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The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin- 1
2 particles

are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system
considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other
two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite
structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global
quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through
the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum
entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric
two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the
action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin
entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed
frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance
properties, which can only be obtained through such a Lorentz covariant formulation of the problem.
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I. INTRODUCTION

Relativistic quantum information is a fast developing field
that merges quantum information with relativistic quantum
mechanics to devise communication protocols in relativistic
frameworks involving, for instance, clock synchronization
[1], position verification [2], and teleportation protocols [3].
The effects of a relativistic frame transformation on quantum
correlations have been investigated [4–12] and, considering
spin as the natural tool for quantum information engineering,
the effects of frame transformations (Lorentz boosts) on the
quantum entanglement encoded by a pair of spin- 1

2 particles
have been investigated as well.

From a kinematic point of view, the action of the linear
transformation given by a Lorentz boost � describes the
change of space-time coordinates from an inertial frame S
to another one S ′, which moves with respect to S , to set, for
instance, the quadrimomentum transformation relation pν′ =
�ν

μpμ, summarized by p′ = �p in a matrical representative
notation, where p′ and p are described by coordinates at S ′
and S , respectively. As seminally stated by Wigner [13], under
such a transformation between inertial frames, an observable
spin (projector operator) described by the SU(2) adjoint repre-
sentation realized by σ = (σx,σy,σz), where σx,y,z are the Pauli
matrices, has its spin projection onto the particle momentum
direction, êp · σ̂ , with ep = p/| p|, changed to return êp′ · σ̂ �=
êp · σ̂ , where boldface variables v = (vx,vy,vz) denote spatial
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vectors with modulus v = √
v · v and circumflexes denote

quantum operators.
The rigorous treatment of the above kinematic properties

and of their imprints on quantum states of spin- 1
2 particles

involves a description of their observable related properties in
terms of the irreducible representations of the Poincaré group
[14,15]. For instance, for a particle with momentum p, in an
inertial frameS , described by the quantum state |φs( p)〉, where
s = 1,2 denotes accessible spin states, the action of a Lorentz
boost � that describes the change from S to S ′ is given by the
unitary transformation [13–15]

|φs( p)〉 → D̂[�]|φs( p)〉 =
∑

r

csr (�, p)|φr ( p′)〉, (1)

where the unitary operator D̂[�] and its explicit component
dependence csr , according to the Poincaré group representa-
tions [14,15] (cf. Sec. II), are given in agreement with the
irreducible representation of the quantum state |φs( p)〉, which
can describe, for instance, a spinor (in a doublet representation,
like electrons and positrons described either as Weyl or as
Majorana fermions), a vector (in a triplet representation, like
3S1 positronium or even photons), bispinors (in a double
doublet representation, like electrons and positrons described
by Dirac fermions), or even scalar (in a singlet representation,
like 1S0 positronium) and higher-order (maybe nonphysical)
tensor states. The point in this paper is that when quantum
states depend on the momentum, namely, those described by
Dirac equation solutions for spin- 1

2 states, different inertial
observers will see different superpositions and if somehow the
momentum degrees of freedom are traced out, the quantum
entanglement between spin states might change [4–12]. Of
course, for two-particle states, the question related to the
influence of the reference frame in the computation of quantum
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correlations is raised much more in the framework of relativis-
tic quantum mechanics supported by the Dirac formalism.

Despite the effectiveness of the irreducible representations
of the Poincaré group, in the Lorentz covariant Hamiltonian
formulation of quantum mechanics, one has to pay attention
to inclusion of mass in the relativistic formalism described by
the Dirac equation. As will be shown in Sec. II, it requires the
inclusion of the parity symmetry and the equalization of its role
with the helicity (spin- 1

2 projection, êp · σ̂ ∼ σ̂z) symmetry, as
an accomplished SU(2) symmetry. It supports, for instance, the
description of electrons as Dirac Hamiltonian eigenstates in the
double doublet irreducible representation of SU(2) ⊗ SU(2).
Spatial parity couples positive and negative parity states with
positive and negative helicity states as they were described by
irreducible representations of the Poincaré group [14] and, in
order to have complete invariance under parity, one needs to
consider the extended Poincaré group [15,16]. In this case, spin
1
2 is carried by Dirac four-component spinors, the bispinors
satisfying the Dirac equation, in a representation supported
by a subgroup of SL(2,C) ⊗ SL(2,C), i.e., SU(2) ⊗ SU(2).
In fact, the description of massive charged fermions (such as
electrons, muons, quarks, etc.) requires the irreducible repre-
sentations of the complete Lorentz group,1 namely, the Dirac
(bi)spinors [16].

The intrinsic spin-parity (or helicity-parity) entanglement
exhibited by a single Dirac bispinor has already been in-
vestigated in the context of quantum correlations driven by
interactions with external fields [17], which has been used for
simulating Dirac-like systems as, for instance, four-level ion
traps [18] and lattice and layer schemes in bilayer graphene
[19]. Generically, such an intrinsic entanglement encoded by
Dirac-like SU(2) ⊗ SU(2) structures can also be generated,
for example, by quantum electrodynamics (QED) scattering
processes [20].

Not in the same scope, but also emphasizing the bispinor
structure of fermionic quantum states, states constructed with
the solutions of the Dirac equation have been considered in the
scrutiny of Bell inequalities [21] and to obtain proper covariant
spin density matrices and definitions of the position operator
in the context of relativistic quantum mechanics [22,23]. Like-
wise, the effects of Lorentz boosts in quantum entanglement
encoded in bispinors were described in connection with Wigner
rotations for a specific class of states [24] and in the context of
the Foldy-Wouthuysen (FW) spin operator [25], with a focus
on the properties of transformation of spin-spin entanglement
encoded in FW eigenstates [26]. However, considering the
focus on the most phenomenologically appealing measure-
ment of two-particle spin-spin entanglement, the intrinsic
SU(2) ⊗ SU(2) covariant structure of Dirac bispinors, which is
associated with intrinsic parity and spin [27] for each particle,
has not yet been completely incorporated into such an overall
relativistic framework.

The aim of this work is therefore to estimate the influence
of Lorentz boosts on the quantum entanglement encoded in the

1The complete Lorentz group is composed of the proper Lorentz
group together with space inversion. The extended Poincaré group is
given by the complete Lorentz group with the addition of space-time
translation [16].

intrinsic SU(2) ⊗ SU(2) structure of two spin- 1
2 Dirac particles

which are also spin-spin entangled. As each particle described
by Dirac bispinors carries two qubits, the whole state is a four-
qubit one, and since multipartite entanglement is generally
present in such states, the Meyer-Wallach global measure of
entanglement [28] will be considered as a measure of the
entanglement encoded in the four qubits of the system. Alterna-
tively, the net result for the spin-spin entanglement, encoded
only in a two-qubit mixed state, will be computed through
the negativity [29,30]. The effects of a Lorentz boost on the
entanglement content of generic two-particle Dirac bispinor
states will be obtained for the case where superpositions of
helicity plane waves are considered. The results obtained will
be specialized to antisymmetric states showing, for example,
that a Lorentz boost cannot create spin-spin entanglement in
an initial separable antisymmetric state.

The paper is structured as follows. In Sec. II, the com-
plete Lorentz covariant structure of the Dirac equation solu-
tions, namely, that associated with the properties of SU(2)
spinor doublet representations and with the composition of
higher-order multiplet representations, is reported and the
foundation for establishing and discussing the spin-parity
intrinsic entanglement is introduced. In Sec. III, by using
the intrinsic SU(2) ⊗ SU(2) structure of the Dirac equation,
the entanglement profile of a generic superposition of Dirac
bispinors is described. In Sec. IV, by using the transforma-
tion laws of bispinors under Lorentz boosts, the effects of
such transformations on the quantum correlations encoded
by two-particle states are computed, with particular emphasis
on antisymmetric states. In addition, the investigation of the
effects of boosts on the superposition of chiral bispinors shows
that some subtle invariance properties can be obtained. A
summary is given in Sec. V, where conclusions concerning the
importance of accounting for the Lorentz covariant structures
in the computation of quantum correlations are drawn.

II. LORENTZ COVARIANT STRUCTURE OF THE DIRAC
EQUATION AND SPIN-PARITY INTRINSIC

ENTANGLEMENT

In quantum mechanics, the free-particle Dirac Hamiltonian
in the coordinate space reads

Ĥψ(x) = i
∂ψ(x)

∂t
= (−i∇ · α̂ + mβ̂)ψ(x)

= (−iα̂i∂
i + mβ̂)ψ(x) = ±Epψ(x), (2)

where Ep =
√

p2 + m2, the space-time dependence has been
resumed by x ∼ (t,x), the Dirac matrix operators α̂ =
(α̂x,α̂y,α̂z) and β̂ satisfy the anticommuting relations α̂i α̂j +
α̂j α̂i = 2δij Î4 and α̂i β̂ + β̂α̂i = 0 for i,j = x,y,z, with β̂2 =
Î4,IN the N -dimensional identity matrix, and Ĥ is expressed
in natural units, i.e., with c = h̄ = 1. The above Dirac
Hamiltonian dynamics exhibits some symmetries that are
supported by a group representation described by a direct
product between two algebras which compose a subset of
the group SL(2,C) ⊗ SL(2,C), the group SU(2) ⊗ SU(2). To
clarify this point, before discussing the above statement in the
enhanced language of Lie algebra and Lie groups, one simply
notices that left-handed spinors are described by a doublet
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(two-dimensional) representation of SU(2) (left) and a singlet
(one-dimensional) representation of SU(2) (right), (2,1) ≡
ψ

†
L(x) = (ψL1(x),ψL2(x)), and, analogously, right-handed

spinors are described by a doublet (two-dimensional) represen-
tation of SU(2) (right) and a singlet (one-dimensional) repre-
sentation of SU(2) (left), (1,2) ≡ ψ

†
R(x) = (ψR1(x),ψR2(x)),

in order to support the following decomposition for the Dirac
state vectors, ψ†(x) = (ψL1(x),ψL2(x),ψR1(x),ψR2(x)) ≡
(2,1) ⊕ (1,2), in a not unique double doublet representation
of the SU(2) ⊗ SU(2) group. Therefore, the free-particle Dirac
equation is thus mapped into coupled differential equations for
left- and right-handed components, respectively,

iσμ∂μψL(x) − mψR(x) = 0,

iσμ∂μψR(x) − mψL(x) = 0,

in the so-called chiral representation (Î2,σ̂ ) ≡ σμ and
(Î2, − σ̂ ) ≡ σμ, for which the Lagrangian density reads

L = iψ
†
Lσμ∂μψL + iψ

†
Rσμ∂μψR − m(ψ†

LψR + ψ
†
RψL),

(3)

from which a correspondence to the spinor chirality is identi-
fied.

As it has been mentioned, the above choice is not unique.
Another particular representation of the Dirac matrices is the
Pauli-Dirac representation in which the Dirac matrices are
decomposed into tensor products of Pauli matrices [27], as
α̂i = σ̂ (P )

x ⊗ σ̂
(S)
i , for i = x,y,z and β̂ = σ̂ (P )

z ⊗ Î (S), which
has another subjacent su(2) ⊕ su(2) algebra from the SU(2) ⊗
SU(2) group which, in this case, does not correspond to left-
and right-handed chiral projection representations but instead
is associated with intrinsic parity P and spin (or helicity) S. In
this case, the Dirac Hamiltonian is thus rewritten in terms of
Kronecker products between Pauli matrices as

Ĥ = p · (
σ̂ (P )

x ⊗ σ̂ (S)
) + m

(
σ̂ (P )

z ⊗ Î (S)
)
, (4)

from which, according to the interpretation of quantum me-
chanics as an information theory for particles, where the
superscripts P and S refer to the qubits of parity and spin,
one can identify the Dirac equation solutions as they were
described by two-qubit states encoded in a massive particle
whose dynamics is constrained by continuous variables.

Within this framework, from the Hamiltonian (4), the
normalized stationary eigenstates in the momentum coordinate
are written in terms of a sum of direct products describing
spin-parity entangled states

|us( p)〉 = 1√
2Ep(Ep + m)

{(Ep + m)|+〉 ⊗ |χs( p)〉

+ |−〉 ⊗ [ p · σ |χs( p)〉]}, (5)

|vs( p)〉 = 1√
2Ep(Ep + m)

{(Ep + m)|−〉 ⊗ |χs( p)〉

+ |+〉 ⊗ [ p · σ |χs( p)〉]} (6)

for positive and negative eigenvalues (associated frequencies)
±Ep = ±

√
p2 + m2, respectively, where |χs( p)〉 ∈ HS , with

s = 1,2, are the spinors related to the spatial motion of
the particle, i.e., the particle’s helicity, which describes the

dynamics of a fermion (in momentum representation) coupled
to its spin, and |±〉 ∈ HP are intrinsic parity states. In the
bispinorial form, one has

us( p) = 1√
2Ep(Ep + m)

[
(Ep + m) χs( p)

p · σ χs( p)

]
,

vs( p) = 1√
2Ep(Ep + m)

[
p · σ χs( p)

(Ep + m) χs( p)

]
,

(7)

with the orthogonality relations identified by u
†
s( p)ur ( p) =

v
†
s ( p)vr ( p) = δsr and u

†
s( p)vr (− p) = v

†
s ( p)ur (− p) = 0 and

the completeness relation given by

2∑
s=1

[us( p)u†
s( p) + vs( p)v†

s ( p)] = Î4.

States as described by Eqs. (7) are composite quantum systems
in a total Hilbert spaceH = HP ⊗ HS and, in the general form
of Eq. (5), they are spin-parity entangled [27]. Of course, they
are a superposition of orthonormal parity eigenstates |±〉 and
therefore they do not have a defined intrinsic parity quantum
number.2

To summarize, the spin degree of freedom (DOF) identified
by the index s is associated with irreducible representations
of the proper Poincaré group and the positive or negative
associated energy eigenstates of the spin- 1

2 particles can be
reindexed through the notation

|u±,s( p)〉 = 1√
2Ep(Ep + m)

[(Ep + m)|±〉 ⊗ |χs( p)〉

+ |∓〉 ⊗ [ p · σ |χs( p)〉] (8)

for vectors belonging to the irreducible representation la-
beled by (±, 1

2 ), associated with the SU(2) ⊗ SU(2) group
[13–15]. Therefore, the invariance under spatial parity sym-
metry requires an analysis with the complete Lorentz group
in order to include irreducible representations of SU(2) ⊗
SU(2) which merge spin with the additional DOF of intrinsic
parity [14,16].

In the context of a group theory, the above asser-
tion can be better understand when the representations of
sl(2,C) ⊕ sl(2,C), which corresponds to the Lie algebra of
the SL(2,C) ⊗ SL(2,C) Lie group, are irreducible, i.e., they
correspond to tensor products between linear complex rep-
resentations of sl(2,C), as it has been observed by con-
sidering the subgroup SU(2) ⊗ SU(2) ⊂ SL(2,C) ⊗ SL(2,C).
Unitary irreducible representations of SU(2) ⊗ SU(2) are
built through tensor products between unitary representations
of SU(2), in a one-to-one correspondence with the group
SL(2,C) ⊗ SL(2,C). Since it is a simply connected group,
there is also a unique correspondence to the sl(2,C) ⊕ sl(2,C)
algebra.

2A defined total parity operator P̂ acts on the direct product
|±〉 ⊗ |χs( p)〉 in the form P̂ [|±〉 ⊗ |χs( p)〉] = ±[|±〉 ⊗ |χs(− p)〉]
and, for instance, corresponds to the Kronecker product of two
operators P̂ (P ) ⊗ P̂ (S), where P̂ (P ) is the intrinsic parity (with two
eigenvalues P̂ (P )|±〉 = ±|±〉) and P̂ (S) is the spatial parity [with
P̂ (S)χs( p) = χs(− p)].
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As it has been identified above for the chiral basis and for the
spin-parity basis, the existence of inequivalent representations
of SU(2) ⊗ SU(2) follows from the above-mentioned one-to-
one correspondences. Inequivalent representations may not
correspond to the complete set of representations of SL(2,C) ⊗
SL(2,C) and therefore of the proper Lorentz transformations
that compose the SO(1,3) group, i.e., the Lorentz group.3

Returning to our point, as the transformations of SU(2) ⊗
SU(2) can be described by a subset of SL(2,C) ⊗ SL(2,C),
one may choose at least two inequivalent subsets of SU(2) gen-
erators such that SU(2) ⊗ SU(2) ⊂ SL(2,C) ⊗ SL(2,C), with
each group transformation generator having its own irreducible
representation. Therefore, a fundamental object of SUξ (2), a
spinorlike object ξ described by (±,0), transforms as a doublet
(the fundamental representation) of SUξ (2) and as a singlet [a
transparent object under any SUχ (2) transformations]. Recip-
rocally, the fundamental object of SUχ (2), a typical spinor χ

described by (0, 1
2 ), transforms as a doublet of SUχ (2) and as a

singlet of SUξ . Under improved notation generalized to higher-
dimensional representations (dim[SUξ (2)],dim[SUχ (2)]), the
spinor ξ is an object given by (2,1). Following the generalized
idea for an arbitrary SU(2) ⊗ SU(2) composition, one has the
representations as given by (1,1) for the scalar or singlet,
with angular momentum projection j = 0; (2,1) for the spinor
( 1

2 ,0), with angular momentum projection j = 1/2, which
corresponds to (±,0) in the case of SUξ (2) ⊗ SUχ (2) and
also applies for designating left-handed spinors in the case
of an inequivalent representation of the SUleft(2) ⊗ SUright(2)
group; (1,2) for the spinor (0, 1

2 ), with angular momentum
projection j = 1/2, which also applies for designating right-
handed spinors in the case of an inequivalent representation of
the SUleft(2) ⊗ SUright(2) group; (2,2) for a vector, with angular
momentum projection j = 0 and j = 1; etc. With respect to the
fundamental representations of SL(2,C), one may construct
more complex objects like (1,2) ⊗ (1,2) ≡ (1,1) ⊕ (1,3), a
representation that composes Lorentz tensors like

Cαβ(x) = εαβD(x) + Gαβ(x), (9)

where D(x) is a scalar and Gαβ = Gβα is totally symmetric, or
even (2,1) ⊗ (1,2) ≡ (2,2), such that (2,2) ⊗ (2,2) ≡ (1,1) ⊕
(1,3) ⊕ (3,1) ⊕ (3,3), which composes Lorentz tensors like

ϕμν(x) = Aμν(x) + Sμν(x) + 1
4gμν�(x), (10)

which correspond to a decomposition into smaller irreducible
representations related to the Poincaré classes quoted at [17],
with Aμν ≡ (1,3) ⊕ (3,1) totally antisymmetric under μ ↔ ν,
Sμν ≡ (3,3) totally symmetric under μ ↔ ν, and � ≡ (1,1)
transforming as a Lorentz scalar, multiplied by the metric
tensor gμν .

As a matter of completeness, the above properties, as
discussed in Ref. [17], support the inclusion of interacting
fields which also transform according to Poincaré symmetries
described by the extended Poincaré group [16], as they appear

3Instead, they describe a subset of transformations of the SO(4) ≡
SO(3) ⊗ SO(3) group, for instance, those which include the double
covering rotations.

in a full Dirac Hamiltonian like [18,19]

Ĥ = A0(x)Î4 + β̂[m + φS(x)] + α̂ · [ p̂ − A(x)] + iβ̂γ̂5μ(x)

− γ̂5q(x) + γ̂5α̂ · W (x) + iγ̂ · [ζa B(x) + κa E(x)]

+ γ̂5γ̂ · [κa B(x) − ζa E(x)], (11)

where a fermion with mass m and momentum p interacts with
an external vector field with time component A0(x) and spatial
components A(x) and is nonminimally coupled to magnetic
and electric fields B(x) and E(x) (via κa and ζa). The above
Hamiltonian also admits the inclusion of pseudovector field
interactions with time component q(x) and spatial components
W (x) besides both scalar and pseudoscalar field interactions
through φS(x) and μ(x), respectively. Algebraic strategies [17]
for obtaining the analytical expression for the matrix density of
the associated eigenstates of the above Hamiltonian problem
have been developed; however, they are beyond the central
scope of this paper.

III. BISPINOR ENTANGLEMENT UNDER
LORENTZ BOOSTS

With the normalized bispinors from Eq. (8), one can
construct a general quantum state of two particles A and B,
with momenta (energy) p (Ep) and q (Eq), respectively, as a
generic M-term normalized superposition

|�AB( p,q)〉 = 1√
N

M∑
i=1

ci |usi
( p)〉A ⊗ |uri

(q)〉B, (12)

with the normalization given by
∑M

i=1 |ci |2 = N , and where
the subindex ± has been omitted. Such two-particle states can
be generated, for instance, in a QED elastic scattering process
[20].4

As a matter of convenience, usi
( p) [as well as uri

(q)] can be
described by helicity eigenstates such that ep · σ̂ (S)|χsi

( p)〉 =
(−1)si |χsi

( p)〉 (where ep = p/| p|) can be factorized from
Eq. (8) to set usi

( p) as a spin-parity separable state. In terms
of projected states |z±〉, eigenstates of σ̂ (S)

z , one can write

|χsi
( p)〉 = Î

(S)
2 + (−1)si ep · σ̂ (S)√

1 + |ep · ez|
|z±〉, (13)

and if ep is in the z direction, ep ≡ ez, one has |χ1( p)〉 = |z+〉
and |χ2( p)〉 = |z−〉 such that, from now on, the label si (and
also ri), when set equal to 1 or 2, denotes positive or negative
helicity, respectively.

Under the above assumptions, the density matrix of the
generic superposition from Eq. (12) is written as

ρ( p,q) = 1

N

M∑
i,j

cic
∗
j ρ

A
si sj

( p) ⊗ ρB
rirj

(q), (14)

4The choice of different momenta { pi} �= p for each particle state
of the same vector subspace (either A or B) introduces additional
quantum correlations between spin and momentum variables, turning
the problem into a more complex and nonrealistic one.
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where

ρA
sisj

( p) = [∣∣usi
( p)

〉〈
usj

( p)
∣∣]A

= 1

2Ep

{(
Epδsisj

+ mδsisj +1
)
Î

(P )A
2

+ (
Epδsisj +1 + mδsisj

)
σ̂ (P )A

z

+
√

E2
p − m2[(−1)sj σ̂

(P )A
+

+ (−1)si σ̂
(P )A
− ]

} ⊗ �(S)A
sisj

( p), (15)

where σ̂± = σ̂x ± iσ̂y and the factorized dependence on the
momentum direction is implicitly given by

�(S)A
sisj

( p) = [∣∣χsi
( p)

〉〈
χsj

( p)
∣∣]A

, (16)

with a similar expression for ρB
rirj

(q) by replacing { p; si(j )} by
{q; ri(j )} and A by B. As each of the components of the state
(14) is a two-qubit state, the joint state ρ( p,q) is a four-qubit
state. Differently from the case where a system composed
of two subsystems has the quantum entanglement supported
by the Schmidt decomposition theorem, the classification
and quantification of entanglement in the above-constructed
multipartite states is an open problem. Subsystems in a multi-
partite state can share entanglement in different nonequivalent
ways and the corresponding multipartite entanglement can be
approached from different points of view. As the joint state (14)
is a pure state, its corresponding multipartite entanglement can
be computed through the Meyer-Wallach global measure of
entanglement EG[ρ], expressed in terms of the linear entropy
EL[ρ] as [28]

EG[ρ] = Ē[ρ{αk}] = 1
4 (EL[ρ(S)A] + EL[ρ(P )A]

+EL[ρ(S)B ] + EL[ρ(P )B]), (17)

with

EL[ρ] = d

d − 1
(1 − Tr[ρ2]),

where d is the dimension of the underlying Hilbert space in
which ρ acts, and the reduced density matrix of a given subsys-
tem αk is obtained by tracing out all the other subsystems ραj =
Tr{αk}�=αj

[ρ]. In the above problem, the subsystems considered
correspond to spin S and parity P for particles A and B, i.e.,
{αk} ≡ {(S)A,(S)B,(P )A,(P )B}. In particular, the more the
subsystems of a given state are mixed, the more entanglement
is encoded among them; the global measure EG[ρ] captures a
picture of the quantum correlations distributed among the four
DOFs involved here.

The linear entropy of a reduced subsystem ραk of (12),
which is a two-qubit state, is evaluated in terms of the
components of its Bloch vector aαk

n = Tr[σ̂ αk
n ραk ] as

EL[ραk ] = 1 −
∑

n={x,y,z}

(
aαk

n

)2
(18)

and the global measure from Eq. (17) can be simplified into

EG[ρ] = 1 − 1

4

∑
α={αk}

∑
n={x,y,z}

(
aα

n

)2
, (19)

with {αk} ≡ {(S)A,(S)B,(P )A,(P )B}. The Bloch vectors of
the subsystems of A are explicitly given by

a(S)A
n = 1

N

M∑
i,j

cic
∗
jMri rj

(q)
1

Ep

(
Epδsisj

+ mδsisj +1
)

× Tr
[
σ̂ (S)A

n �(S)A
sisj

( p)
]

(20)

for the spin subsystem and

a(P )A
x = 1

N

M∑
i

(−1)si |ci |2
√

E2
p − m2

Ep

,

a(P )A
y = 0,

a(P )A
z = 1

N

M∑
i,j

cic
∗
jMri rj

(q)Tr
[
�(S)A

sisj
( p)

]

× 1

Ep

(
Epδsisj +1 + mδsisj

)
(21)

for the parity subsystem, where

Mri rj
(q) = Tr

[
ρB

rirj
(q)

]
= 1

Eq

(Eqδrirj
+ mδrirj +1)Tr[�(S)B

rirj
(q)]. (22)

Analogous expressions for the Bloch vectors of the subsystems
of B are given by (20) and (22) with the replacements
{ p; si(j )} ↔ {q; ri(j )} and A ↔ B.

To evaluate the quantum entanglement encoded only by the
spin DOFs in (14), one considers the spin-spin reduced density
matrix

ρ(S)A,(S)B ( p,q)

= Tr(P )A,(P )B[ρ( p,q)]

= 1

N

M∑
i,j

cic
∗
j

(Epδsisj
+ mδsisj +1)(Eqδri rj

+ mδrirj +1)

EpEq

×�(S)A
sisj

( p) ⊗ �(S)B
rirj

(q), (23)

which is, in general, a mixed state. Entanglement in mixed
states cannot be evaluated in terms of the linear entropy,
as a mixed subsystem does not imply a joint entangled
state for mixtures. Instead, the characterization of quantum
entanglement, in this case, is given by the Peres separability
criterion [29], which asserts that a bipartite state ρ ∈ HA ⊗ HB

is separable if and only if the partial transpose density matrix
with respect to the any of its subsystem ρTA has only positive
eigenvalues. With respect to a fixed basis on the composite
Hilbert space {|λi〉 ⊗ |νj 〉} (with |λi〉 ∈ HA and |νi〉 ∈ HB),
the matrix elements of the partial transpose with respect to the
A subsystem ρTA are given by

〈λi | ⊗ 〈νj |(ρ)TA |λk〉 ⊗ |νl〉 = 〈λk| ⊗ 〈νj |ρ|λi〉 ⊗ |νl〉, (24)

and in the light of the separability criterion, the negativityN [ρ]
is defined as [30]

N [ρ] =
∑

i
|λi | − 1, (25)
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where λi are the eigenvalues of ρTA . The spin-spin negativity
of (14) N [ρ(S)A,(S)B ] is then evaluated with the eigenvalues of
the partial transpose of (23) with respect to (S)A to return

(ρ(S)A,(S)B))TA ( p,q)

= {Tr(P )A,(P )B[ρ( p,q)]}TA

= 1

N

M∑
i,j

cic
∗
j

(
Epδsisj

+ mδsisj +1
)(

Eqδri rj
+ mδrirj +1

)
EpEq

×�(S)A
sj si

( p) ⊗ �(S)B
rirj

(q), (26)

where the subtle change with respect to (23) is in the subindex
of �(S)A.

IV. COVARIANCE OF THE DIRAC EQUATION
AND THE EFFECTS OF LORENTZ BOOSTS

Once the global and the spin-spin entanglement of the
general superposition (12) are characterized by Eqs. (19) and
(20) and the spin-spin negativity is evaluated through the
eigenvalues of Eq. (26), one can describe how the Lorentz
boosts affect such quantum correlations. First, one notices that
the covariant form of the Dirac equation

(γ̂μpμ − mÎ4)ψ(x) = 0, (27)

where γ̂0 = β̂ and γμ = (γ0,γ̂ ), with γ̂ = β̂α̂, transforms
under a Lorentz boost xμ → xμ′ = �μ

ν xν as

(γ̂ μpμ − mÎ4)ψ(x) = 0 → [(γ̂ ′)μp′
μ − mÎ4]ψ ′(x ′) = 0

(28)

and its solution ψ(x) transforms as

ψ ′(x ′) = Ŝ[�]ψ(�−1x ′), (29)

where Ŝ[�] corresponds to the transformation in the bispinor
space representation (cf. D̂[�] from (1)). Lorentz boosts �(ω)
can be parametrized in terms of components in the vector repre-
sentation of SO(1,3) as [�(ω)]ij = δij + [cosh(ω) − 1]ninj ,
[�(ω)]i0 = [�(ω)]0i = sinh (ω)ni , and [�(ω)]00 = cosh (ω),
where ω = arccosh(

√
1 − v2) is the (dimensionless) boost

rapidity, v is the reference frame velocity (between S and
S ′), and ni are the space components of the boost direction n,
with n · n = 1. In the bispinor space representation, Ŝ[�(ω)]
reads

Ŝ[�(ω)] = cosh
(ω

2

)
Î4 − sinh

(ω

2

)
n · α̂, (30)

which is a nonunitary operator. By following the above-
introduced two-qubit prescription, the boost operator (30) can
be expressed in the form

Ŝ[�(ω)]=cosh
(ω

2

)
Î

(P )
2 ⊗ Î

(S)
2 −sinh

(ω

2

)
n · (σ̂ (P )

x ⊗ σ̂ (S)),

(31)

from which one can evaluate the effects of boosts on parity and
spin subsystems. For instance, keeping the covariant notation
for the quadrimomentum p, the density matrix of a single
helicity bispinor with quantum number s transforms under

boosts as

ρs(p) → ρ ′
s(p

′) = 1

cosh(ω)
Ŝ[�(ω)]ρs(�

−1p′)Ŝ†[�(ω)],

(32)
where the term [cosh (ω)]−1 was included to keep the nor-
malization of the spinor and (31) can be used to describe the
transformation law of the subsystem described by the spin
density ρ(S)

s (p) = Tr(P )[ρs(p)] as

ρ(S)
s (p) → ρ ′(S)

s (p′)

= 1

cosh (ω)

[
cosh2

(ω

2

)
ρ(S)

s (p) + sinh2
(ω

2

)
(n · σ̂ )

× ρ(S)
s (p)(n · σ̂ )

− (−1)s sinh (ω)
Ep − m

Ep

{
n · σ̂ ,ρ(S)

s (p)
}]

, (33)

where { , } denotes anticommutators and which, in the limit
Ep − m � Ep, can be subtly simplified to give a transforma-
tion law in the form of ρ ′(S)

s (p′) = Ôρ(S)
s (p)Ô†, where Ô is

the unitary operator

Ô = 1√
cosh (ω)

[
cosh

(ω

2

)
Î2 − sinh

(ω

2

)
(n · σ̂ )(ep · σ̂ )

]
.

(34)

In fact, such transformation under a Lorentz boost is the
same as that obtained for states belonging to the irreducible
representation (+, 1

2 ) of the Poincaré group, which can be recast
in terms of a momentum-dependent rotation and which is the
basis of several results in relativistic quantum information.5

Considering the generic two-particle state (14) in a refer-
ence frame S , the transformed density matrix describing the
state in an inertial frame S ′, related to S by a Lorentz boost �,
is given by

ρ( p,q) → ρ ′( p′,q ′)

= 1

ν
(ŜA[�] ⊗ ŜB[�])ρ( p,q){(ŜA[�])† ⊗ (ŜB[�])†}

= 1

ν

M∑
i,j

cic
∗
j �

A
sisj

( p) ⊗ �B
rirj

(q), (35)

where ν = Tr{(ŜA[�] ⊗ ŜB[�])2ρ( p,q)} and the transformed
term �A

sisj
( p) reads

�A
sisj

( p) = cosh2
(ω

2

)
ρA

sisj
( p)

− sinh(ω)

2

{
ρA

sisj
( p),

(
σ̂ (P )A

x ⊗ n · σ̂ (S)A
)}

5The nonunitarity of Ŝ[�(ω)] has also additional implications for the
definition of spin operators in the context of relativistic quantum me-
chanics [22]. Apart from the usual Pauli spin operator proportional to
�̂ = Î

(P )
2 ⊗ σ̂ (S), other spin operators were also proposed in the liter-

ature. For example, the FW spin operator [31] was used in the context
of transformation properties of Dirac bispinors to define a covariant
spin reduced density matrix [23,26] and states constructed with FW
eigenstates were then used in describing transformation properties of
spin entropy as well as the spin-spin Bell inequality under Lorentz
boosts.
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+ sinh2
(ω

2

)(
σ̂ (P )A

x ⊗ n · σ̂ (S)A
)

× ρA
sisj

( p)
(
σ̂ (P )A

x ⊗ n · σ̂ (S)A
)
, (36)

with an analogous expression for �B
rirj

(q). The difference
between the global entanglement in S ′ and S ,

�EG = EG[ρ ′( p′,q ′)] − EG[ρ( p,q)], (37)

is evaluated through Eqs. (19) and (20) replaced by transformed
Bloch vectors, now renamed by a → A, which are given by

A(S)A
k = 1

ν

M∑
i,j

cic
∗
jμrirj

1

Ep

[
Tr

[
σ̂

(S)A
k �(S)A

sisj

]
cosh2

(ω

2

)

× (
Epδsisj

+ mδsisj +1
)

− 2(−1)si nkTr
[
�(S)A

sisj

]
sinh(ω)

√
E2

p − m2δsi sj

+ Tr
[
σ̂

(S)A
k (n · σ̂ (S)A)�(S)A

sisj
(n · σ̂ (S)A)

]
sinh2

(ω

2

)

× (
Epδsisj

+ mδsisj +1
)]

(38)

for the spin reduced subsystem of A and

Ax
(P )A = 1

ν

M∑
i,j

cic
∗
jμrirj

1

Ep

[
(−1)si Tr

[
�(S)A

sisj

]

× cosh(ω)
√

E2
p − m2δsi sj

− sinh(ω)Tr
[
(n · σ̂ (S)A)�(S)A

sisj

](
Epδsisj

+ mδsisj +1
)]

,

Ax
(P )A = 1

ν

M∑
i,j

cic
∗
jμrirj

Epδsi sj +1 + mδsisj

Ep

Tr
[
�(S)A

sisj

]
(39)

for the parity reduced subsystem, where

μrirj
= Tr

[
�B

rirj

]
= 1

Ep

{
cosh (ω)(Eqδrirj

+ mδrirj +1)Tr
[
�(S)B

rirj

]
− (−1)ri sinh (ω)δri rj

√
E2

q − m2Tr
[
n · σ̂ (S)B�(S)B

rirj

]}
(40)

and, in all the above expressions, the explicit dependence on p
and q has been omitted from the notation. Through the above
expressions, again, the Bloch vector for the subsystems of B

can be obtained with the replacements { p; si(j )} ↔ {q; ri(j )}
and A ↔ B in Eqs. (38)–(40). For any boost one also has
Ay

(P )A = Ay
(P )B = 0.

The effects of the boost on the spin-spin entanglement, on
the other hand, are described by a change of the negativity

�N (S)A,(S)B = N [�(S)A,(S)B ] − N [ρ(S)A,(S)B ], (41)

with the transformed spin-spin density matrix given by

�(S)A,(S)B = 1

ν

M∑
i,j

cic
∗
j �

(S)A
sisj

⊗ �(S)B
rirj

, (42)

where

�(S)A
sisj

= cosh2
(ω

2

)Epδsisj
+ mδsisj +1

Ep

�(S)A
sisj

− (−1)si
sinh(ω)

2

√
E2

p − m2

Ep

δsisj

{
�(S)A

sisj
,n · σ̂ (S)A

}

+ sinh2
(ω

2

)Epδsisj
+ mδsisj +1

Ep

(n · σ̂ (S)A)

×�(S)A
sisj

(n · σ̂ (S)A), (43)

with a corresponding expression for �(S)B
rirj

. From the above
expression one concludes that if the boost is performed in a
direction n such that {�(S)A

sisj
,n · σ̂ (S)A} = {�(S)B

rirj
,n · σ̂ (S)B} =

0, then the spin reduced density matrix (42) is invariant.

A. Entanglement for an overall class of antisymmetric states

The above framework describes quantitatively the changes
on multipartite quantum correlations, as quantified by EG, and
on spin-spin entanglement induced by Lorentz boosts acting
on a generic superposition of two-particle helicity bispinors, as
quantified by N . As the nature of fermionic particles requires
antisymmetric wave functions, states that are given by the
antisymmetric superpositions have to be considered in the form

∣∣�M
sr ( p,q)

〉 = |us( p)〉A ⊗ |ur (q)〉B − |ur (q)〉A ⊗ |us( p)〉B√
2

.

(44)

Talking about Dirac particles like electrons, quarks, neutri-
nos, etc., some of the above configurations are very difficult to
be produced phenomenologically. Thus, only a few examples
will be considered in the following, from the less to the more
relevant ones.

At the reference frame S with p = −q, the center of
momentum frame, positive and negative helicity eigenstates
are given by

|χ1( p)〉 = |χ2(q)〉 = |z+〉,
|χ2( p)〉 = |χ1(q)〉 = |z−〉 (45)

and in the unboosted frame S the states are also eigenstates of
the Pauli spin operator σz. It is sufficient to consider the boost
with direction n in a plane defined by the unitary vectors ez

and ex , with n = sin (θ )ex + cos (θ )ez, as pictorially depicted
in Fig. 1.

By adapting the notation to the simplifications from
Eq. (45), one has the antisymmetric state given by

|ψ1〉 = |u1( p)〉A ⊗ |u2(q)〉B − |u2(q)〉A ⊗ |u1( p)〉B√
2

, (46)

in a superposition of helicities which, however, is spin-spin
separable. Since �(S)A

sr = �(S)B
sr = |z+〉〈z+| for all s and r , the

transformed spin-spin density matrix (42) is invariant under
partial transposition with respect to any of its subsystems and
thus a Lorentz boost does not create spin-spin entanglement.
Nevertheless, the global entanglement EG is not invariant, as
depicted in Fig. 2, which shows �EG as a function of the
boost rapidity ω and of the boost angle θ . Of course, this is
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FIG. 1. Schematic representation of the boost scenario. The joint
state of A and B is described by the antisymmetric superposition of
bispinors (44) with momenta, in S , p = −q = pez. A Lorentz boost
is performed to describe the joint state on a frame S ′ moving with
respect to S in the n = sin (θ )ex + cos (θ )ez direction with rapidity
ω.

because |ψ1〉 mixes different momentum eigenstates, in a kind
of artificial and unrealistic physical composition of particles A

and B. Boosts parallel to the momenta in S do not increase the
amount of global entanglement in the state, although for any
nonparallel boosts the global entanglement increases due to an
increase in both parity and spin reduced entropies, which are
essentially constrained by the dependence on the momentum
components. It tends to the maximum value (∼1) for high-
speed boosts.

Otherwise, a maximally entangled spin-spin state in S
can be constructed through an antisymmetric superposition
between positive helicities

|ψ2〉 = |u1( p)〉A ⊗ |u1(q)〉B − |u1(q)〉A ⊗ |u1( p)〉B√
2

, (47)

which, according to the correspondence from (45), indeed can
be recast as

|ψ2〉 = |u1( p)〉A ⊗ |u1(q)〉B − |u2( p)〉A ⊗ |u2(q)〉B√
2

, (48)

which corresponds to a much more realistic configuration,
for which particles in the subspace A and B have well
defined momenta p and q, respectively, in agreement with
the construction from the preceding section. Figure 3 depicts
the variation of the global and the spin-spin entanglement of
|ψ2〉 as a function of the boost rapidity ω. In this case, the
variation of entanglement is independent of the boost angle
and, as for the state from Eq. (46), the global entanglement
increases under Lorentz boosts. On the other hand, spin-spin
entanglement is degraded by the boost transformation and for
high-speed boosts the spin-spin state is completely separable.

A third antisymmetric configuration is given by

|ψ3〉 = |u1( p)〉A ⊗ |u2( p)〉B − |u2( p)〉A ⊗ |u1( p)〉B√
2

, (49)

which describes a two-particle helicity superposition moving
in the ez direction where both particles have the same mo-
mentum. This case is phenomenologically interesting because
�v = 0 is a kinematic Lorentz invariant. Two electrons in
a common rest frame will have �v = 0 for any relativistic
boost. In this case, the spin-spin entanglement depends on the
momentum p even in the unboosted frame. Differently from
the preliminary examples, both global entanglement, depicted
in Fig. 4, and spin-spin entanglement, depict in Fig. 5, exhibit
a nonmonotonic behavior under Lorentz boosts. In particular,
for a boost parallel to the momentum p with rapidity equal to
arccosh(Ep/m), the global entanglement is minimum, as this
frame corresponds to the common rest frame of the particles
where there is only spin-spin entanglement. For a high-speed
boost, the entanglement shared between the DOFs of the state
is enhanced, although the spin-spin entanglement, as in the
case of the state (48), is completely degraded.

It is worth mentioning that, although the global measure
from Eq. (17) was considered, four-qubit state entanglement
can be computed through another global measure of entan-
glement defined in a fashion similar to (17), but with linear
entropies of the reduced subsystems of two qubits. This
quantity is calculated with terms of the form Tr[σ̂ αk

i σ̂
βl

j ρ{αk ;βl}]
and contains, in addition to the information encoded in EG

FIG. 2. Variation of the global entanglement for the state (46) as a function of the boost rapidity ω (dimensionless) and of the boost
direction angle θ in radians (left plot) and as a function of the boost rapidity for θ = 0 (black solid line), π/4 (red dashed line), and π/2
(blue dot–double-dashed line). The initial rapidity of the states in the unboosted frame is ω0 = arccosh(Ep/m) = 1. The global entanglement
encoded in the DOFs of such a pair of bispinors always increases due to the boost when the transformation is in a direction not parallel to the
momenta p and q with respect to S . In the limit of high-speed boosts, EG has its maximum value 1, as for the unboosted state EG[ρ] = 1/2.
Among these correlations, no spin-spin entanglement is present, as in any frame N (S)A,(S)B [ψ1] = 0.
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FIG. 3. Variation of the global entanglement (left plot) and spin-spin entanglement (right plot) as a function of the rapidity ω (dimensionless)
for the state (48). The transformation of correlations in this state is independent of the boost angle θ and, although the global entanglement
increases due to the boost with a behavior similar to the one of Fig. 2, the spin-spin entanglement is degraded. In the limit of high-speed boosts,
SAB is separable from all the other DOFs and spin-spin entanglement vanishes: The global entanglement is encoded by the parity DOFs.

(17), also correlations between pairs of the subsystems [32].
Nevertheless, in the case of the antisymmetric states considered
here, the behavior of this quantity is qualitatively similar to the
behavior depicted in Figs. 3 and 4 and add no information about
the variation of quantum entanglement encoded by bispinors
under Lorentz boosts. Another point of view of multipartite
entanglement is provided by considering the geometry of the
composite Hilbert space and by studying distances between a
given multipartite state and the set of so-called K-separable
states [33]. In this case, the quantification of multipartite
entanglement can capture more information about different
multipartite components that contribute to the total amount of
quantum correlation in a given state, requiring an extremization
process. This more complete picture of multipartite entangle-
ment for the two spinors states considered here is postponed
to future investigations.

B. Transformation of entanglement in chiral states

Superpositions of eigenstates of the chiral operator γ̂5 =
σ̂ (P )

x ⊗ Î (S) defined in terms of the free bispinors us( p) as

uf
s ( p) = Î + (−1)f γ̂5

2
us( p), (50)

with f = 0,1, can also be investigated in the above context.
Differently from the helicity, the chirality is a Lorentz invariant
given that the chiral and the boost operator commute, i.e.,
[γ̂5,Ŝ[�(ω)]] = 0. However, for massive particles, it is not
a dynamical conserved quantity as [γ̂5,Ĥ ] �= 0 [34,35]. This
invariance property has implications for the transformation
laws of quantum entanglement encoded by superpositions of
chiral states

ψchiral( p,q) = 1

N

M∑
i

ci

∣∣ufi

si
( p)

〉A ⊗ ∣∣ugi

ri
(q)

〉B
, (51)

where fi is the chirality of the bispinor |ufi
si

( p)〉A and gi is the
chirality of |ugi

ri
(q)〉A. Chiral states constructed through pro-

jection of helicity states can be written in the simplified form∣∣uf
s ( p)

〉 = |f 〉 ⊗ |χs( p)〉, (52)

where |f 〉 = (|z+〉 + (−1)f |z−〉)/2 are the eigenstates of the
σ̂x operator, and thus the density matrix of (51) reads

ρchiral = 1

N

M∑
i,j

cic
∗
j (|fi〉〈fj |)A ⊗ �(S)A

sisj
⊗(|gi〉〈gj |)B ⊗�(S)B

rirj
,

(53)

FIG. 4. Variation of the global entanglement under a Lorentz boost for the state (49) as a function of the boost rapidity ω (dimensionless)
and of the boost direction angle θ in radians (left plot). The curves of the right plot correspond to those of Fig. 2. Different from Figs. 3 and 4,
global entanglement exhibits a nonmonotonic behavior for θ < π/2. For a parallel boost θ = 0 (solid curve) global entanglement reaches its
minimum for ω = 1, which corresponds to the reference frame in which the bispinors are at rest: All quantum correlations correspond to only
spin-spin entanglement.
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FIG. 5. Variation of spin-spin entanglement under a Lorentz boost for the state (49) as a function of the boost rapidity ω (dimensionless)
and of the boost direction angle θ in radians (left plot) and as a function of the boost rapidity for the boost direction corresponding to those
of Figs. 2 and 4. The behavior of quantum correlations encoded between the spin degrees of freedom is complementary to that exhibited by
the global entanglement of Fig. 4. For θ < π/2 the behavior is nonmonotonic with a local maximum corresponding to the rest frame of the
bispinors and a complete degradation resulting from a high-speed boost.

where, again, the explicit dependence on momenta has been
suppressed. Since the chiral eigenstates are invariant under
boosts, the density matrix (53) transforms as

ρ ′
chiral =

1

N

M∑
i,j

cic
∗
j (|fi〉〈fj |)A⊗ �′(S)A

sisj
⊗ (|gi〉〈gj |)B ⊗ �′(S)B

rirj
,

(54)

where �
′(S)A
ij = Ôfi

�(S)A
sisj

Ôfj
, with

Ôfi
= cosh

(ω

2

)
Î − (−1)(fi ) sinh

(ω

2

)
n · σ̂ , (55)

and changes of the global entanglement are exclusively due to
changes of the spin terms �(S)A

sisj
. A particular situation is for

fi = f and gi = g, for which �
′(S)A
ij = Ôf �(S)A

sisj
Ôf , and

ρ ′
chiral = 1

N

M∑
i,j

cic
∗
j (|f 〉〈f |)A ⊗ �

′(S)A
ij ⊗ (|g〉〈g|)B ⊗ �

′(S)B
ij ,

which exhibits an invariant quantum correlation when
antisymmetric states as from Eqs. (48) and (49) are considered.
In fact, the chiral states

∣∣ψchiral
2(3)

〉 =
(

Î + (−1)f γ̂5

2

)A

⊗
(

Î + (−1)gγ̂5

2

)B

|ψ2(3)〉,
(56)

with f,g = 0,1, are such that, for a boost direction given by
n = (sin(θ ),0, cos(θ )), one has ρchiral

2(3) → ρ ′chiral
2(3) = ρchiral

2(3) and
the states are completely Lorentz invariant.

V. CONCLUSION

The relativistic transformation properties of quantum en-
tanglement have been the focus of many recent investigations,
with a special interest in describing how the spin-spin en-
tanglement does change under Lorentz boosts. Although the
setup usually adopted to describe transformation properties of
quantum entanglement has given some interesting insights into
the physics of relativistic quantum information, when massive
charged fermions are considered as the physical carriers of spin

1
2 , a more complete description of the problem is required.
The physical particles, such as electrons, muons, etc., are
described by QED including, apart from the usual Poincaré
symmetry, also invariance under parity transformation. This
last symmetry operation exchanges two irreducible representa-
tions of the Poincaré group and a proper formulation is given in
terms of irreducible representations of the so-called complete
Lorentz group. The states of the particles are then described
by four-component objects, the Dirac bispinors, which satisfy
the Dirac equation.

In this paper we have described how Lorentz boosts affect
quantum entanglement shared among the DOFs of a pair of
bispinorial particles in a generic framework. As each of the
bispinors is supported by an SU(2) ⊗ SU(2) structure associ-
ated with the spin and intrinsic parity, the corresponding mul-
tipartite entanglement was quantified by means of the Meyer-
Wallach global measure of entanglement, given in terms of
the linear entropies of each subsystem. Additionally, since the
reduced spin state is mixed, the spin-spin entanglement was
quantified through the appropriate negativity. By means of the
SU(2) ⊗ SU(2) decomposition of the boost operator Ŝ[�], the
transformation laws for the Bloch vectors (and for the reduced
spin density matrix) of each subsystem were recovered for a
generic state, setting a framework in which to describe changes
of both global and spin-spin entanglements.

In order to specialize our results we have considered the
action of Lorentz boosts in three different antisymmetric
states. First we considered a spin-spin separable state in
which the particles are moving in opposite directions in the
unboosted frame. In such a scenario, Lorentz boosts cannot
create spin-spin entanglement and the global entanglement
monotonically increases as a function of the boost rapidity. The
second antisymmetric state considered here describes particles
with opposite momenta and maximal spin-spin entanglement.
As in the first case, the global entanglement increases as a
consequence of the boost, although a degradation of spin-
spin entanglement is induced by the frame transformation.
The last specific case consists of a pair of particles with
the same momentum and spin-spin entanglement, exhibiting
the nonmonotonic behavior of both global and spin-spin
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entanglement under a Lorentz boost. Finally, we addressed
the effects of Lorentz boosts on chiral states, which exhibit
some subtle invariance properties. In particular, the density
matrices obtained through projections of the antisymmetric
states on definite chiral states are completely invariant under
boosts.

The general formalism developed through this paper sets the
framework for some future developments, including the com-
putation of quantum entanglement among particles involved
in scattering processes [36]. It may also be useful in the aim
of a field-theoretic description of relativistic entanglement.
Finally, given that some low-energy systems, such as trapped

ions and graphene, emulate the Dirac equation dynamics [19],
interactions in such systems can be used to reproduce the
effects of Lorentz transformations in feasible manipulable
platforms which can work as simulating platforms for high-
energy-physics measurements.
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