as entanglement are
not only fundamental properties of quantum mechanics, but
also important physical resources due to their exploitation in
quantum information processing tasks. Thus a mathematical
quantitative theory, i.e., the resource theory (RT), is required to
characterize the resource feature of these quantum phenomena.
In recent years, the RT has been deeply developed for entan-
glement [1–6], quantum discord [7–12], quantum coherence
[13–18], and so on [19,20]. However, as the core in RT, a
good measure for the given resource of a general (especially
high-dimensional) quantum state is only available for quantum
coherence [13,21]. In contrast, quantum entanglement and
quantum discord can be only well quantified in quite limited
states [22–29]. Undoubtedly, their common challenge is the
computability of the given measure (despite that, some concep-
tual questions, e.g., the entanglement measure of multipartite
states, remain open). To study these quantum features, espe-
cially entanglement in a general (high-dimensional) quantum
system, people usually have to seek the lower or upper bounds
for the rough reference [5,30–32]. Comparably, an effective
numerical way to evaluating a measure could be even more
important for its potential applications in both the measure
itself and the large-scale quantum system. For example, the
conjugate-gradient method was proposed to calculate the
bipartite entanglement of formation [33]; the semidefinite
programming method was used to find the best separable
approximation [34]; some numerical algorithms were devel-
oped for the evaluation of the relative-entropy entanglement
of bipartite states [35,36,38]; 3-tangle was also evaluated by
various numerical ways such as Monte Carlo methods [37],
the conjugate-gradient method, and so on [38–40]; the local
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quantum uncertainty has been stably computed based on the
approximate joint diagonalization algorithm [29]; and recently,
numerical algorithms have also been used to calculate quantum
coherence measures [41–44]. Generally speaking, a numerical
algorithm depends not only on the question (the measure)
but also on the state to be evaluated. In this sense, how
to develop an effective algorithm for a particular quantum
resource especially independent of the state is still of great
practical significance.

In this paper, we present an effective numerical algorithm
for the redefined measurement-induced nonlocality [45]. The
measurement-induced nonlocality, dual to the quantum discord
(to some extent) [7,8], is one type of nonlocality that char-
acterizes the global disturbance on a composite state caused
by the local nondisturbing measurement on one subsystem.
However, the measurement-induced nonlocality, similar to
geometric quantum discord [27,46], is originally defined based
on the l2 norm and inherits its noncontractivity, so it is not
a good measure due to some unphysical phenomena that
could be induced [47]. Although the measurement-induced
nonlocality has been studied in many aspects [48–54], no
obvious operational meaning has been found up to now and
in particular, it can only be analytically calculated in low-
dimensional quantum systems [45,51,52]. Here we will first
redefine the measurement-induced nonlocality based on the
skew information [55–57] in terms of the broken observable
(a complete set of rank-one projectors) instead of a single
observable. Thus not only the noncontractivity can be auto-
matically solved, but also an obvious operational meaning
related to quantum metrology has been found. Another distinct
advantage of such a redefinition is that it can be analytically
calculated for a large class of high-dimensional states and
especially can induce a powerful numerical means, i.e., the
inverse approximate joint diagonalization, to find an almost-
analytic expression for any quantum state. It is shown that
this algorithm can be stably and simply performed with even
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machine precision and especially it is state independent. The
effectiveness of the algorithm is demonstrated by comparison
with the analytic results of various examples.

The remainder of this paper is organized as follows. In
Sec. II, we briefly introduce the measurement-induced non-
locality and present its new definition as well as its operational
meaning. In Sec. III, we introduce the inverse approximate
joint diagonalization algorithm and show how we convert the
measurement-induced nonlocality to the standard optimiza-
tion question governed by the the inverse approximate joint
diagonalization. In Sec. IV, we demonstrate the power of the
new definition and the algorithm in various applications. The
conclusion is given in Sec. V.

II. MEASUREMENT-INDUCED NONLOCALITY BASED
ON SKEW INFORMATION

A. Definition

To begin with, we briefly introduce the measurement-
induced nonlocality [45] based on the l2 norm. For a bipartite
density matrix ρAB , the measurement-induced nonlocality
is defined by the maximal disturbance of local projective
measurements as

N (ρAB) = max
�

∥∥ρ − �A(ρAB)
∥∥2

2, (1)

where ‖ · ‖2 denotes the l2 norm of a matrix, and the
von Neumann measurement �A is defined by

∑
k(�A

k ⊗
IB)ρAB(�A

k ⊗ IB) with
∑

k �A
k ρA�A

k = ρA guaranteeing that
the reduced density matrix ρA = TrBρAB is not disturbed.
The measurement-induced nonlocality can be analytically
calculated for two-qubit systems, but it is not contractive in
that the measurement-induced nonlocality can be increased
by some local operations on subsystem B and decreased by
the tensor product of a third independent subsystem. To avoid
noncontractivity, we can effectively utilize the properties of
the skew information and directly present our definition of
the measurement-induced nonlocality in the following rigorous
way.

Definition 1. For an (m ⊗ n)-dimensional density ρAB , the
measurement-induced nonlocality can be defined in terms of
skew information as

U (ρAB) = max
{Kk}

m−1∑
k=0

I (ρAB,Kk), (2)

where I (ρAB,Kk) = − 1
2 Tr[

√
ρAB,Kk]2 is the quantum skew

information and Kk = |k〉A〈k| ⊗ IB with |k〉 denoting the
eigenvectors of the reduced density matrix ρA.

At first, one can find that (i) U (ρAB) = 0 for any product
state ρAB = ρA ⊗ ρB ; (ii) U (ρAB) is invariant under local
unitary transformations; (iii) ρAB vanishes for any classical-
quantum state ρAB = ∑

k pk|k〉A〈k| ⊗ ρB with the nondegen-
erate reduced density matrix ρA; (iv) U (ρAB) is equivalent to
the entanglement for pure ρAB , which can be found below
from our Eq. (22). All the above properties of our redefined
U (ρAB) are completely the same as the fundamental properties
of the measurement-induced nonlocality given in Ref. [45].
This means that our U (ρAB) characterizes the same quantum
resource as that in Ref. [45]. In addition, it is obvious that
U (ρAB) is contractive and it is invariant under local unitary

operations as a result of the good properties of the skew
information. In addition, it can be found that the above
definition of measurement-induced nonlocality has the obvious
operational meaning related to quantum metrology.

B. Operational meaning

Let us consider a scheme of quantum metrology as follows.
Suppose we have an (m ⊗ n)-dimensional state ρAB with the
reduced density matrix ρA and then let the state undergo a
unitary operation Uϕk

= e−iKkϕk with Kk = |k〉A〈k| ⊗ IB and
[|k〉〈k|,ρA] = 0. This will endow an unknown phase ϕk to
the state ρAB as ρk = Uϕk

ρABU †
ϕk

. We aim to estimate the
measurement precision by measuring ϕk in ρk with N >> 1
runs of detection on ρk .

In the above scheme, the measurement precision of ϕk is
characterized by the uncertainty of the estimated phase ϕest

k

defined by

δϕk =
〈(

ϕest
k∣∣∂ 〈

ϕest
k

〉
/∂ϕk

∣∣ − ϕk

)2〉1/2

, (3)

which for an unbiased estimator is just the standard deviation
[58–60]. Based on the quantum parameter estimation [58–
60], δϕk is limited by the quantum Cramér-Rao bound as
(δϕk)2 � 1

NFQk
, where FQk = Tr{ρϕL2

ϕ} is the quantum Fisher
information with Lϕ being the symmetric logarithmic deriva-
tive defined by 2∂ϕρϕ = Lϕρϕ + ρϕLϕ [58]. It was shown in
Refs. [58–60] that this bound can always be reached asymp-
totically by maximum likelihood estimation and a projective
measurement in the eigenbasis of the “symmetric logarithmic
derivative operator.” Thus one can let (δϕo

k )2 denote the optimal
variance which achieves the Cramér-Rao bound, i.e., (δϕo

k )2 =
1

NFQk
. Reference [61] showed that the Fisher information FQk

is well bounded by the skew information as

FQk

4
� 2I (ρAB,Kk) ⇐⇒ 1(

δϕo
k

)2 � 8NI (ρAB,Kk). (4)

Suppose we repeat this scheme N times respectively corre-
sponding to a complete set {Kk|[|k〉〈k|,ρA] = 0}, we can sum
Eq. (4) over k as∑

k

1(
δϕo

k

)2 � 8N
∑

k

I (ρAB,Kk) � 8NU (ρAB), (5)

where the last inequality comes from Eq. (2). If we define
1

(�o
ϕ )2 = ∑

k
1

(δϕo
k )2 , Eq. (5) can be rewritten as

1

8NU (ρAB)
� (�o

ϕ)2, (6)

which shows that the measurement-induced nonlocality
U (ρAB) contributes to the lower bounds of the “average
variance” (�o

ϕ)2 that characterizes the contributions of all
the inverse optimal variances of the estimated phases. It is
worth emphasizing that (�o

ϕ)2 corresponds to an arbitrary
complete set {Kk|[|k〉〈k|,ρA] = 0} instead of the optimal set
in the sense of Eq. (2). In addition, in the above mentioned
asymptotical and the optimal regimes, Eq. (6) for the pure states
(or incoherent states) will become 1

4NU (ρAB ) = (�o
ϕ)2 due to the
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inequality FQk

4 � I (ρAB) [61]. However, one can recognize that
in the practical scenario, δϕk � δϕo

k because the measurement
protocol could not be optimal. Thus, it is immediately obtained
that∑

k

1

(δϕk)2 � 8NU (ρAB) ⇐⇒ 1

8NU (ρAB)
� (�ϕ)2, (7)

with 1
(�ϕ )2 = ∑

k
1

(δϕk )2 . Finally, we would like to emphasize
that Eqs. (7) and (6) provide only the lower bound instead of the
exact value of the “average variance” (�ϕ)2 or (�o

ϕ)2, because
the inequalities are not saturated in the general cases. In this
sense, our measurement-induced nonlocality was endowed
with the operational meaning.

III. EFFECTIVE NUMERICAL ALGORITHM
AND MEASUREMENT-INDUCED NONLOCALITY

IN ARBITRARY DIMENSION

A. Approximate joint diagonalization algorithm

To give our main inverse approximate joint diagonalization
algorithm, we first introduce the well-known approximate
joint diagonalization algorithm [62–64] and its relevant ap-
proximate joint diagonalization optimization problem. For m

n-dimensional matrices {Mm}, one aims to find a unitary matrix
U such that

J (U ) = max
U

m∑
i=1

n∑
k=1

|UMiU
†|2kk. (8)

Such an optimization problem is a standard expression of the
approximate joint diagonalization of the series of matrices Mi .
This approximate joint diagonalization problem is widely met
in the blind source separation and independent component
analysis (see Ref. [65] and the references therein) and is
well solved numerically by many effective algorithms. A very
remarkable algorithm is the Jacobi method [62,63,65] which
can be performed as steadily, reliably, fast, and perfectly as
the diagonalization of a single matrix. The main idea of the
approximate joint diagonalization algorithm of our interest is
as follows.

Any unitary matrix U can be decomposed into a series of
unitary matrices called Givens rotations as U = �{θ,φ}U (θ,φ)
with

U (θ,φ) =
(

cos θ eiϕ sin θ

−e−iϕ sin θ cos θ

)
. (9)

Each Givens rotation is only operated on the (2 × 2)-
dimensional subspace of the m Mi’s. Let

Gi =
(

ai bi

ci di

)
(10)

denote the (2×2)-dimensional block matrix of Mi correspond-
ing to the Givens rotation U (θ,φ). After the Givens rotation,
Gi is updated by

G′
i = U †(θ,φ)GiU (θ,φ) =

(
a′

i b′
i

c′
i d ′

i

)
. (11)

In this (2×2)-dimensional subspace, the optimization problem
of Eq. (8) is equivalent to the problem

max{|a′
i |2 + |d ′

i |2}
= max

{
1
2 |a′

k − d ′
k|2 + 1

2 |a′
k + d ′

k|2
}
, (12)

by choosing suitable parameters θ and ϕ. Since the trace of a
matrix is preserved under the unitary operations, i.e.,a′

k + d ′
k =

ak + dk , the optimization problem of Eq. (13) is equivalent to

Q = max
m∑

i=1

|a′
k − d ′

k|2, (13)

which can be rewritten as [63]

Q = max
vᵀRe(G†G)v

vᵀv
, (14)

where G = [g1,g2, . . . ,gm], gk = [ak − dk,bk + ck,i(ck −
bk)]ᵀ, v = [cos 2θ,− sin 2θ cos ϕ,− sin 2θ sin ϕ]ᵀ. The opti-
mization problem maximizing Q in Eq. (14) happens to be
the well-known Rayleigh quotient which shows that Q has
a closed form and is just the maximal eigenvalue of the
matrix Re(G†G) . The eigenvector for the maximal eigenvalue
achieves the optimization solution, by which one can solve
the corresponding (θ,φ) and further find the optimal Givens
rotation U (θ,φ).

When all (2×2)-dimensional block matrices in Mi are
updated once by the Givens rotations, it is called one sweep.
Following the same procedure, each sweep transfers the con-
tribution of the off-diagonal entries to the diagonal entries as
required by optimization problem (8). The sweep is performed
again and again until the required precision is reached.

B. Inverse approximate joint diagonalization algorithm

The inverse approximate joint diagonalization algorithm is
completely parallel with the approximate joint diagonalization
algorithm. Let us consider an inverse problem opposite to the
problem in Eq. (8), namely, finding a proper unitary operation
U such that

J̃ (U ) = min
U

m∑
i=1

n∑
k=1

|UMiU
†|2kk. (15)

Following the completely same procedure as the approximate
joint diagonalization algorithm, we can finally arrive at

Q̃ = min
vᵀRe(G†G)v

vᵀv
. (16)

Based on the Rayleigh quotient, Q̃, dual to Q, is just the
minimal eigenvalue of the matrix Re(G†G). That is, J̃ (U ) can
be completely solved if we replace the maximal eigenvalue
in the approximate joint diagonalization algorithm by the
minimal eigenvalue. This is the inverse approximate joint
diagonalization algorithm.

Based on the above algorithms, one can always find the
optimal unitary operation U subject to a satisfactory precision.
Corresponding, one can calculate the exact value of J̃ (U ) or
J (U ). For a neat formulation, we would like to give another
definition.

Definition 2. The inverse joint diagonalizer of m
matrices Mi is defined by Uo which is the optimal unitary
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operation that achieves the aim of Eq. (15), i.e., J̃ (U ) =
minU0

∑m
i=1

∑n
k=1 |UoMiU

†
o |2kk . The inverse joint eigenvalue

of Mi is defined by λ̃i
k = [UoMiU

†
o ]kk .

C. Measurement-induced nonlocality for arbitrary
quantum states

Based on Definition 2, we can present our main theorem as
follows.

Theorem 1. For an (m ⊗ n)-dimensional state ρAB , define
the matrices Aij = (Im ⊗ 〈ψi |)√ρAB(Im ⊗ |ψj 〉) with {|ψi〉}
denoting any orthonormal basis of subsystem B. Then the
measurement-induced nonlocality U (ρAB) of ρAB can be
given by

U (ρAB) = 1 −
n−1∑
i,j=0

{
N∑

k=1

|�†
NAij�N |2kk +

∑
α

Dα∑
k=1

∣∣λ̃αij

k

∣∣2

}
,

(17)

where �N = [|1〉,|2〉, . . . ,|N〉] is the matrix made up of all the
nondegenerate eigenvectors {|k〉} of the reduced density ma-
trix ρA = TrB ρAB , �Dα

= [|1〉α,|2〉α, . . . ,|D〉α] is the matrix
made up of all the eigenvectors in the αth degenerate subspace
of ρA with N + ∑

α Dα = m, and λ̃
αij

k is the kth inverse joint
eigenvalue of the matrix �

†
Dα

Aij�Dα
.

Proof. From Eq. (2), we can find

U (ρAB) = max
Kk

m−1∑
k=0

[
TrρABK2

k − Tr
√

ρABKk

√
ρABKk

]

= 1 − min
Kk

m−1∑
k=0

Tr
√

ρABKk

√
ρABKk. (18)

Substituting Kk = |k〉〈k| ⊗ I with {|k〉} denoting the eigen-
vectors of the reduced density matrix ρA and any orthonormal
bases {|ψi〉} of subsystem B into Eq. (18), it follows that

U (ρAB) = 1 − min
{|k〉}

n−1∑
i,j=0

m−1∑
k=0

Tr
√

ρAB(|k〉〈k| ⊗ |ψi〉〈ψi |)

×√
ρAB(|k〉〈k| ⊗ ∣∣ψj

〉〈
ψj

∣∣)
= 1 − min

{|k〉}

n−1∑
i,j=0

m−1∑
k=0

|〈k|Aij |k〉|2, (19)

with Aij = (Im ⊗ 〈ψi |)√ρAB(Im ⊗ |ψj 〉). Suppose that the
reduced density matrix ρA has N nondegenerate eigenvalues
and α degenerate subspace with the dimension denoted by
Dα , respectively, then one can always construct an (m×N )-
dimensional matrix �N as �N = [|1〉,|2〉, . . . ,|N〉] with the
column |k〉 including all the nondegenerate eigenvectors
of ρA and α (m×D)-dimensional matrices �Dα

as �Dα
=

[|1〉α,|2〉α, . . . ,|D〉α] with the column |k〉α covering all the
eigenvectors in the αth degenerate subspace of ρA. It is
obvious that N + ∑

α Dα = m. Thus the optimization of {|k〉}
in Eq. (19) is converted to the optimization of �N and �Dα

.
However, �N is made up of the nondegenerate eigenvectors
of ρA, so �N is uniquely determined by ρA. As a result, only
the optimization of �Dα

is required, since �Dα
is not unique

in the degenerate subspace. If we denote any two different
such matrices as �Dα

and �Dα
, there always exists a unitary

transformation as �Dα
= �Dα

U . So the optimization of �Dα

is essentially converted to the optimization of the unitary
operations U once one fixes a representation (a particular �Dα

).
Thus Eq. (19) can be rewritten as

U (ρAB) = 1 −
n−1∑
i,j=0

N∑
k=1

|�†
NAij�N |2kk −

∑
α

J̃α(Uα), (20)

with

J̃α(Uα) = min
Uα

n−1∑
i,j=0

Dα∑
k=1

|U †
α�

†
Dα

Aij�Dα
Uα|2kk. (21)

It is obvious that Eq. (21) is the standard inverse approximate
joint diagonalization problem of matrices �

†
Dα

Aij�Dα
given in

Eq. (15) which can be well solved by the inverse approximate
joint diagonalization algorithm. Let λαij

k denote the kth inverse
joint eigenvalue of the matrix �

†
Dα

Aij�Dα
, then Eq. (20) ex-

actly becomes Eq. (17) in our main theorem, which completes
our proof. �

D. Efficiency of the inverse approximate joint
diagonalization algorithm and the closure
of the measurement-induced nonlocality

From the approximate joint diagonalization and inverse
approximate joint diagonalization algorithms in the above
section, one can find that the two algorithms have equal
efficiency within the same precision. It is especially noted that
the approximate joint diagonalization algorithm for a single
matrix is exactly the Jacobi method for the diagonalization
of a single matrix [66]. In this sense, we can safely conclude
that the inverse approximate joint diagonalization algorithm
has the same efficiency as the Jacobi method if they are
executed for the same dimensional matrix subject to the
same precision. Now let us consider the inverse approximate
joint diagonalization algorithm in our measurement-induced
nonlocality for an (m ⊗ n)-dimensional density matrix ρAB . It
is equivalent to the inverse approximate joint diagonalization
of n2 (m×m)-dimensional matrices Aij in the worst case
(the reduced matrix is a maximally mixed state). Thus one
can find that one sweep needs m(m−1)

2 Givens rotations and
m2n2−mn2

2 unitary transformations (Givens rotation operations).
However, if one diagonalizes ρAB with the Jacobi method,
one will require mn(mn−1)

2 Givens rotations and an equal
number of unitary transformations. It is obvious that under the
same conditions, the inverse approximate joint diagonalization
algorithm requires much fewer Givens rotations and unitary
transformations than the Jacobi method for the diagonalization
of ρAB especially for large n, which shows the high efficiency
of the inverse approximate joint diagonalization algorithm. In
particular, it was said that about log(m) sweeps were needed for
a single matrix Mi subject to an acceptable precision (examples
show around 10−16 in [66]).

In addition, one always expects a closed form (or an analytic
expression) of a quantifier. This could be, in principle, achieved
if the quantifier could be given in terms of the eigenvalues
of some matrices, since the eigenvalues can be completely
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determined by the secular equation of the matrix no matter
whether they can be exactly calculated or not. However, in the
practical scenario, the exact eigenvalues of a matrix can never
be obtained, especially for the high-dimensional case. Thus a
numerical algorithm is inevitable, which will have to lead to the
practical broken closure. In other words, in the practical case,
our inverse joint eigenvalues used above have equal weight as
the eigenvalues of some matrices. In this sense, we emphasize
that our expression in theorem 1 is almost analytic (or of closed
form).

IV. EXAMPLES AND POWER OF THE INVERSE
APPROXIMATE JOINT DIAGONALIZATION ALGORITHM

Next, we give some examples to verify the effectiveness of
theorem 1 by comparing the strictly analytic expression and the
numerical ones in theorem 1. All the examples show perfect
consistency and prove the efficiency and superiority of theorem
1, especially in the high-dimensional case.

1. Bipartite pure states

Any bipartite pure state can be given in the Schmidt
decomposition as |χ〉ab = ∑

i ui |ii〉ab where ui is the Schmidt
coefficients. The measurement-induced nonlocality can be
easily obtained as

U (ρab) = 1 − min
Kk

n−1∑
k=0

Tr(
√

ρABKk

√
ρABKk)

= 1 − min
{|k〉}

n−1∑
k=0

∣∣∣∣∣∣
∑
ij

uiuj 〈ii|(|k〉〈k| ⊗ IB)|jj 〉AB

∣∣∣∣∣∣
2

= 1 − min
{|k〉}

n−1∑
k=0

∣∣∣∣∣
∑

i

u2
i 〈k |i〉〈i |k〉A

∣∣∣∣∣
2

= 1 −
n−1∑
k=0

u4
k = 1 − Trρ2

A, (22)

with the optimum value attained by 〈k||i〉 = 1√
n

. It is explicit
that the measurement-induced nonlocality for a pure state is
exactly half of its entanglement in terms of the linear entropy
of the reduced density matrix. To further validate our numerical
procedure in theorem 1, we plot Eq. (22) and its corresponding
numerical results for many pure states randomly generated
by MATLAB R2017a in Fig. 1(a), which shows our numerical
results are completely consistent with Eq. (22).

2. Qubit-qudit states

For a (2 ⊗ d)-dimensional quantum state ρAB with the
reduced density matrix ρA, the measurement-induced nonlo-
cality can be given by

U (ρAB) = −1

2
max

[Kk,ρA]=0

1∑
k=0

Tr[
√

ρAB,Kk]2

= − max
[Kk,ρA]=0

Tr[
√

ρAB,K0]2. (23)

10 20

n

0.1

0.2

0.3

0.4

0.5

0.6

U
(

P
)

(a)

0 10 20

n
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0.1

0.15

0.2

0.25

U
(

Q
)

(b)

FIG. 1. Measurement-induced nonlocalities vs n. We calculated
(a) 20 (3 ⊗ 3)-dimensional pure states and (b) 20 (2 ⊗ 4)-dimensional
qubit-qudit mixed states randomly generated by MATLAB R2014b.
Here n denotes the nth density matrix. The O stands for the strictly
analytical expressions given by Eq. (22) for (a) and Eq. (24) for (b)
and the + marks the numerical expressions given by Eq. (17) in both
figures. Both show the perfect consistency.

In the qubit subsystem, the observable K0 can be expanded
in the Bloch representation as K0 = 1

2 (I2 + 
n · 
σ ) ⊗ Id and
ρA can be expanded as ρA = 1

2 (I2 + 
r · 
σ ) ⊗ Id , where 
n with
‖
n‖2 = 1 and 
r with ‖
r‖2 � 1 denote the Bloch vector. Thus
the optimization condition [Kk,ρA] = 0 is equivalent to 
r×
n =
0 and Eq. (23) arrives at

U (ρAB) = 1

2
− 1

2
min


n

∑
ij

TrniTijnj

=
{

1
2 (1 − vmin), 
r = 0,

1
2

(
1 − 1

‖
r‖2
2

rT T 
r), 
r �= 0,

(24)

where vmin is the minimal eigenvalue of the matrix T

with Tij = Tr
√

ρAB(σi ⊗ In)
√

ρAB(σj ⊗ In). Equation
(24) gives the closed form of the measurement-induced
nonlocality. Similar to case 1, we also plot the numerical
measurement-induced nonlocality for the randomly generated
qubit-qudit states in Fig. 1(b) which also validates our
numerical results of theorem 1.

3. (3 ⊗ 3)-dimensional PPT states

The (3 ⊗ 3)-dimensional positive-partial-transpose (PPT)
states [67] can be given by

ρPPT = 2

7
|�〉3〈�| + α

7
ρ+ + 5 − α

7
ρ−, α ∈ [2,4], (25)

where |�〉m = 1√
m

∑m−1
k=0 |kk〉, and ρ+ = 1

3

∑2
k=0 |k,k ⊕ 1〉

〈k,k ⊕ 1| and ρ− = 1
3

∑2
k=0 |k ⊕ 1,k〉〈k ⊕ 1,k| with ⊕ the

modulo-3 addition. The parameter α determines the different
quantum correlations of the PPT state. If α � 3, ρPPT is
separable. When α ∈ [3,4], the PPT state is entangled. But
if 4 � α � 5, ρPPT is not a PPT state, but a free entangled
state. Based on our definition 1, one can find that U (ρAB) can
be analytically calculated for α ∈ [2,5] as

U (ρPPT) =
{

21−√
6(5−α)−√

6α−3
√

α(5−α)
31.5 , NT < α � 5,

4
21 , 2 � α � NT ,

(26)
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FIG. 2. (a) Measurement-induced nonlocality U (ρPPT) for PPT
states vs α. The solid line and the + line correspond to the strictly
analytical expression of Eq. (26) and the numerical expression of
Eq. (17). The sudden change point of the measurement-induced non-
locality is about α ≈ 3.0669. The measurement-induced nonlocality
is invariant for α � 3.0669, but becomes increasing for α > 3.0669.
(b) Comparison of the LQU Q(ρPPT) and the measurement-induced
nonlocality U (ρPPT) based on PPT states. The solid line stands for
U (ρPPT), while the dotted line corresponds to Q(ρPPT). These two
lines share a common point at α ≈ 3.0669. Except for this point,
U (ρPPT) is always larger than Q(ρPPT) as we expect.

with NT = 5+
√

25−4(383−34
√

94)/9
2 ≈ 3.0669 . Both the numeri-

cal result based on our theorem and the strictly analytic expres-
sion in Eq. (26) are plotted in Fig. 2(a) which shows the perfect
consistency between them. In addition, we can analytically
find the sudden change point of the measurement-induced
nonlocality within the entanglement region. As a comparison,
we also plot the local quantum uncertainty (LQU) Q(ρPPT)
given in Ref. [29] and the measurement-induced nonlocality
U (ρPPT) in Fig. 2(b). One can find that U (ρPPT = Q(ρPPT) at
their common sudden change point and U (ρPPT > Q(ρPPT) as
expected for other values of α.

4. (m ⊗ m)-dimensional isotropic states

The isotropic states can be given by [67]

ρI = 1 − x

m2 − 1
Im2 + m2x − 1

m2 − 1
|�〉〈�|, x ∈ [−1,1], (27)

with |�〉m = 1√
m

∑m−1
k=0 |kk〉. Based on our definition, we can

analytically obtain

U (ρI ) = m2x − 2x + 1 − 2
√

x(1 − x)(m2 − 1)

m(1 + m)
. (28)

It is obvious that U (ρI ) = 0 for x = 1
m2 . As a comparison, we

plot U (ρI ) given by Eqs. (17) and (28) in Fig. 3(a). The validity
of our theorem is shown again.

5. (m ⊗ m)-dimensional Werner states

The Werner states can be written as [67]

ρW = m − x

m3 − m
Im2 + mx − 1

m3 − m
V, x ∈ [−1,1], (29)

with V = ∑
kl |kl〉〈lk| the swap operator. The measurement-

induced nonlocality U (ρW ) in terms of our definition can

0 0.5 1

x

1

2

3

4

5

m
/2

*U
(

I)

(a)

-1 0 1

x
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0.5

1

1.5

2

2.5

m
/2

*U
(

W
)

(b)

FIG. 3. Measurement-induced nonlocality U (ρI ) for the (a)
isotropic states and (b) Werner states vs x. The solid line corresponds
to the strictly analytical expression of Eq. (28) for (a) and Eq. (30)
for (b), while the numerical expressions of Eq. (17) in both figures
are marked by the +. The lines from bottom to top in both figures
correspond to m = 2,3, . . . ,10.

given by

U (ρW ) = m − x −
√

(m2 − 1)(1 − x2)

2(1 + m)
. (30)

From Eq. (30), it is shown that U (ρW ) = 0 for x = 1
m

. The
comparison between the numerical and the analytic expres-
sions are given in Fig. 3(b) which again shows the perfect
consistency.

Before the next example, we would like to emphasize that
in both example 4 and example 5, the reduced density matrices
ρA are the maximally mixed state which implies complete de-
generacy. Intuitively, this belongs to the worst case mentioned
in the last section (it requires the optimization in the total
space of subsystem A). However, in the analytic procedure,
one can find that all that are needed to be optimized can
be automatically eliminated, which means no optimization is
practically required. But it does not mean that the optimization
is not performed in the numerical procedure. One can find that
our numerical method stably approaches the unique optimal
solution given in the analytic procedure. In this sense, the two
examples provide more powerful proofs for the effectiveness of
our theorem than other examples. In addition, considering the
dual definitions of the measurement-induced nonlocality and
LQU, one can find that U = Q for both the isotropic states and
the Werner states, since no optimization is practically covered,
which is consistent with Ref. [68].

6. (m ⊗ m)-dimensional degenerate and nondegenerate
hybrid states

To demonstrate the practicability of our theorem and avoid
the uniform degeneracy of the reduced density matrix, we
construct a particular state as

ρH = ρW + P

2
+ (1 − m + x)

2(m2 − 1)
(P −|11〉〈11|), x ∈ [−1,1],

(31)

with P = 1
n

∑n+1
k=2 |kk〉〈kk| and generally m � 3 and n ∈

[2,m − 1] to be supposed. The reduced density matrix ρA of
this state has three different eigenvalues. Among them, there
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FIG. 4. Measurement-induced nonlocality U (ρH ) for hybrid
states vs x. The solid line and the + line correspond to the strictly
analytical expression of Eqs. (32) and (35) and the numerical expres-
sion of Eq. (17). The lines from bottom to top in the figure correspond
to m = 3,4, . . . ,13.

could be two degenerate subspaces and one nondegenerate
subspace. The eigenvalue 2m2−mx−m−1

2m(m2−1) is nondegenerate, the

eigenvalue m3+mx−1
2m(m2−1) is n-fold degenerate and the eigenvalue

1
2m

is (m − n − 1)-fold degenerate. However, one can note
that if m = 3, then n = 2. Thus (m − n − 1) = 0, i.e., this
subspace corresponding to the eigenvalue 1

2m
does not exist,

which implies that the state has two different eigenvalues with
only one degenerate subspace. When m = 3, one can find
that the measurement-induced nonlocality U (ρH ) based on our
definition is

U (ρH ) = 9 − 3x − 6
√

2 − 2x2 + (2 − t)f (x)

48
, (32)

where

t =
{

m, −1 < x � − 14
15 ,

1, − 14
15 < x � 1,

(33)

and

f (x) = 11 + 3.5x −
√

(7x + 22)(x + 1)

+2
√

2 − 2x2 −
√

(4x + 44)(1 − x). (34)

When m > 3, the measurement-induced nonlocality U (ρH )
can be given by

U (ρH ) = 3

4
− 1

4(m3 − m)
[2(m2 − x − 1)

+X+(m − 2n) + 2Y + (m2 − m − 2n + 2)

×
√

X+X− + (2n − 2)
√

X+ + Y (
√

X+ +
√

X−)],

(35)

where X± = (m ∓ 1)(1 ± x) and Y = (m2 + x − m)m
n

.
The comparison of the numerical and the analytic expres-

sions is given in Fig. 4 which again shows perfect consistency.

7. General quantum states

To show the power of our theorem for high-dimensional
states, we consider such a state ρG by mixing a maximally
mixed state and a randomly generated (400×400)-dimensional

0 0.2 0.4 0.6 0.8 1

x

0.1

0.2

0.3

U
(

G
)

FIG. 5. Measurement-induced nonlocality U (ρG) for general hy-
brid states vs x. The solid line corresponds to the numerical expression
of Eq. (17).

mixed state G as

ρG = (1 − x)

400
I400 + xG, x ∈ [0,1]. (36)

Since the matrix G is too large, it is impossible to explicitly
give it here. The measurement-induced nonlocality versus x

has been plotted in Fig. 5. We have uniformly taken 51 points
in x ∈ [0,1] and on average it takes about 8.4 s for the program
(MATLAB R2014b) running on a personal laptop (2.8 GHz Intel
Core i7/16 GB 1600 MHz DDR3).

V. CONCLUSIONS AND DISCUSSION

We have redefined the measurement-induced nonlocality
based on the skew information associated with a broken
observable instead of the original high-rank observable.
This definition can solve the noncontractivity problem in
the previous measurement-induced nonlocality based on the
l2 norm and has obvious operational meaning in terms of
quantum metrology. It allows us to analytically calculate the
measurement-induced nonlocality of pure states, qubit-qudit
states, and some large classes of high-dimensional states. In
particular, this definition enables us to develop the powerful
inverse approximate joint diagonalization algorithm based
on the very remarkable Jacobi method for the approximate
joint diagonalization problem. It is shown that this inverse
approximate joint diagonalization algorithm, similar to the
corresponding approximate joint diagonalization algorithm,
has good effectiveness because of its simplicity, stability,
high efficiency, and state independence. This is further
proven by the detailed comparisons between the analytic and
numerical results of various examples. Compared with the
diagonalization of a single density matrix, our measurement-
induced nonlocality has even an almost-analytic expression for
any quantum state, which gives an effective alternative means
for the computability of the measurement-induced nonlocality.

Finally, we emphasize that the method applied to a broken
observable is not a trivial skill but has many successful
applications and can conquer many key problems in quantum
discord and especially in quantum coherence. The potential
application is worth our forthcoming attention. In addition,
considering the quantum resource theory, it could be usually
impossible for a general state to find an analytic quantifier of
a general quantum resource, so how to develop an effective
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numerical means should be a quite necessary problem.
The power exhibited by the inverse approximate joint
diagonalization and the approximate joint diagonalization
algorithms could shed light on both the resource theory and
other aspects of physics.
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