
PHYSICAL REVIEW A 97, 032109 (2018)

Dynamical evolutions in non-Hermitian triple-well systems with a complex potential
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We investigate the dynamical properties for non-Hermitian triple-well systems with a loss in the middle well.
When chemical potentials in the two end wells are uniform and nonlinear interactions are neglected, there always
exists a dark state whose eigenenergy becomes zero and the projections onto which do not change over time
and the loss factor. The increasing of the loss factor only makes the damping form from the oscillating decay to
the overdamping decay. However, when the nonlinear interaction is introduced, even interactions in the two end
wells are also uniform, and the projection of the dark state will be obviously diminished. Simultaneously, the
increasing of the loss factor will also aggravate the loss. In this process, the interaction in the middle well plays
no role. When two chemical potentials or interactions in the two end wells are not uniform, all disappear with
time. In addition, when we extend the triple-well system to a general (2n + 1) well, the loss is greatly reduced
by the factor 1/2n in the absence of the nonlinear interaction.
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I. INTRODUCTION

In quantum mechanical pictures, the Hamiltonian must be
Hermitian to describe a physical system, which is sufficient
to ensure that the system has real energy eigenvalues and the
conservation of the number of particles. But this condition
is too rigorous in real systems. In optics, a non-Hermitian
Hamiltonian is used to describe the propagation of light in the
medium with a complex refraction index [1–6]. Recently, the
controlled removal of atoms from a Bose-Einstein condensate
(BEC) was realized by a narrow electron beam or a narrow laser
beam [7,8], which promotes simulations of the atomic system
with dissipation. The systems with the dissipation process are
described via the non-Hermitian Hamiltonians with negative
imaginary chemical potential [9–17] and can be solved in terms
of the master equations [18–24]. More importantly, in most
cases, dissipation is considered as an undesirable destructing
factor, and thus researchers make arduous efforts to avoid it
if at all possible, by inverting the dissipation by means of an
intrinsic mechanism to balance the losses [8,25,26], probing a
quantum system with controlled dissipation [27], designing
the effective dissipative process in an optical superlattice
using the coupling between the system and the reservoir [18],
etc. Massive efforts have been invested in the study of the
dynamics of non-Hermitian systems in experiment and theory
[18,28–31].

The study of few-well systems reveals a variety of in-
teresting quantum phenomena. For example, condensates in
double or triple wells have popularly been investigated both
theoretically and experimentally [32–45]. In past years, the
nonlinear Josephson oscillation and self-trapping phenomena
have been two of many important findings for double wells.
However, more attention has been focused on three-well
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systems [42–45], which has a more abundant physical picture
by adjusting the tunneling and interaction parameters, as well
as chemical potentials. For example, under periodic driving
of this model, coherent destruction of tunneling and a dark
Floquet state have been predicted in theory [46]. Thus, dark
states can also be controlled and realized in the three-state
(three-well) system. Even chaotic phenomena and the bifur-
cation mechanism causing self-trapping have been studied in
the dynamics of three coupled condensate systems [47,48].
In addition, in the light propagation in waveguides, the Kerr
nonlinear interactions induce a variety of interesting quantum
phenomena [49]. Thus when dissipation and the nonlinear
interaction together play a role in a triple-well system, novel
features may be expected in the dynamical evolution of the
system.

In the present paper, we mainly study the quantum dynamics
of a non-Hermitian triple-well system. We focus on the time
evolutions of modulus squared of coefficients in three local
states without nonlinear interactions. The analytic solutions
of the Schrödinger equations directly give the time-dependent
information for uniform chemical potentials in two end wells.
The finding is that the eigenstate is a dark state, whose
eigenenergy is zero, the projection on which is not dependent of
time and the loss factor. But when chemical potentials in two
ends are not uniform, the dark state would no longer be the
eigenstate. Moreover, when nonlinear terms in three wells are
considered, the modulus squared in three wells will be quickly
diminished. These results are still suitable for systems of odd
wells with similar structure.

II. MODEL AND ANALYTIC SOLUTIONS IN
LINEAR CASE

We consider a coupled triple-well system with an imaginary
chemical potential in the middle well. In general, the wave
function |ψ(t)〉 of the system is a superposition of states at
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three local sites, i.e.,

|ψ(t)〉 = c1(t)|1〉 + c2(t)|2〉 + c3(t)|3〉, (1)

where ci(t) are the amplitudes for three states |i〉 (i = 1,2,3). In
this local site space, where the spatial dependence of the states
will not be considered, the dynamic equation of the system
[15–17] reads (h̄ = 1)

i
∂

∂t

⎛
⎝c1

c2

c3

⎞
⎠ = H

⎛
⎝c1

c2

c3

⎞
⎠, (2)

with the Hamiltonian

H =
⎛
⎝μ1 + g1|c1|2 −J 0

−J μ2 + g2|c2|2 −J

0 −J μ3 + g3|c3|2

⎞
⎠. (3)

The chemical potentials μ1 and μ3 are real and μ2 = η − iα

is a complex number, which denotes an effective loss (α > 0)
or a gain (α < 0) at the state |2〉 [13,14]. gi is the strength of
the Kerr nonlinearity in state |i〉 and J is the coupling strength
[50]. We set J = 1 so that all energies are in units of J .

We first focus on the simplest case that the chemical
potentials are symmetrically distributed (μ1 = μ3), and the
interactions are neglected, gi = 0. The Schrödinger equation
(2) can be solved by a substitution, ci(t) = c0

i exp (−iλi t), and
one has the eigenvalues λi for the Hamiltonian (3),

λ1 = μ1,

λ2,3 = 1
2 (μ1 + μ2 ± �), (4)

and the corresponding ket space is spanned by three eigenvec-
tors,

|ψ1〉 =
⎛
⎝−1

0
1

⎞
⎠, |ψ2〉 =

⎛
⎝ 1

λ3 − μ2

1

⎞
⎠, |ψ3〉 =

⎛
⎝ 1

λ2 − μ2

1

⎞
⎠,

(5)
where � =

√
(μ1 − μ2)2 + 8. We do not bother to normalize

them because the normalization factor will not affect the final
result. The dual, bra space with eigenvector, e.g., 〈ψ2| =
(1,λ∗

3 − μ∗
2,1), is not orthogonal to the ket space. It is thus

necessary to define the Hilbert space of H †, |ψ̃i〉 = |ψ∗
i 〉,

with the bra vectors being 〈ψ̃i | = 〈ψ∗
i |. Here the symbol

∗ means the complex conjugate for all complex numbers.
These eigenvectors together form a biorthogonal basis, i.e.,
the completeness relation reads [51]

∑
k

|ψk〉〈ψ̃k|
〈ψ̃k|ψk〉

= 1, (6)

and the orthogonality means

〈ψk|ψ̃k′ 〉
〈ψk|ψ̃k〉

= δkk′ . (7)

Note that the eigenvector ψ1 is a dark state, which is the
superposition of two local states in the left and right wells.
The completeness dictates that an arbitrary normalized initial
state |ψ(0)〉 = (c0

1,c
0
2,c

0
3)

T
can be expressed in the eigenvector

space (5),

|ψ(0)〉 = A1|ψ1〉 + A2|ψ2〉 + A3|ψ3〉, (8)

where the coefficients Ai are suitable combinations of c0
i , for

example, A1 = (c0
3 − c0

1)/
√

2 for a normalized |ψ1〉. At time
t , the wave function evolves according to

|ψ(t)〉 = A1e
−iλ1t |ψ1〉 + A2e

−iλ2t |ψ2〉 + A3e
−iλ3t |ψ3〉. (9)

The matrix for the time-evolution operator C in the local site
space defined as [8]

|ψ(t)〉 =
⎛
⎝C11(t) C12(t) C13(t)

C21(t) C22(t) C23(t)
C31(t) C32(t) C33(t)

⎞
⎠|ψ(0)〉 (10)

can be calculated as

C = S†Diag
(
e−iλ1t ,e−iλ2t ,e−iλ3t

)
S̃, (11)

where S is transformation matrix between the site space and the
eigenvector space with the adjoint matrix S̃. These operators
are necessarily not unitary. Actually, formed by merging the
eigenvectors |ψi〉 or |ψ̃i〉 into a square matrix row by row, the
operators S† and S̃† satisfy S†S̃ = S̃S† = 1 and S̃†S = SS̃† =
1. In this way, the time-dependent matrix elements Cij (t) in
Eq. (10) can be determined as

C11(t) = C33(t) = 1

2
e−iλ1t + 1

2
f+(t),

C31(t) = C13(t) = −1

2
e−iλ1t + 1

2
f+(t),

C22(t) = f−(t),

C12(t) = C21(t) = C23(t) = C32(t)

= 1

�

(
e−iλ3t − e−iλ2t

)
, (12)

where

f+(t) = λ2 − μ2

�
e−iλ2t − λ3 − μ2

�
e−iλ3t ,

f−(t) = λ2 − μ2

�
e−iλ3t − λ3 − μ2

�
e−iλ2t . (13)

The symmetry in the coefficients Cij directly reflects that of
the Hamiltonian in the local site space. For an arbitrary initial
state |ψ(0)〉, we can infer the state evolution |ψ(t)〉 by the
coefficients Cij (t), i.e., the amplitude on the ith local state reads
ci(t) = Ci1(t)c0

1 + Ci2(t)c0
2 + Ci3(t)c0

3. Correspondingly, the
modulus squared of the coefficient in each local state is

Pi(t) = |ci(t)|2, (14)

and the sum is

Pall(t) =
∑

i

Pi(t). (15)

For simplicity, now we assume that the chemical potentials
in the left and right states vanish and that in local state |2〉 are
purely imaginary, i.e., μ1 = μ3 = 0 and μ2 = −iα. We focus
on the case of dissipation in the rest of the paper, i.e., α > 0.
It is easy to see that while � in the eigenvalues λ2,3 is positive
and real for α2 < 8, it becomes purely imaginary for α2 > 8.
This will greatly change the time dependence of the functions
f±. When α2 < 8, we see � = |�| and the functions f±(t)
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FIG. 1. Time evolution of the modulus squared of the coefficient
in each well Pi(t) and the sum Pall (pink solid line) with the loss
factor (a) α = 1, (b) α = 2, and (c) α = 3, starting from the initial
state c0

1 = 1, c0
2 = c0

3 = 0. Here, μ1 = μ3 = η = 0.

reduce to

f±(t) = ±e− 1
2 αt

sin
(

1
2 |�|t ± β

)
sin β

, (16)

where β = arcsin (|�|/√8) . Due to the sinusoidal functions
in Eq. (16), it describes an oscillating decay process starting
from f±(0) = 1. We find that the critical damping occurs at
α2 = 8. In the other case when α2 > 8, � = i|�|, the system
enters the overdamping region,

f±(t) = ±e− 1
2 αt

sinh
(

1
2 |�|t ± β ′)
sinh β ′ , (17)

where β ′ = arcsinh(|�|/√8). Since |α| > |�|, the decaying
term e−αt/2 of f+(t) in Eq. (17) will be compensated by
the monotonically increasing hyperbolic sine function, which
leads to overdamping, i.e., a relatively slow decay compared
with Eq. (16) in the chemical parameter region α2 < 8. As an
example, starting from the initial state c0

1 = 1 and c0
2 = c0

3 = 0,
the distributions in three states are, respectively,

P1(t) = |C11(t)|2 = 1
4 |f+(t) + 1|2,

P3(t) = |C31(t)|2 = 1
4 |f+(t) − 1|2, (18)

and

P2(t) = |C21(t)|2

= 2

|�|2 e−αt

{
1 − cos (|�|t), α2 < 8

cosh (|�|t) − 1, α2 > 8.
(19)

The time evolution of the modes is shown in Fig. 1 for
three different values of α. For α = 1, we find P1(t) and
P3(t) undergo explicit oscillations around the same equilibrium
value of 0.25. These modulus squared values return rapidly to
their equilibrium value for α = 2, with an obvious damping
oscillation. For α = 3, however, the decrease of P1(t) and the

FIG. 2. Time evolution of the modulus squared of the coefficient
in each well Pi(t) and the sum Pall (pink solid line) for nonequal
distribution of the chemical potentials starting from the initial state
c0

1 = 1, c0
2 = c0

3 = 0. Here, μ1 = 0.1, μ3 = 0.5, and α = 2.

increase of P3(t) are much slower, which shows the typical
behavior of overdamping. In both cases, P2(t) quickly oscil-
lates to a vanishingly small value, which means the leakage of
the mode from the middle well. In addition, we find that the
equilibrium values for Pi in the limit t → +∞ are independent
of α . In this limit, e−iλ2,3t → 0 and f±(t) → 0; for the arbitrary
initial state, the wave function |ψ(t)〉 reduces to

|ψ(t → +∞)〉 = c0
3 − c0

1

2

⎛
⎝−1

0
1

⎞
⎠, (20)

and the associated norms are

P1,3(t → +∞) =
(
c0

1 − c0
3

)2

4
,

P2(t → +∞) = 0. (21)

This indicates that the steady state is the dark state |ψ1〉, the
projection on which would be stored forever. For the initial
state c0

1 = 1 and c0
2 = c0

3 = 0, it is easy to show that the total
norm Pall(t → +∞) = 0.5, which does not vary with α, as
depicted in Fig. 1. These results show the apparent suppression
of dissipation because the projection on the dark state does not
change with time. Similar results are found for other initial
states, even for the dark state ψ1 itself [10,14,52–54].

The linear non-Hermitian system with nonzero chemical
potentials can be readily solved by |ψ(t)〉 = exp (−iH t)|ψ(0)〉
and the three modulus squared parameters Pi are given by (14).
For nonequal chemical potentials in the left and right wells
μ1 	= μ3, the dark state |ψ1〉 is no longer the eigenstate of
the system [42,55]. An immediate result is that Pi in all three
states will be lost in the limit t → +∞. We show this full
leakage in Fig. 2 for α = 2, μ1 = 0.1, and μ3 = 0.5. Clearly,
the probability P1 = 1 in the initial state (1,0,0)T decays from
1 to 0, at the same time P2,3 reduce to zero after a temporary
increase.

Under the balanced condition μ1 = μ3, it is interesting to
study the influence of the real part η of μ2 on the evolution of
each state. As an example, we set μ1 = μ3 = 0.5 and α = 2
and increase the real part η from 0 to 6 as shown in Fig. 3.
The modulus squared P1,3 are found to oscillate in longer and
longer time, which effectively slows down the process for the
sum of Pi to reach the equilibrium. However, it has no effect
on the distribution of the steady state in the limit t → +∞.
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FIG. 3. The effect of the real part of μ2 on the evolution of Pi(t)
with (a) η = 0, (b) 2, (c) 4, and (d) 6. Here, μ1 = μ3 = 0.5 and α = 2.

III. NUMERICAL SCHEME FOR NONLINEAR
INTERACTION CASE

The analytical solution in the above section is not available
when the nonlinear interaction is introduced in the Hamiltonian
(3). In looking for the similar variational ansatz solution
(1), we need to take several approximations into account:
(a) First of all, the time evolution of the wave function (1)
is described as the superposition of three local states [41].
The nonlinear terms in the dynamic equations (2), on the
other hand, would destroy such a superposition. When the
probability in the tunneling region of the adjacent wells is small
enough such that the nonlinear interaction in these regions is
negligible, the superposition ansatz (1) is applicable. (b) In the
meantime, we decompose the time and the spatial dependence
of the wave function |ψ(t)〉, which has been verified numer-
ically in the study of BEC trapped in a double-well potential
[56]. (c) The spatial dependence of the local states will not
be considered here, despite the fact that the overlap of the
states determines the tunneling strength J and the interaction
parameters gi [57]. To investigate the dynamics of the system
with nonlinear terms, we deal with the time-dependent Hamil-
tonian in the site space by means of the successive iteration,
i.e., starting from an arbitrarily normalized initial state |ψ(0)〉,
the wave function at time t + δt is evolved from previous time
t through

|ψ(t + δt)〉 = exp (−iH [t]δt)|ψ(t)〉, (22)

while the time dependence of the Hamiltonian H [t] is de-
scribed by the interaction terms |ci(t)|2 in Eq. (3). Accordingly,
we numerically split the evolution time t into many small
intervals, with the time step δt being small enough to admit
a solution with good precision. We note that unlike in the case
of time-dependent Gross-Pitaevskii equations for dissipative
BEC in a double well [14,54] or the barrier transmission of

FIG. 4. A numerical investigation of evolutions for differ-
ent nonlinear parameters: when g1 = g3 = 0, g2 = 3, (a) α =
1 and (b) α = 3; when g1 = g3 = g2 = 3, (c) α = 1 and
(d) α = 3. Here, μ1 = μ3 = 0 and initial conditions c0

1 = 1 and
c0

2 = c0
3 = 0.

BEC in a waveguide [53], the absence of the kinetic term makes
it much easier for the convergence of the solution.

We now discuss the typical numerical results with different
nonlinear parameters. For nonzero interaction existing only in
the middle well, i.e., g1 = g3 = 0 and g2 = 3, the stationary
solutions for different loss α = 1 and 3 are shown in Figs. 4(a)
and 4(b). The stationary solutions are identical to the results of
the noninteracting case in Fig. 1(b) and 1(c), which shows that
g2 does not affect the evolution of Pi(t) in the limit t → ∞.
For three identical interaction parameters g1 = g3 = g2 = 3,
on the other hand, we observe quite different behavior. The
nonlinear terms g1,3 obviously diminish the projection of
the dark state to a very low level and, moreover, Pi also
decrease with the increase of α. Unequal g1 	= g3 would
destroy the coherent character completely, leading to a full
leakage of the wave packet.

IV. GENERALIZATION TO ANY ODD SITE NUMBER

We have dealt with the three-well model with a loss in
the middle site and found there is a dark state when μ1 =
μ3 and gi = 0. Then, based on this, we also discussed the
time evolution for different parameters and even different
interactions. These results can be generalized to a general
(2n + 1)-well system where only the middle site has a loss and
is coupled with other wells. For simplicity, first we consider
the five-well model. The Hamiltonian is

H5 =

⎛
⎜⎜⎜⎝

μ1 0 −1 0 0
0 μ2 −1 0 0

−1 −1 μ3 −1 −1
0 0 −1 μ4 0
0 0 −1 0 μ5

⎞
⎟⎟⎟⎠, (23)
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FIG. 5. Time evolutions of modulus squared of the coefficients in
five wells for initial states |1,0,0,0,0〉. Here, nonlinear terms gi = 0
and the loss factor α = 2.

where μ3 = −iα and μi 	=3 = 0 and only |3〉 is coupled with
the rest of the wells. When dealing with |H5 − EI | = 0, we
can obtain

E3(E2 + iαE − 4) = 0.

For eigenenergy E = 0, we can get

c3 = 0,

c1 + c2 + c4 + c5 = 0, (24)

where ci are the coefficients of |i〉. The solutions of (24) are
not unique and correspond to triplet dark states with a node
structure in the middle well and other coefficients summed up
to zero. Hence we analyze the dynamics of this model by the
numerical method, just as in Sec. III. But from (24), we can
find that the eigenvectors with E = 0 do not have projection in
|3〉 because of c3 = 0, which is independent of any parameter.
So the projection in these eigenvectors would not vary over
time. In order to further explain it, using numerical method
(22), we can find when |ψ(0)〉 = (1,0,0,0,0)T ,

lim
t→∞ Pall(t) = 3/4,

which is the projection in the eigenvectors with E = 0 and
is much larger than in the three-well system, as shown in

Fig. 5. Accordingly, we study an arbitrary (2n + 1)-well
system and set μn+1 = −iα and μj 	=n+1 = 0. With the same
numerical method, we find the law: limt→∞ Pall(t) = 1 −
1/2n with |ψ(0)〉 = (1,0,0, · · · ,0)T , which coincides with the
above-mentioned results. This gives a good application that
more wells may be used to construct sophisticated dark states,
the projection onto which is kept on a much higher level in the
steady state of dynamical evolution.

V. CONCLUSIONS

We have presented a detailed analysis of dynamical evolu-
tions of the three-well system with a loss in the middle well.
When the chemical potentials in the two end wells are real and
uniform, there is always a dark state, the projection on which
does not change over time and the loss factor α. But there
exists a critical value, where the norms at the two end sites
evolute from damping oscillation to overdamping. When the
chemical potentials in the two end wells are not uniform, the
dark state is no longer the eigenstate of the system and three
norms will decay to zero. In addition, when the nonlinear
interactions are introduced and uniform in the two end wells,
the projection of the dark state will be obviously diminished,
but does not disappear. And the projection also decreases with
the increase of the loss factor. However, the interaction at
the middle site plays no role and the dark state is proven to
be the key to the suppression of the dissipation. In addition,
the other two interaction intensities would promote the loss.
When extending the triple-well system to a general (2n + 1)
well, we found that the total norm follows the law 1 − 1/2n

in the absence of interactions, which can be used to enhance
the antileakage capability in signal propagation in a certain
medium with dissipation.

ACKNOWLEDGMENTS

This work is supported by the NSF of China under Grants
No. 11574187, No. 11674201, No. 11474189, No. 11425419,
and No. 11374354.

[1] S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett. 101,
080402 (2008).

[2] S. Longhi, Phys. Rev. Lett. 103, 123601 (2009).
[3] A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, Phys. Rev. A 82,

043818 (2010).
[4] X. Luo, J. H. Huang, H. H. Zhong, X. Z. Qin, Q. T. Xie, Y. S.

Kivshar, and C. H. Lee, Phys. Rev. Lett. 110, 243902 (2013).
[5] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.

Christodoulides, Phys. Rev. Lett. 100, 030402 (2008).
[6] H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy,

and T. Kottos, Phys. Rev. Lett. 109, 033902 (2012).
[7] T. Gericke, C. Utfeld, N. Hommerstad, and H. Ott, Las. Phys.

Lett. 3, 415 (2006); T. Gericke, P. Würtz, D. Reitz, T. Langen,
and H. Ott, Nat. Phys. 4, 949 (2008).

[8] V. S. Shchesnovich and V. V. Konotop, Phys. Rev. A 81, 053611
(2010).

[9] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998);
C. M. Bender, D. C. Brody, and H. F. Jones, ibid. 89, 270401
(2002).

[10] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[11] A. Mostafazadeh and A. Batal, J. Phys. A 37, 11645 (2004).
[12] B. Zhu, R. Lü, and S. Chen, Phys. Rev. A 89, 062102 (2014).
[13] D. Dast, D. Haag, H. Cartarius, and Güter Wunner, Phys. Rev.

A 90, 052120 (2014).
[14] E. M. Graefe, H. J. Korsch, and A. E. Niederle, Phys. Rev. Lett.

101, 150408 (2008); Phys. Rev. A 82, 013629 (2010).
[15] R. Livi, R. Franzosi, and G.-L. Oppo, Phys. Rev. Lett. 97, 060401

(2006).
[16] G. S. Ng, H. Hennig, R. Fleischmann, T. Kottos, and T. Geisel,

New J. Phys. 11, 073045 (2009).
[17] V. A. Brazhnyi, V. V. Konotop, V. M. Perez-Garcia, and H. Ott,

Phys. Rev. Lett. 102, 144101 (2009).

032109-5

https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevA.82.043818
https://doi.org/10.1103/PhysRevA.82.043818
https://doi.org/10.1103/PhysRevA.82.043818
https://doi.org/10.1103/PhysRevA.82.043818
https://doi.org/10.1103/PhysRevLett.110.243902
https://doi.org/10.1103/PhysRevLett.110.243902
https://doi.org/10.1103/PhysRevLett.110.243902
https://doi.org/10.1103/PhysRevLett.110.243902
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.109.033902
https://doi.org/10.1103/PhysRevLett.109.033902
https://doi.org/10.1103/PhysRevLett.109.033902
https://doi.org/10.1103/PhysRevLett.109.033902
https://doi.org/10.1002/lapl.200610028
https://doi.org/10.1002/lapl.200610028
https://doi.org/10.1002/lapl.200610028
https://doi.org/10.1002/lapl.200610028
https://doi.org/10.1038/nphys1102
https://doi.org/10.1038/nphys1102
https://doi.org/10.1038/nphys1102
https://doi.org/10.1038/nphys1102
https://doi.org/10.1103/PhysRevA.81.053611
https://doi.org/10.1103/PhysRevA.81.053611
https://doi.org/10.1103/PhysRevA.81.053611
https://doi.org/10.1103/PhysRevA.81.053611
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/0305-4470/37/48/009
https://doi.org/10.1088/0305-4470/37/48/009
https://doi.org/10.1088/0305-4470/37/48/009
https://doi.org/10.1088/0305-4470/37/48/009
https://doi.org/10.1103/PhysRevA.89.062102
https://doi.org/10.1103/PhysRevA.89.062102
https://doi.org/10.1103/PhysRevA.89.062102
https://doi.org/10.1103/PhysRevA.89.062102
https://doi.org/10.1103/PhysRevA.90.052120
https://doi.org/10.1103/PhysRevA.90.052120
https://doi.org/10.1103/PhysRevA.90.052120
https://doi.org/10.1103/PhysRevA.90.052120
https://doi.org/10.1103/PhysRevLett.101.150408
https://doi.org/10.1103/PhysRevLett.101.150408
https://doi.org/10.1103/PhysRevLett.101.150408
https://doi.org/10.1103/PhysRevLett.101.150408
https://doi.org/10.1103/PhysRevA.82.013629
https://doi.org/10.1103/PhysRevA.82.013629
https://doi.org/10.1103/PhysRevA.82.013629
https://doi.org/10.1103/PhysRevA.82.013629
https://doi.org/10.1103/PhysRevLett.97.060401
https://doi.org/10.1103/PhysRevLett.97.060401
https://doi.org/10.1103/PhysRevLett.97.060401
https://doi.org/10.1103/PhysRevLett.97.060401
https://doi.org/10.1088/1367-2630/11/7/073045
https://doi.org/10.1088/1367-2630/11/7/073045
https://doi.org/10.1088/1367-2630/11/7/073045
https://doi.org/10.1088/1367-2630/11/7/073045
https://doi.org/10.1103/PhysRevLett.102.144101
https://doi.org/10.1103/PhysRevLett.102.144101
https://doi.org/10.1103/PhysRevLett.102.144101
https://doi.org/10.1103/PhysRevLett.102.144101


GUO, DU, YIN, ZHANG, AND CHEN PHYSICAL REVIEW A 97, 032109 (2018)

[18] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and
P. Zoller, Nat. Phys. 4, 878 (2008).

[19] S. Diehl, A. Tomadin, A. Micheli, R. Fazio, and P. Zoller, Phys.
Rev. Lett. 105, 015702 (2010); A. Tomadin, S. Diehl, and P.
Zoller, Phys. Rev. A 83, 013611 (2011).

[20] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, Nat. Phys. 5,
633 (2009).

[21] D. Witthaut, F. Trimborn, and S. Wimberger, Phys. Rev. Lett.
101, 200402 (2008).

[22] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman, Nat.
Phys. 6, 806 (2010).

[23] A. Le Boité, G. Orso, and C. Ciuti, Phys. Rev. Lett. 110, 233601
(2013).

[24] T. E. Lee and C.-K. Chan, Phys. Rev. X 4, 041001 (2014).
[25] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik,

F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter,
Nature (London) 537, 76 (2016).

[26] W. D. Heiss and G. Wunner, Europhys. J. D 71, 312 (2017).
[27] I. Vidanovic, D. Cocks, and W. Hofstetter, Phys. Rev. A 89,

053614 (2014).
[28] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,

Nature (London) 462, 74 (2009).
[29] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,

and S. Kuhr, Nature (London) 467, 68 (2010).
[30] T. E. Lee, F. Reiter, and N. Moiseyev, Phys. Rev. Lett. 113,

250401 (2014).
[31] H. Cao and J. Wiersig, Rev. Mod. Phys. 87, 61 (2015).
[32] R. Gati and M. K. Oberthaler, J. Phys. B 40, R61 (2007).
[33] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,

A. Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843
(2001).

[34] T. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A.
Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. 94, 020403
(2005).

[35] Jie Liu, Libin Fu, Bi-Yiao Ou, Shi-Gang Chen, Dae-Il Choi, Biao
Wu, and Qian Niu, Phys. Rev. A 66, 023404 (2002).

[36] Guan-Fang Wang, Di-Fa Ye, Li-Bin Fu, Xu-Zong Chen, and Jie
Liu, Phys. Rev. A 74, 033414 (2006).

[37] M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cris-
tiani, and M. K. Oberthaler, Phys. Rev. Lett. 95, 010402
(2005).

[38] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Phys.
Rev. Lett. 105, 204101 (2010).

[39] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, Nature
(London) 449, 579 (2007).

[40] L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour,
D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Phys. Rev.
Lett. 106, 025302 (2011).

[41] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.
Rev. Lett. 79, 4950 (1997); G. J. Milburn, J. Corney, E. M.
Wright, and D. F. Walls, Phys. Rev. A 55, 4318 (1997); S.
Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, ibid. 59,
620 (1999).

[42] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70,
1003 (1998).

[43] Y. X. Du, Z. T. Liang, W. Huang, H. Yan, and S. L. Zhu, Phys.
Rev. A 90, 023821 (2014); M. Semczuk, W. Gunton, W. Bowden,
and K. W. Madison, Phys. Rev. Lett. 113, 055302 (2014).

[44] B. Liu, L. B. Fu, S. P. Yang, and J. Liu, Phys. Rev. A 75, 033601
(2007).

[45] K. Nemoto, C. A. Holmes, G. J. Milburn, and W. J. Munro, Phys.
Rev. A 63, 013604 (2000).

[46] X. Luo, L. Li, L. You, and B. Wu, New J. Phys. 16, 013007
(2014).

[47] R. Franzosi and V. Penna, Phys. Rev. A 65, 013601 (2001).
[48] R. Franzosi and V. Penna, Phys. Rev. E 67, 046227 (2003).
[49] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge

University Press, Cambridge, 1996).
[50] H. Ramezani, T. Kottos, R. El-Ganainy, and D. N.

Christodoulides, Phys. Rev. A 82, 043803 (2010).
[51] W. D. Heiss and H. L. Harney, Europhys. J. D 17, 149 (2001).
[52] N. Moiseyev and L. S. Cederbaum, Phys. Rev. A 72, 033605

(2005).
[53] P. Schlagheck and T. Paul, Phys. Rev. A 73, 023619 (2006); K.

Rapedius and H. J. Korsch, ibid. 77, 063610 (2008); J. Phys. B
42, 044005 (2009).

[54] H. Zheng, Y. Hao, and Q. Gu, J. Phys. B: At. Mol. Opt. Phys.
46, 065301 (2013).

[55] B. Luo, H. Tang, and H. Guo, J. Phys. B: At. Mol. Opt. Phys.
42, 235505 (2009).

[56] S. Giovanazzi, Ph.D. thesis, SISSA-ISAS, 1998.
[57] E.-M. Graefe, J. Phys. A: Math. Theor. 45, 444015 (2012); X.

Zhang, J. Chai, J. Huang, Z. Chen, Y. Li, and B. A. Malomed,
Opt. Express 22, 13927 (2014); Z. Chen, J. Huang, J. Chai, X.
Zhang, Y. Li, and B. A. Malomed, Phys. Rev. A 91, 053821
(2015).

032109-6

https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1103/PhysRevLett.105.015702
https://doi.org/10.1103/PhysRevLett.105.015702
https://doi.org/10.1103/PhysRevLett.105.015702
https://doi.org/10.1103/PhysRevLett.105.015702
https://doi.org/10.1103/PhysRevA.83.013611
https://doi.org/10.1103/PhysRevA.83.013611
https://doi.org/10.1103/PhysRevA.83.013611
https://doi.org/10.1103/PhysRevA.83.013611
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1103/PhysRevLett.101.200402
https://doi.org/10.1103/PhysRevLett.101.200402
https://doi.org/10.1103/PhysRevLett.101.200402
https://doi.org/10.1103/PhysRevLett.101.200402
https://doi.org/10.1038/nphys1754
https://doi.org/10.1038/nphys1754
https://doi.org/10.1038/nphys1754
https://doi.org/10.1038/nphys1754
https://doi.org/10.1103/PhysRevLett.110.233601
https://doi.org/10.1103/PhysRevLett.110.233601
https://doi.org/10.1103/PhysRevLett.110.233601
https://doi.org/10.1103/PhysRevLett.110.233601
https://doi.org/10.1103/PhysRevX.4.041001
https://doi.org/10.1103/PhysRevX.4.041001
https://doi.org/10.1103/PhysRevX.4.041001
https://doi.org/10.1103/PhysRevX.4.041001
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1140/epjd/e2017-80473-2
https://doi.org/10.1140/epjd/e2017-80473-2
https://doi.org/10.1140/epjd/e2017-80473-2
https://doi.org/10.1140/epjd/e2017-80473-2
https://doi.org/10.1103/PhysRevA.89.053614
https://doi.org/10.1103/PhysRevA.89.053614
https://doi.org/10.1103/PhysRevA.89.053614
https://doi.org/10.1103/PhysRevA.89.053614
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature09378
https://doi.org/10.1103/PhysRevLett.113.250401
https://doi.org/10.1103/PhysRevLett.113.250401
https://doi.org/10.1103/PhysRevLett.113.250401
https://doi.org/10.1103/PhysRevLett.113.250401
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1126/science.1062612
https://doi.org/10.1126/science.1062612
https://doi.org/10.1126/science.1062612
https://doi.org/10.1126/science.1062612
https://doi.org/10.1103/PhysRevLett.94.020403
https://doi.org/10.1103/PhysRevLett.94.020403
https://doi.org/10.1103/PhysRevLett.94.020403
https://doi.org/10.1103/PhysRevLett.94.020403
https://doi.org/10.1103/PhysRevA.66.023404
https://doi.org/10.1103/PhysRevA.66.023404
https://doi.org/10.1103/PhysRevA.66.023404
https://doi.org/10.1103/PhysRevA.66.023404
https://doi.org/10.1103/PhysRevA.74.033414
https://doi.org/10.1103/PhysRevA.74.033414
https://doi.org/10.1103/PhysRevA.74.033414
https://doi.org/10.1103/PhysRevA.74.033414
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1038/nature06186
https://doi.org/10.1103/PhysRevLett.106.025302
https://doi.org/10.1103/PhysRevLett.106.025302
https://doi.org/10.1103/PhysRevLett.106.025302
https://doi.org/10.1103/PhysRevLett.106.025302
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1103/PhysRevA.55.4318
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/PhysRevA.59.620
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/PhysRevA.90.023821
https://doi.org/10.1103/PhysRevA.90.023821
https://doi.org/10.1103/PhysRevA.90.023821
https://doi.org/10.1103/PhysRevA.90.023821
https://doi.org/10.1103/PhysRevLett.113.055302
https://doi.org/10.1103/PhysRevLett.113.055302
https://doi.org/10.1103/PhysRevLett.113.055302
https://doi.org/10.1103/PhysRevLett.113.055302
https://doi.org/10.1103/PhysRevA.75.033601
https://doi.org/10.1103/PhysRevA.75.033601
https://doi.org/10.1103/PhysRevA.75.033601
https://doi.org/10.1103/PhysRevA.75.033601
https://doi.org/10.1103/PhysRevA.63.013604
https://doi.org/10.1103/PhysRevA.63.013604
https://doi.org/10.1103/PhysRevA.63.013604
https://doi.org/10.1103/PhysRevA.63.013604
https://doi.org/10.1088/1367-2630/16/1/013007
https://doi.org/10.1088/1367-2630/16/1/013007
https://doi.org/10.1088/1367-2630/16/1/013007
https://doi.org/10.1088/1367-2630/16/1/013007
https://doi.org/10.1103/PhysRevA.65.013601
https://doi.org/10.1103/PhysRevA.65.013601
https://doi.org/10.1103/PhysRevA.65.013601
https://doi.org/10.1103/PhysRevA.65.013601
https://doi.org/10.1103/PhysRevE.67.046227
https://doi.org/10.1103/PhysRevE.67.046227
https://doi.org/10.1103/PhysRevE.67.046227
https://doi.org/10.1103/PhysRevE.67.046227
https://doi.org/10.1103/PhysRevA.82.043803
https://doi.org/10.1103/PhysRevA.82.043803
https://doi.org/10.1103/PhysRevA.82.043803
https://doi.org/10.1103/PhysRevA.82.043803
https://doi.org/10.1007/s100530170017
https://doi.org/10.1007/s100530170017
https://doi.org/10.1007/s100530170017
https://doi.org/10.1007/s100530170017
https://doi.org/10.1103/PhysRevA.72.033605
https://doi.org/10.1103/PhysRevA.72.033605
https://doi.org/10.1103/PhysRevA.72.033605
https://doi.org/10.1103/PhysRevA.72.033605
https://doi.org/10.1103/PhysRevA.73.023619
https://doi.org/10.1103/PhysRevA.73.023619
https://doi.org/10.1103/PhysRevA.73.023619
https://doi.org/10.1103/PhysRevA.73.023619
https://doi.org/10.1103/PhysRevA.77.063610
https://doi.org/10.1103/PhysRevA.77.063610
https://doi.org/10.1103/PhysRevA.77.063610
https://doi.org/10.1103/PhysRevA.77.063610
https://doi.org/10.1088/0953-4075/42/4/044005
https://doi.org/10.1088/0953-4075/42/4/044005
https://doi.org/10.1088/0953-4075/42/4/044005
https://doi.org/10.1088/0953-4075/42/4/044005
https://doi.org/10.1088/0953-4075/46/6/065301
https://doi.org/10.1088/0953-4075/46/6/065301
https://doi.org/10.1088/0953-4075/46/6/065301
https://doi.org/10.1088/0953-4075/46/6/065301
https://doi.org/10.1088/0953-4075/42/23/235505
https://doi.org/10.1088/0953-4075/42/23/235505
https://doi.org/10.1088/0953-4075/42/23/235505
https://doi.org/10.1088/0953-4075/42/23/235505
https://doi.org/10.1088/1751-8113/45/44/444015
https://doi.org/10.1088/1751-8113/45/44/444015
https://doi.org/10.1088/1751-8113/45/44/444015
https://doi.org/10.1088/1751-8113/45/44/444015
https://doi.org/10.1364/OE.22.013927
https://doi.org/10.1364/OE.22.013927
https://doi.org/10.1364/OE.22.013927
https://doi.org/10.1364/OE.22.013927
https://doi.org/10.1103/PhysRevA.91.053821
https://doi.org/10.1103/PhysRevA.91.053821
https://doi.org/10.1103/PhysRevA.91.053821
https://doi.org/10.1103/PhysRevA.91.053821



