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Rigorous quantum limits on monitoring free masses and harmonic oscillators
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There are heuristic arguments proposing that the accuracy of monitoring position of a free mass m is limited
by the standard quantum limit (SQL): σ 2(X(t)) � σ 2(X(0)) + (t2/m2)σ 2(P (0)) � h̄t/m, where σ 2(X(t)) and
σ 2(P (t)) denote variances of the Heisenberg representation position and momentum operators. Yuen [Phys. Rev.
Lett. 51, 719 (1983)] discovered that there are contractive states for which this result is incorrect. Here I prove
universally valid rigorous quantum limits (RQL), viz. rigorous upper and lower bounds on σ 2(X(t)) in terms
of σ 2(X(0)) and σ 2(P (0)), given by Eq. (12) for a free mass and by Eq. (36) for an oscillator. I also obtain the
maximally contractive and maximally expanding states which saturate the RQL, and use the contractive states to
set up an Ozawa-type measurement theory with accuracies respecting the RQL but beating the standard quantum
limit. The contractive states for oscillators improve on the Schrödinger coherent states of constant variance and
may be useful for gravitational wave detection and optical communication.
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I. INTRODUCTION

A quantum system is prepared, for example, by a measure-
ment, in an initial state. Subsequent monitoring or measure-
ments of an observable A may be useful to detect any external
disturbances additional to the intrinsic change in the uncer-
tainty of the observable due to the system evolving by its own
Hamiltonian. Much before the actual discovery of gravitational
waves [1] it was realized that accurate monitoring of position
of an oscillator and of a free mass, including quantum effects,
are important for gravitational wave interferometers [2].

For an arbitrary initial state of a free mass or an oscillator,
I shall obtain rigorous quantum limits (RQL) on the intrinsic
uncertainty after time t .

For any observable with Schrödinger operator A (e.g.,
position A = X or momentum A = P ), and any Hamiltonian
H , the Heisenberg operator A(t) at time t and its variance
σ 2(A(t)) are defined by

A(t) ≡ exp(iH t/h̄) A exp(−iH t/h̄), (1)

σ 2(A(t)) ≡ 〈ψ(0)|(�A(t))2|ψ(0)〉, (2)

�A(t) ≡ A(t) − 〈A(t)〉, (3)

〈A(t)〉 ≡ 〈ψ(0)|A(t)|ψ(0)〉, (4)

where |ψ(0)〉 is the initial state.

II. HEURISTIC STANDARD QUANTUM LIMIT ON
MONITORING POSITION OF A FREE MASS

There are heuristic arguments proposing that the ac-
curacy of position monitoring is limited by the standard
quantum limit (SQL) [3,4] on the variance of the position
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operator X(t) :

σ 2(X(t)) � σ 2(X(0)) + (t2/m2)σ 2(P (0)) (5)

� 2(t/m)σ (X(0))σ (P (0)) � h̄t/m. (6)

For the free mass, H = P 2/(2m). The inequality (5) is
actually an equality for Gaussian states,

〈p|ψ(t)〉 = (πα)−1/4 exp

[
− (p − β)2

2α
− it

p2

2m

]
,

σ 2(P (t)) = α

2
, σ 2(X(t)) = h̄2 1 + (αt/(mh̄))2

2α
. (7)

One heuristic argument for the SQL [3,4], Eq. (5) starts
from H = P 2/(2m),�X(t) = �X(0) + (t/m)�P (0),

σ 2(X(t)) = σ 2(X(0)) + (t2/m2)σ 2(P (0))

+ (t/m)〈ψ(0)|�X(0)�P (0)

+�P (0)�X(0)|ψ(0)〉. (8)

One obtains the SQL if one assumes that the third term on the
right-hand side is non-negative.

In a seminal paper, Yuen [5] noted that there are contractive
states for which this assumption is incorrect. In an interesting
and correct argument for the SQL, valid in certain measurement
models, Caves [6] noted that in some models, resolution of the
meter �σ (X(0)) may entail that the variance of the position
measurement at time t is �σ 2(X(0)) + σ 2(X(t)), which is
�h̄t/m by the uncertainty principle. Yuen [5] and Ozawa [7]
(see also [9]) point out the existence of other measurement
models for which the imperfect resolution correction can be
much smaller than σ 2(X(0)). I address myself first to finding
a rigorous version of the heuristic SQL Eq. (5) on σ 2(X(t))
and optimum contractive states. I then briefly discuss how
the Ozawa [7] measurement model and the contractive states
may be used for repeated measurements on oscillators or
free masses over finite times, respecting, of course, the RQL
presented here, but beating the SQL.
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III. RIGOROUS QUANTUM LIMIT ON MONITORING
POSITION OF A FREE MASS

We start from Eq. (8) and find exact limits on the third term
on the right-hand side. Using

[�X(0),�P (0)] = ih̄, (9)

we have,

〈ψ(0)|�X(0)�P (0) + �P (0)�X(0)|ψ(0)〉 + ih̄

= 2〈ψ(0)|�X(0)�P (0)|ψ(0)〉. (10)

The Cauchy-Schwarz inequality on the right-hand side yields

(〈ψ(0)|�X(0)�P (0) + �P (0)�X(0)|ψ(0)〉)2

� 4σ 2(X(0))σ 2(P (0)) − h̄2, (11)

which is a rearrangement of the usual uncertainty relation on
the product of variances of X and P [8].

Substituting this into Eq. (8) I have the rigorous quantum
limits:

σ 2(X(0)) + (t/m)2σ 2(P (0))

− (t/m)
√

4σ 2(X(0))σ 2(P (0)) − h̄2

� σ 2(X(t))

� σ 2(X(0)) + (t/m)2σ 2(P (0))

+ (t/m)
√

4σ 2(X(0))σ 2(P (0)) − h̄2. (12)

It must be stressed that the bounds are fundamental quantum
limits valid for arbitrary states. The only states saturating
the inequalities are those for which the Schwarz inequalities
are equalities, i.e., �P (0)|ψ(0)〉 is a complex constant times
�X(0)|ψ(0)〉. Hence the RQL, Eq. (12) are equalities if and
only if

�P (0)|ψ(0)〉 = iλ�X(0)|ψ(0)〉, (13)

〈X′|ψ(0)〉

=
(

Reλ

πh̄

)1/4

exp

(
i〈P (0)〉X′

h̄
− λ(X′ − 〈X(0)〉)2

2h̄

)
, (14)

with Reλ > 0,

|Imλ| = 1

2σ 2(X(0))

√
4σ 2(X(0))σ 2(P (0)) − h̄2,

σ 2(X(0)) = h̄/(2 Reλ), σ 2(P (0)) = h̄|λ|2/(2 Reλ), (15)

and,

〈ψ(0)|�X(0)�P (0) + �P (0)�X(0)|ψ(0)〉
= ∓

√
4σ 2(X(0))σ 2(P (0)) − h̄2, if Imλ = ±|Imλ|.

(16)

The positive and negative signs of Imλ correspond respec-
tively to saturation of the left-hand side and right-hand side of
the inequality (12). The right-hand side of inequality (12) sets
an upper limit on spreading of the position wave packet and
the left-hand side to the amount of contraction possible. The
states (14) with positive Imλ derived without any reference

to oscillators turn out to be essentially Yuen’s contractive
twisted coherent states (TCS) [5] of an associated fictitious
oscillator. Thus, the above demonstration shows that for given
σ (X(0)),σ (P (0)), the TCS are the optimum contractive states.

It is useful to rewrite the left-hand side of the inequality (12)
in two alternative forms:

σ 2(X(t))

�
(

h̄

2σ (P (0))

)2

+
(

σ (P (0))
m

)2(
t − 1

2
tM

)2

(17)

= t

m
(2σ (X(0))σ (P (0)) −

√
4σ 2(X(0))σ 2(P (0)) − h̄2)

+
(

t
σ (P (0))

m
− σ (X(0))

)2

, (18)

where

tM = m

σ 2(P (0))

√
4σ 2(X(0))σ 2(P (0)) − h̄2. (19)

Equation (17) shows that the optimal state (14) with positive
Imλ remains contractive up to time tM/2, and the variance
σ 2(X(t)) is less than the initial variance σ 2(X(0)) for time
t < tM , i.e.,

σ 2(X(t)) � σ 2(X(0)), for t � tM, (20)

for the optimum contractive state. Equation (18) shows that
for a given uncertainty product, by choosing (t/m)σ 2(P (0)) =
σ (X(0))σ (P (0)), σ 2(X(t)) can be made as small as
(t/m)(2[σ (X(0))σ (P (0))] −

√
4σ 2(X(0))σ 2(P (0)) − h̄2);

this is ≈t h̄2/[4mσ (X(0))σ (P (0))] for a large uncertainty
product, and can be much smaller than the heuristic standard
quantum limit h̄t/m.

IV. RIGOROUS QUANTUM LIMITS ON MONITORING
POSITION OR MOMENTUM OF A HARMONIC

OSCILLATOR

This problem is specially significant because Hamiltonians
for all free bosonic fields, including the electromagnetic field,
are sums of harmonic oscillator Hamiltonians. In particular,
the limits I derive can be immediately translated into RQLs on
time development of quadratures of the electromagnetic field.

The Hamiltonian H = P 2/(2m) + 1
2mω2X2 can be rewrit-

ten as

H = 1
2 h̄ω(p2 + x2) = h̄ω(a†a + 1/2), (21)

where

p = P√
mh̄ω

, x =
√

mω

h̄
X,

a = x + ip√
2

, a† = x − ip√
2

. (22)
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The Heisenberg equations of motion yield

�x(t) = cos(ωt) �x(0) + sin(ωt) �p(0)

�p(t) = − sin(ωt) �x(0) + cos(ωt) �p(0). (23)

Hence,

σ 2(x(t)) = cos2(ωt)σ 2(x(0)) + sin2(ωt)σ 2(p(0))

+ 1
2 sin(2ωt)〈ψ(0)|�x(0)�p(0)

+�p(0)�x(0)|ψ(0)〉, (24)

σ 2(p(t)) = sin2(ωt)σ 2(x(0)) + cos2(ωt)σ 2(p(0))

− 1
2 sin(2ωt)〈ψ(0)|�x(0)�p(0)

+�p(0)�x(0)|ψ(0)〉. (25)

As before, using [�x(0),�p(0)] = i and Schwarz inequality,
we obtain

(〈ψ(0)|�x(0)�p(0) + �p(0)�x(0)|ψ(0)〉)2

� 4σ 2(x(0))σ 2(p(0)) − 1. (26)

Hence, we have the RQL for the oscillator in terms of the
dimensionless variables x and p, which can be the quadratures
for a mode of frequency ω of the electromagnetic field,

[cos2(ωt)σ 2(x(0)) + sin2(ωt)σ 2(p(0))]

− 1
2 | sin(2ωt)|

√
4σ 2(x(0))σ 2(p(0)) − 1

� σ 2(x(t))

� [cos2(ωt)σ 2(x(0)) + sin2(ωt)σ 2(p(0))
]

+ 1
2 | sin(2ωt)|

√
4σ 2(x(0))σ 2(p(0)) − 1 , (27)

which corresponds to Eq. (12) for a free mass. We also have
RQL for σ 2(p(t)) for the oscillator,

[sin2(ωt)σ 2(x(0)) + cos2(ωt)σ 2(p(0))]

− 1
2 | sin(2ωt)|

√
4σ 2(x(0))σ 2(p(0)) − 1

� σ 2(p(t))

�
[

sin2(ωt)σ 2(x(0)) + cos2(ωt)σ 2(p(0))
]

+ 1
2 | sin(2ωt)|

√
4σ 2(x(0))σ 2(p(0)) − 1. (28)

The extremal states saturating these RQL may be written in
terms of the dimensionless variables x,p for use in optical
quadrature measurements,

[�p(0) − iη±�x(0)]|ψ(0)±〉 = 0 (29)

〈x ′|ψ(0)±〉 =
(

Re η±
π

)1/4

× exp
(
i〈p(0)〉x ′) −

(
η±(x ′ − 〈x(0)〉)2

2

)
,

(30)

with

η± = 1

2σ 2(x(0))
[1 ± i

√
4σ 2(x(0))σ 2(p(0)) − 1]. (31)

The values η = η± yield the values σ 2(x(t))± and σ 2(p(t))±,

σ 2(x(t))± − cos2(ωt)σ 2(x(0)) − sin2(ωt)σ 2(p(0))

= ∓ 1
2 sin(2ωt)

√
4σ 2(x(0))σ 2(p(0)) − 1, (32)

and

σ 2(p(t))± − sin2(ωt)σ 2(x(0)) − cos2(ωt)σ 2(p(0))

= ± 1
2 sin(2ωt)

√
4σ 2(x(0))σ 2(p(0)) − 1. (33)

We deduce, for example, that for the initial state |ψ(0)+〉,
σ 2(x(t))+ � σ 2(x(0)), if 0 � ωt � ωt ′M, (34)

where

ωt ′M ≡ tan−1

[√
4σ 2(x(0))σ 2(p(0)) − 1

σ 2(p(0)) − σ 2(x(0))

]
< π , (35)

which corresponds to Eq. (19) in the free mass case.
Up to time t ′M , the contractive states for the oscillator

thus improve on the Schrödinger coherent states which have
constant σ 2(x(t)). Analogous results are easily obtained for
[σ 2(p(t))]− for the initial state |ψ(0)−〉.

It is easy to rewrite the bounds (27), (28), and extremal states
(29) in dimensionless variables in terms of the dimensional
X and P for the oscillator. Thus we have the RQL for the
oscillator,

cos2(ωt)σ 2(X(0)) + sin2(ωt)

m2ω2
σ 2(P (0))

− | sin(2ωt)|
2mω

√
4σ 2(X(0))σ 2(P (0)) − h̄2

� σ 2(X(t))

� cos2(ωt)σ 2(X(0)) + sin2(ωt)

m2ω2
σ 2(P (0))

+ | sin(2ωt)|
2mω

√
4σ 2(X(0))σ 2(P (0)) − h̄2 , (36)

which shows that in the limit ω → 0 the RQL for the oscillator
(36) yields the RQL for a free mass, Eq. (12).

V. CONNECTION OF EXTREMAL OSCILLATOR STATES
WITH SQUEEZED COHERENT STATES

The extremal oscillator states have a close connection with
squeezed coherent states with arbitrary squeezing direction.
There are many applications of such optical states in quantum
optics [10] and optomechanics. In particular, there has been
progress in preparing a mechanical oscillator in non-Gaussian
quantum states [11] by transferring such states from optical
fields onto the oscillator. Squeezed coherent states have already
been utilized in precision measurements needed in gravita-
tional interferometers [12].

Using the definitions,

a = x + ip√
2

, α = 〈ψ(0)|a|ψ(0)〉, (37)
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the extremal oscillator eigenvalue equation (29) is equivalent
to

(b − β)|ψ(0)〉 = 0, with b = μa + νa†, β = μα + να∗,

ν/μ = (η − 1)/(η + 1), η = (μ + ν)/(μ − ν),

(38)

where we have suppressed the subscripts ± on |ψ(0)〉,η,μ, and
ν for simplicity. Given η, only the ratio ν/μ is fixed, so we can
make the convenient choice,

|μ|2 − |ν|2 = 1, μ > 0, i.e., μ = cosh r, ν = eiθ sinh r,

(39)
with r > 0,θ real, in order to make the transformation from
a,a† to b,b† canonical, i.e., [b,b†] = 1. Equation (38) is then
just a twisted coherent state eigenvalue equation. The unitary
displacement operator D and squeeze operator S,

D(β,b) = D(α,a) = exp (αa† − α∗a),

S(ξ ) = exp 1
2 (ξ ∗a2 − ξa†2), ξ ≡ r exp (iθ ), (40)

obey

D†(β,b)bD(β,b) = b + β,

S†(ξ )aS(ξ ) = a cosh r − a†eiθ sinh r . (41)

Defining a|0〉 = 0 we have

(b − β)|α,ξ 〉 = 0, |α,ξ 〉 ≡ D(α,a)S(ξ )|0〉, (42)

i.e., |ψ(0)〉 = |α,r exp (iθ )〉. (43)

Thus the extremal states |ψ(0)〉 are simply related to the
squeezed coherent states. Since

η = 1 + i sin θ sinh (2r)

cosh (2r) − cos θ sinh (2r)
, (44)

sin θ > 0 and sin θ < 0 correspond respectively to |ψ(0)〉+
and |ψ(0)〉−. The Heisenberg equations of motion give a(t) =
a exp (−iωt), and hence the time-dependent states are

exp (−iH t)|ψ(0)〉 = e−iωt/2|αe−iωt , rei(θ−2ωt)〉. (45)

VI. POSITION MEASUREMENTS ON FREE MASSES AND
HARMONIC OSCILLATORS USING CONTRACTIVE

STATES

The RQL given above only considers unitary evolution
with the system Hamiltonian. Caves [6] noted insightfully that
additional considerations involving system-meter interactions
during measurement are necessary, and sometimes important.
The von Neumann model [13] is a prototype of quantum
measurement models which couple the system to a meter and
monitor the meter position y to obtain information about the
system position x. Caves considered a class of models (which
include the von Neumann model) in which, at any time τ ,
σ 2(y(τ )) = σ 2(x(τ )) + σ 2

R , where σR is the meter resolution.
He showed that for measurements at t = 0 and t = τ using
identical meter states, the assumption σR � σ (x(0)), where
σ (x(0)) is the position uncertainty just after the first measure-
ment, would again imply the heuristic SQL σ 2(X(τ )) � h̄τ/m.
The SQL also applies to extensions of the Caves [6] model to

continuous measurements by Caves and Milburn, and others
[14].

In order to exploit the new possibilities allowed by the
contractive states which violate the SQL (but obey the RQL),
I outline below the use of the Ozawa interaction Hamiltonian
[7],

H = k[2xpy − 2pxy + (xpx + pxx − ypy − pyy)/2],

(46)

where x,px are position and momentum operators for the
system, and y,py those for the meter. The important properties
of this interaction are that for a carefully chosen interaction
time, after the measurement, (i) the meter uncertainty does not
contain the additional uncertainty σR mentioned above and (ii)
the contractive state of the meter is transferred to the system.

Suppose N measurements, each of time duration τ , are
made over time intervals

tε [0,τ ],[T ,T +τ ],[2T ,2T + τ ],...[(N − 1)T ,(N − 1)T +τ ]

by N meters, each identically prepared at the beginning of the
respective measurement in the same contractive state given by
Eq. (30),

〈y ′|χ〉 =
(

Re η+
π

)1/4

exp

(
−η+y ′2

2

)
, (47)

where we have chosen 〈y(0)〉 = 〈py(0)〉 = 0 for simplicity,
and

η+ = 1

2σ 2(y(0))
[1 + i

√
4σ 2(y(0))σ 2(py(0)) − 1]. (48)

The meter may, for example, be an oscillator of frequency �

with � �= ω, where ω is the frequency of the system oscillator.
The coupling strength k is assumed large enough and the time
interval τ small enough for the free Hamiltonians of the system
and meter to be negligible during these measurement periods.

During each of the N − 1 time intervals of duration T − τ

between successive measurements,

tε [τ,T ],[T + τ,2T ],...[(N − 1)T + τ,NT ],

the measurement interaction is switched off and the system
(free mass or harmonic oscillator) evolves unitarily according
to its free Hamiltonian. At the beginning of each measure-
ment period (e.g., t = 0,T ,2T ,..), i.e., t = ti = (i − 1)T ,i =
1,2,..N , the joint wave function of the system and meter is

〈x ′,y ′|�(ti)〉 = 〈x ′|ψ(ti)〉〈y ′|χ〉, (49)

where we have suppressed a subscript i referring to the ith
meter. Solving the Heisenberg equation of motion using the
Ozawa interaction, we get the operators after time τ ,

x(ti + τ ) = 2√
3

[
sin

(
kτ

√
3 + π

3

)
x(ti) − sin (kτ

√
3)y(ti)

]
,

y(ti + τ ) = 2√
3

[
sin (kτ

√
3)x(ti) + sin

(
π

3
− kτ

√
3

)
y(ti)

]
,
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and the corresponding wave function

〈x ′,y ′|�(ti + τ )〉

=
〈

2√
3

[
sin (kτ

√
3)y ′ + sin

(π

3
− kτ

√
3
)
x ′

]
|ψ(ti)

〉

×
〈

2√
3

[
sin

(
kτ

√
3 + π

3

)
y ′ − sin (kτ

√
3)x ′

]
|χ

〉
. (50)

If we choose the product of the strength and duration of the
interaction such that

kτ = π/(3
√

3), (51)

we get the simple operators and wave functions,

x(ti + τ ) = x(ti) − y(ti); y(ti + τ ) = x(ti), (52)

〈x ′,y ′|�(ti + τ )〉 = 〈y ′|ψ(ti)〉〈y ′ − x ′|χ〉. (53)

Hence observation of the meter after the measurement will
return the correct expectation value for the system before the
measurement,

〈�(ti)|y(ti + τ ) − x(ti)|�(ti)〉 = 0, (54)

and the predicted probability density P (y ′) for the meter,

P (y ′)(ti + τ ) =
∫

dx ′|〈x ′,y ′|�(ti + τ )〉|2

= |〈y ′|ψ(ti)〉|2, (55)

which is identical to the system position probability density
just before measurement. Hence,

σ 2[y(ti + τ )] = σ 2[x(ti)], (56)

without any extra error σR corresponding to meter resolution.
Further, after a meter reading y ′, the system is left in the state

〈x ′|ψ(ti + τ )〉 = 〈y ′ − x ′|χ〉
[ 〈y ′|ψ(ti)〉
|〈y ′|ψ(ti)〉|

]
, (57)

which, apart from the phase factor in the square bracket on
the right-hand side is just the contractive state in which the
meter was prepared, but with 〈x〉 = y ′. Using this result and
our previous results in Eqs. (19) and (35), it follows that the
choice

T − τ = t ′M for oscillator,

T − τ = tM, for free mass, (58)

will ensure that the system state has position uncertainty less
than the initial meter uncertainty for NT > t > τ . To justify
neglecting the free Hamiltonians during the measurement
interval τ we need �τ � 1 for the meter and ωτ � 1 if the

system is an oscillator, and σ (P (0))/σ (X(0))τ/m � 1 if the
system is a free mass; we need the error in the condition
kτ = π/(3

√
3) to be negligible, i.e., the error kδτ � 1. Hence

we have the following necessary conditions on the sensitivity
of the time setting δτ and the strength k of the measurement
interaction:

δτ � 1

k
= τ

3
√

3

π
� min

[
1

�
,

1

ω

]
, (59)

for measurements on the oscillator; for the case of the free
mass 1/ω → mσ (X(0))/σ (P (0)) on the right-hand side of the
above equation.

VII. CONCLUSION

I have obtained rigorous quantum limits on the variance
σ 2(X(t)) in terms of σ 2(X(0)) and σ 2(P (0)) for arbitrary
quantum states of a free mass and of a harmonic oscillator.
I also obtained the states which achieve saturation of the
limits and their connection with squeezed coherent states of
an oscillator with arbitrary squeezing direction. In order to
utilize the contractive states to obtain accuracies beyond the
SQL, I have outlined measurement models over finite nonzero
time intervals for free mass position and oscillator position
using the Ozawa Hamiltonian [7] for system-meter interac-
tion. Between measurements the system evolves according
to the free Hamiltonian. In the oscillator case the extremal
contractive state improves on the Schrödinger coherent states
for a well-defined time interval, and the free evolution period
is adjusted to be equal to that interval. I also briefly discuss the
experimental sensitivities needed to justify the assumptions on
the parameters of the model.
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