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Theories with indefinite causal structure have been studied from both the fundamental perspective of quantum
gravity and the practical perspective of information processing. In this paper we point out a restriction in forming
tensor products of objects with indefinite causal structure in certain models: there exist both classical and quantum
objects the tensor products of which violate the normalization condition of probabilities, if all local operations are
allowed. We obtain a necessary and sufficient condition for when such unrestricted tensor products of multipartite
objects are (in)valid. This poses a challenge to extending communication theory to indefinite causal structures, as
the tensor product is the fundamental ingredient in the asymptotic setting of communication theory. We discuss
a few options to evade this issue. In particular, we show that the sequential asymptotic setting does not suffer the
violation of normalization.
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I. INTRODUCTION

Modern studies of indefinite causal structure in operational
probabilistic theories began with Hardy’s seminal works of
the causaloid framework [1,2]. The main motivation to study
indefinite causal structures is the expectation that in quantum
gravity causal structures (dynamical degrees of freedom of
gravity) should subject to indefiniteness (as other dynamical
degrees of freedom do in ordinary quantum theory). The
causaloid framework includes complex Hilbert-space theory
and other probabilistic theories such as real Hilbert-space
theory as special cases. This is to take into account the
possibility that the ultimate theory of quantum gravity is based
on mathematical structures beyond complex Hilbert space.
Apart from interest in fundamental physics, Hardy also pointed
out that the new framework suggests useful applications for
practical information processing—a quantum computer that
takes advantage of indefinite causal structure may outperform
a quantum computer that does not [3].

The program Hardy initiated more than ten years ago has
since then seen a boom across different areas of physics and
information science. Chiribella, D’Ariano, and Perinotti [4]
developed an important framework for quantum networks
in complex Hilbert space for general purposes from both a
constructive and a neat axiomatic perspective (a framework
based on similar mathematical content was developed to study
quantum games previously [5]). Although the framework of
[4] still assumes a definite causal order (represented by a
directed acyclic graph) among the elementary circuits, the
mathematical elements that enable indefinite causal order are
already present. The framework is causally neutral in the
sense that all objects (including both channels and states)
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are represented through the Choi isomorphism [6] as an
operator, and a composition rule (the link product) is given
to specify how the operators compose and offer predictions of
probabilities. Given this general setup one could already talk
about an operational probabilistic theory without specifying a
definite causal order for the elementary circuits. Indeed, in [7]
(see further developments in [8]), the original framework of [4]
was developed to include indefinite causal order, and a com-
putation protocol that cannot be reproduced by definite causal
order computation is given. This explicit protocol confirms
Hardy’s previous suggestion that “quantum gravity computers”
outperform ordinary quantum computers [3], and has attracted
much attention from both theoreticians and experimentalists.

Another important framework in the study of indefinite
causal structure is the process matrix framework by Oreshkov,
Costa, and Brukner [9] (see also [10,11]). This framework
is devised from the outset to incorporate indefinite causal
structure into complex Hilbert-space quantum theory. As in
[4], the process matrix framework represents objects such as
channels and states as operators through the Choi isomorphism.
A series of works based on this framework were carried out
to study the new features indefinite causal structure brings
to quantum theory (e.g., [12–14]), and we are gathering an
increasingly better understanding of “quantum causality” (see
[15] for a review of related works and other frameworks
including the duotensor [16] and quantum conditional states
[17]). The introduction of indefinite causal structure into
quantum theory not only brought in new understandings but
also supplied some new questions. In particular, the subtlety
in taking tensor products of objects with indefinite causal
structure was known to some researchers in the community and
was explicitly mentioned in [18] and implicitly encompassed in
the construction of the combs formulation in [8]. In this paper,
we study this issue in more detail. We provide a necessary and
sufficient condition (Theorem 1) to characterize objects the
tensor products of which need qualification. We show that for

2469-9926/2018/97(3)/032110(5) 032110-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.032110&domain=pdf&date_stamp=2018-03-14
https://doi.org/10.1103/PhysRevA.97.032110


DING JIA AND NITICA SAKHARWADE PHYSICAL REVIEW A 97, 032110 (2018)

this set of objects (which includes both classical and quantum
ones) the straightforward application of tensor product can lead
to violations of the normalization condition for probability. We
discuss some possible alternate ways to take tensor products
that avoid such a conflict. In addition, we pose it as an important
open question to the indefinite causal structure community to
clarify whether the need to qualify tensor products imposes
restrictions on realizing objects with indefinite causal structure
in the laboratory.

A main motivation of the present paper is to pave the way
to develop communication theory for theories with indefinite
causal structure. In the usual Shannon asymptotic setting one
takes multiple copies of the communication resource such
as a channel or a state to define capacity. The result in this
paper shows that this setting cannot be extended to quantum
theory with indefinite causal structure with straightforward
application of tensor products that imposes no restrictions on
the allowed local operations. We show that if one carefully
distinguishes the parallel and sequential asymptotic settings
then the sequential asymptotic setting can be extended to
objects with indefinite causal structure.

II. PROCESSES

The major result of this paper (Theorem 1) is based on a
lemma (Proposition 1 below) the content of which is phrased
and proved by Oreshkov and Giarmatzi [11] in the process
matrix framework. We note that the present paper can equally
be carried out in other frameworks such as those in [4,7].
For convenience of directly applying the lemma we based
the study in the process matrix framework. In this section
we very briefly recall the relevant part of the process matrix
framework [9–11] and introduce some nomenclatures. It is
postulated that local physics is described by ordinary quantum
theory with definite causal structure, while the global (possibly
indefinite) causal structure is described by processes. A process
is a linear map from CP maps describing local physics to
real numbers describing probabilities of observation outcomes.
Both channels and states are special cases of processes.

We use A,B,C, · · · to denote the parties where local physics
takes place. A party A is associated with an input system a1

with Hilbert space Ha1 and an output system a2 with Hilbert
space Ha2 . Through the Choi isomorphism [6] processes can
be represented as linear operators. A process W associated
with parties A,B,C, · · · is represented as a linear opera-
tor Wa1a2b1b2c1c2··· ∈ L(H), where H := Ha1 ⊗ Ha2 ⊗ Hb1 ⊗
Hb2 ⊗ Hc1 ⊗ Hc2 ⊗ · · · . Sometimes we write the process as
Wabc··· for simplicity.

It is assumed that processes yield positive and normalized
outcome probabilities for physical reasons, and can also act on
subsystems of local parties. These imply that

W � 0, (1)

TrW = dim(Ha2 ⊗ Hb2 ⊗ Hc2 ⊗ · · · ) =: dO, (2)

and in addition the following proposition.
Proposition 1 (Oreshkov and Giarmatzi [11], reformulated

using the language of this paper). A multipartite process obeys
the normalization of probability condition if and only if in

addition to the identity term it contains at most terms which
are type a1 on some party A.

To understand this proposition we need to introduce the
notion of types. A process Wab··· can be expanded in the

Hilbert-Schmidt basis {σx
i }d2

x −1
i=0 of the x subsystem operators

L(Hx) as

Wab··· =
∑

i,j,k,l,···
wijkl···σ

a1
i ⊗ σ

a2
j ⊗ σ

b1
k ⊗ σ

b2
l ⊗ · · · ,

×wijkl··· ∈ R. (3)

We set the convention to take σx
0 to be 11 for any subsystem x.

We refer to terms of the form σx
i ⊗ 11rest for i � 1 as a type x

term, σx
i ⊗ σ

y

j ⊗ 11rest for i,j � 1 as a type xy term, etc. The
identity term is referred to as a trivial term to be of trivial type.

Restricting attention to some party A, we say that a term is
“in-type” (“out-type”) on A if it is a1 (a2) type on the system
a1a2, regardless of what type it is on the systems of other
parties. We say that it “includes the in-type” (“includes the
out-type”) on A if it is a1 or a1a2 (a2 or a1a2) type on the
system a1a2, regardless of what type it is on the systems of
other parties. On two parties A and B, terms of type a2b1 and
a1a2b1 are called A to B signaling terms, since A’s output is
correlated with B’s input. Similarly terms of type a1b2 and
a1b1b2 are called B to A signaling terms.

In the following section we introduce process products and
prove our main results.

III. CONDITIONS FOR FORMING VALID
AND INVALID PRODUCTS

A party {A′,a′
1,a

′
2} and a party {A′′,a′′

1 ,a′′
2 } can be combined

into a new party {A,a1,a2} = {A′A′′,a′
1a

′′
1 ,a′

2a
′′
2 } if all channels

from a1 to a2 can be applied by A. Here A′A′′ is a shorthand
notation for combining parties A′ and A′′, and xy is a system
the Hilbert space of which is Hx ⊗ Hy .

Such products of parties are implicitly used when one forms
tensor products of channels. A channel M is a two-party
resource that mediates information between some party A′
and some party B ′. Given any other channel N mediating
information between A′′ and B ′′, the tensor product M ⊗ N

is a channel associated with A = A′A′′ and B = B ′B ′′, where
all channels from a1 to a2 can be applied by A and all channels
from b1 to b2 can be applied by B.

Such tensor products are crucial in information theory, as
one often studies tasks in the asymptotic setting, where the
same resource is used arbitrarily many times. Out of interest,
for example in quantum gravity and in particular quantum
black holes, we want to study information communication
theory of processes with indefinite causal structure [19]. In
order to consider the asymptotic setting for processes we need
to define products of processes and check if they are valid
processes. Analogous to channel products, for two processes
Wa′b′ ··· and Za′′b′′ ··· with the same number of parties, we tenta-
tively define their product as P ab··· = Wa′b′ ··· ⊗ Za′′b′′ ···. It takes
in channels of parties A,B, · · · and outputs probabilities where
A = A′A′′, B = B ′B ′′, · · · . The situation for two parties is
illustrated in Fig. 1. Following this construction, the asymptotic
setting of a two-party process Wab would require a process
Wab⊗n = Wa′b′ ⊗ Wa′′b′′ · · · that is an n-fold tensor product.
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FIG. 1. An example of a process product for two bipartite
processes.

The product parties A = A′A′′ · · · and B = B ′B ′′ · · · each
represent a localized region of spacetime where all channels
are allowed.

This asymptotic setting without restriction on the allowed
local operations holds without problems for quantum theory
with definite causal structure. However, a simple example
shows that if arbitrary local operations are allowed, process
products are not always valid processes. Consider the process

Wxy = dO

2
(ωx1 ⊗ ρx2y1∼ ⊗ ωy2 + ωx2 ⊗ ρx1y2∼ ⊗ ωy1 ), (4)

where dO is the dimension of the outputs, ω is the maximally
mixed state, and ρ∼ := (11 + σ3 ⊗ σ3)/4 is a maximally corre-
lating state that can represent a classical identity channel in the
{|0〉 , |1〉} basis. This process can be viewed as an equal-weight
classical mixture of a channel from x to y and another one
from y to x. Suppose A′ and B ′ share a process Wa′b′

of this
form, and A′′ and B ′′ also share a process Wa′′b′′

of the same
form. The operator Wab := Wa′b′ ⊗ Wa′′b′′

for the two parties

A = A′A′′ and B = B ′B ′′ is not a valid process. ρ
a′

2b
′
1∼ ⊗ ρ

a′′
1 b′′

2∼
includes a term σ

a′
2

3 ⊗ σ
a′′

1
3 ⊗ σ

b′
1

3 ⊗ σ
b′′

2
3 , which leads to a

type a1a2b1b2 term and according to Proposition 1 renders

the process Wab invalid. Intuitively, ρ
a′

2b
′
1∼ ⊗ ρ

a′′
1 b′′

2∼ creates a
causal loop and violates the normalization of probability
condition.

Although Wa′b′
and Wa′′b′′

cannot be composed directly, it
is possible to have a global process P ab that reduces to the two
individual processes upon partial tracing. For example, let A

and B have a process of the same form as (4). This is a process
on the combined parties. The reduced processes Tra′′b′′Wab and
Tra′b′Wab are exactly Wa′b′

and Wa′′b′′
.

The restriction of process products has an analogy with
the “nonseparability” of entangled states in quantum theory.
If ρxy is entangled, then ρxy �= ρx ⊗ ρy , and similarly for
some processes Wab �= Wa′b′ ⊗ Wa′′b′′

. The difference is that
for processes tensor products not only may not recover the
original process but may even be invalid.

Note that the processes in the example can be viewed as
classical because one can regard it as a classical mixture of
classical resources. One can also substitute Choi states of
quantum channels for those of classical channels to obtain
an example of quantum process that is restricted in forming
products. The invalidity of arbitrary products is a feature of
quantum as well as classical resources.

We also note that even for channels there exists a similar
subtlety in forming products [18,20–22]. Given a channel M

from A′ to B ′ and another one N from A′′ and B ′′, the product
M ⊗ N from A′B ′′ and B ′A′′ allows a causal loop and does
not preserve probability. Because channels exist in ordinary
quantum theory with definite causal structure, one may be
tempted to say that the subtlety in forming products is not a
new issue brought about by indefinite causal structure theories.
It is, however, debatable whether the above construction is
allowed by a theory with definite causal structure. For example,
in the general framework of quantum networks [4] this kind
of construction is explicitly forbidden by the first quantum
combs tensor product rule. The rule requires the preservation of
relative ordering of the original systems, and is well motivated
in the context of definite causal structure. In any case the
restriction of tensor products is more manifest for processes
than for channels. For M and N although one cannot combine
local parties as A′B ′′ and B ′A′′, one can always combine them
as A′A′′ and B ′B ′′ to form a valid tensor product channel. On
the other hand, it will be clear from the results below that there
are processes W and Z for which neither way of combination
leads to a valid process.

The first main result of the paper is the following necessary
and sufficient condition characterizing when two general mul-
tipartite processes cannot (and can) be composed into a valid
product process when arbitrary local operations are allowed.

Theorem 1. The product P = W ⊗ Z of two processes W

and Z is not a valid process if and only if there exist a nontrivial
term of W and a nontrivial term of Z that obey the following.

(1) On any party where one term is trivial, the other is either
trivial or includes the out-type.

(2) On any party where one term is the in-type, the other
term includes the out-type.

Proof. Suppose W and Z satisfy the conditions and con-
sider the tensor product of the two nontrivial terms. By
Proposition 1, to prove that P is invalid we need to show that
P contains a nontrivial term that is not type a1 for any party
A. Conditions 1 and 2 guarantee that this is satisfied for the
product term we consider.

Conversely, supposeP is not a valid process. By Proposition
1, P contains a nontrivial term that is not type a1 for any party
A. This term must arise out of a tensor product of nontrivial
terms over subparties A′, A′′. On any A this term of P is type
trivial, a1a2 or a2. We consider each case in turn. For any A

where this term is trivial, it must come from a tensor product
of terms that are trivial on A. Write this kind of tensor product
as (0,0), where zero denotes the trivial type and (.,.) denote
unordered term pairs over A′, A′′. Next, for any A where this
term is type a1a2, it must come from a tensor product of the kind
(0,12), (1,12), (1,2), (2,12), or (12,12), where 1 and 2 denote
in- and out-type, respectively. Finally, for any A where this
term is type a2, it must come from a tensor product of the kind
(0,2) or (2,2). To sum up, on any A, this term of P comes from
a tensor product of the kind (0,0), (0,12), (0,2), (1,12), (1,2),
(2,12), (2,2), or (12,12). This implies conditions 1 and 2. �

A useful special case is the condition on two-party pro-
cesses. Intuitively, the fulfillment of the two conditions in the
corollary below gives rise to causal loops, which violate the
normalized probability condition for processes and hence leads
to invalid products.
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Corollary 1. A product P ab = Wa′b′ ⊗ Za′′b′′
of two-party

processes is not a valid process if and only if the following are
true.

(1) Both W and Z have signaling terms.
(2) The Hilbert-Schmidt terms of W and Z put together

contain signaling terms of both directions.
Proof. Suppose W and Z obey the two conditions. Then

we can pick a signaling term from W of one direction and a
signaling term from Z of the other direction. We show that this
pair of terms satisfies conditions 1 and 2 in Theorem 1, and
hence the product is not a valid process. Neither term is trivial
on either of the two parties, so condition 1 of Theorem 1 is
fulfilled. Condition 2 is also fulfilled because the terms signal
to different directions.

Conversely, suppose P is not valid. By Theorem 1, there
is a nontrivial term from W and a nontrivial term from Z that
obey conditions 1 and 2 of Theorem 1. By Proposition 1, both
terms are in-type on some party. By condition 2 of Theorem
1 they must be in-type on different parties, and they include
the out-type on the parties where they are not in-type. In other
words, they are signaling terms to different directions. This
proves conditions 1 and 2 of the statement. �

A product of more than two processes can be constructed
iteratively, and the validity of the product process must be
checked at each step. If a set of processes cannot form a
valid product in one sequence of construction, changing the
sequence of construction will not make it valid. This is because
the invalid term will always be present. Corollary 1 allows
us to straightforwardly identify those two-party processes for
which the Shannon asymptotic setting without restriction on
local operations is (in)valid.

Corollary 2. The n-fold tensor product Wab⊗n = Wa′b′ ⊗
Wa′′b′′ · · · of a process Wab with itself is not a valid process if
and only if it contains signaling terms of both directions.

The above results show that the asymptotic setting without
restriction on local operations does not hold for all processes.
They suggest two ways to make sense of the asymptotic setting.
One can either restrict attention to those processes that have
valid products (as characterized by Theorem 1) or try to find
a restricted set of local operations for which the products
do not violate the normalization condition of the framework.
One option is to only allow nonsignaling channels within
each product party [20]. We show below that there is another
perhaps more justified option, which allows more general local
operations and has a clear physical interpretation. This is the
sequential asymptotic setting.

In general, the asymptotic setting can correspond to at
least two physical settings. The first is the parallel setting,
where two parties share many copies of a resource at the
same time (Fig. 1 depicts this type of tensor product, when
time is taken to point upwards, and W and Z are taken to
exist at “the same time step”). The second is the sequential
setting, where two parties share one copy of a resource at
many time steps. In the sequential setting, the local operation
a party performs decomposes into operations at different time
steps, and these operations follow a definite time sequence.
This physical interpretation imposes a natural restriction on
the local operations, which can be generalized to processes
if different copies of the process appear in a definite temporal

order. In this sequential setting, the tensor products of processes
obey the normalization condition.

Suppose n copies of a process W appear in a definite
temporal order Wa′b′ ≺ Wa′′b′′ ≺ · · · ≺ Wa(n)b(n)

. A can apply
local operations to systems a′,a′′, · · · ,a(n), and B can apply
them to systems b′,b′′, · · · ,b(n) that obey this temporal order.
The local operations that A and B can apply to compose
with and close all open systems to obtain probabilities are the
so-called n-combs [4]. For A, such an n-comb takes the form

M
a′

2a
′′
2 ···a(n)

2

a′
1a

′′
1 ···a(n)

1
and for B it takes the form N

b′
2b

′′
2 ···b(n)

2

b′
1b

′′
1 ···b(n)

1
, where the

systems obey the temporal order a′
1 ≺ a′

2 ≺ a′′
1 ≺ a′′

2 ≺ · · · ≺
a

(n)
1 ≺ a

(n)
2 and b′

1 ≺ b′
2 ≺ b′′

1 ≺ b′′
2 ≺ · · · ≺ b

(n)
1 ≺ b

(n)
2 .

According to the “universality of quantum memory
channels” theorem, the combs M and N can be decom-
posed into a sequence of memory channels, e.g., M =
M(1)

e1a
′
2

a′
1

M(2)
e2a

′′
2

e1a
′′
1
· · · M(n)

a
(n)
2

en−1a
(n)
1

, where M(i) are channels

at time steps i with ei as memory systems that correlate

the channels. Similarly, N = N (1)
f1b

′
2

b′
1

N (2)
f2b

′′
2

f1b
′′
1
· · · N (n)

b
(n)
2

fn−1b
(n)
1

.

Then probability from composing the copies of W with M and
N obeys the normalization condition

M(⊗W )N = [
M(1)

e1a
′
2

a′
1

W
a′

1b
′
1

a′
2b

′
2
N (1)

f1b
′
2

b′
1

]

× [
M(2)

e2a
′′
2

e1a
′′
1
W

a′′
1 b′′

1

a′′
2 b′′

2
N (2)

f2b
′′
2

f1b
′′
1

] · · ·

× [
M(n)

a
(n)
2

en−1a
(n)
1

W
a

(n)
1 b

(n)
1

a
(n)
2 b

(n)
2

N (n)
b

(n)
2

fn−1b
(n)
1

] = 1. (5)

Within each square bracket there is a channel (including
states and deterministic effects as special cases) operating
on the memory systems, because a process composed with
local channels with memory yields a channel [9]. In the end
the composition of channels yields the number 1. If one
substitutes subnormalized operators in place of the combs
to represent quantum instruments, then it is easy to see that
the probabilities must be in the interval [0,1] and sum to
1. Therefore the sequential asymptotic setting generalizes to
quantum theory with indefinite causal structure. Intuitively, the
sequential setting avoids the “causal loop” in (4) that violates
the normalization condition by not allowing signaling from a
system at a future time step to a system at a past time step.

IV. DISCUSSIONS

We showed that for processes we cannot take tensor
products unrestrictedly, if arbitrary channels are allowed as
local operations in a product party. Is this a defect of the
process matrix framework itself? One interpretation is that
the processes are descriptions of the environment of an entire
family of parties [18,22], and the need to take tensor products
of arbitrary processes with indefinite causal structure do not
actually arise. Another option is to allow for tensor products of
arbitrary parties but restrict the allowed operations in the local
parties such that the normalization condition of processes is
preserved [20]. The sequential asymptotic setting we presented
above is an example of this kind. A further option is to adopt a
more general framework that does not impose a normalization
condition for the matrices and/or operators that carry the
information of the indefinite causal structure. Oreshkov and
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Cerf’s operational quantum theory without predefined time
provides an example [23]. We think an important question
is to clarify whether these perspectives are compatible with
attempts to create processes in the laboratory, because if one
can create a process with signaling Hilbert-Schmidt terms in
both directions it is conceivable that one can create more to
act jointly on them, and there is no apparent reason why local
operations on the joint parties must be restricted.

For communication theory, our results imply that communi-
cation tasks defined in the asymptotic limit are not meaningful
for processes characterized by Theorem 1 when local oper-
ation is unrestricted for the combined parties A = A′A′′ · · · ,
B = B ′B ′′ · · · , · · · . Similarly caution needs to be taken for
asymptotic entanglement theory of processes [19]. On the
other hand, such issues do not affect one-shot capacities, or
asymptotic capacities in the sequential setting. It is possible
that some other physically motivated restrictions on local
operations yield additional well-defined capacities.

The restriction induces some interesting questions for
further research. To what extent does the restriction gener-
alize to indefinite causal structure theories in general [1,2]?
For the particular example we used to demonstrate the re-
striction, there exists a global process that reduces to the two
individual processes. When is this true in general?
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