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Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy
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The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly
for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations.
We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii)
Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The
CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent “spontaneous” emission
can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii)
spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we
further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC
and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state.
Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978)] that Ehrenfest
dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities
for studying light-matter interactions with semiclassical mechanics.
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I. INTRODUCTION

Understanding the dynamics of light-matter interactions is
essential for just about any flavor of physical chemistry; after
all, with a few exceptions, photons are the most common means
nowadays to interrogate molecules and materials in the labora-
tory. Today, it is standard to study molecules and materials with
light-scattering experiments, absorption spectroscopy, pump-
probe spectroscopy, etc. For a chemist, the focus is usually on
the matter side, rather than the electromagnetic (EM) field side:
One usually pictures an incoming EM field as a time-dependent
perturbation acting on a molecule. Thereafter, one calculates
how the molecule responds to the perturbation and, using phys-
ical arguments and/or semiclassical insight, one extrapolates
how the molecular process will affect the EM field. For in-
stance, in an absorption experiment, we usually assume linear
response theory [1] when calculating how much energy
the molecule absorbs. More precisely, one calculates a
dipole-dipole correlation function and then, after a Fourier
transform, one can make an excellent prediction for the
absorption pattern. For weak electric fields, this approach
often results in reliable data.

However, in many situations involving strong light-matter
interactions (e.g., laser physics), the states of the radiation
field and the material subsystems have to be considered on
equal footing. An example of strong recent interest is the host
of observed phenomena that manifest strong exciton-photon
coupling [2–4]. Closely related, and also in recent focus,
are observations and models pertaining to strong interactions
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between molecules and electromagnetic modes trapped inside
of optical cavities [5–7]. As another example, recent studies by
Mukamel [8], Bucksbaum [9], and coworkers have explored
the proper interpretation of x-ray pump-probe scattering exper-
iments and, in particular, the entanglement among electrons,
nuclei, and photons. For these and similar problems, one cannot
ignore the dynamics of the EM field.

In order to study these and similar systems, and to go beyond
model problems, one must necessarily solve some variants
of the coupled Maxwell and Schrödinger (or, when needed,
quantum-Liouville) equations, where the radiation field is
described by classical Maxwell equations while the molecular
system is modeled with a handful of states and described
quantum mechanically [3,10–17]. A classical description of
the radiation field is obviously an important simplification of
quantum electrodynamics, which makes it possible to simulate
the optical response of realistic model systems. However, open
questions remain in this area, in particular, the following:

(1) How does spontaneous emission emerge, if at all, in
semiclassical calculations?

(2) How do we best describe computationally the possibly
simultaneous occurrence of absorption, scattering, fluores-
cence, and nonlinear optical response following a pulse or CW
excitation of a given molecular system that may interact with
its environment?

(3) How do we treat both quantum-mechanical electron-
electron interactions (e.g., spin-orbit coupling) and classical
electronic processes (e.g., electronic energy transfer) in a
consistent fashion?

In the future, our intention is to address each and every
one of these questions. For the present article, however, our
goal is to address the first question: How does spontaneous
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emission emerge (if at all) in semiclassical electrodynamics?
We note that spontaneous emission rates can be evaluated from
the rate of energy emission by a classical dipolar antenna
[18]. Moreover, Miller [19] has argued that, apart from a
few corrections, spontaneous decay rates can sometimes be
ascertained from classical dynamics. Indeed, for a dipolar
harmonic oscillator, Miller has shown that a semiclassical
decay rate can be obtained from classical dynamics exactly.
His treatment [19], however, raises several questions.

First, in Ref. [19], the molecular system is represented by
a classical harmonic oscillator rather than a two-level system.
How will the observations made by Miller be affected with a
proper quantum-mechanical treatment? What will be the per-
formance of mixed semiclassical treatments for spontaneous
emission, and which semiclassical treatment will perform best?
Second, in Ref. [19], no explicit light pulses are applied to
the electronic system, but one can ask: If a pulse of light is
applied to the system, and we use mixed quantum-classical
dynamics, is the propagated photon field consistent with the
ensuing molecular dynamics? With an external temperature,
do we recover detailed balance? In this article, we will
address most of these questions, paying special attention to the
recent symmetrical quasiclassical (SQC) dynamics protocol of
Cotton and Miller [20,21].

This article is arranged as follows. In Sec. II, we briefly
review the theory of spontaneous decay. In Sec. III, we
introduce the semiclassical Hamiltonian that we will study. In
Sec. IV, we implement Ehrenfest dynamics, CPA, and SQC.
In Sec. V, simulation details are given. In Sec. VI, we compare
results for spontaneous decay. In Sec. VII, we simulate and
analyze two cases: (i) the arrival of an incoming pulse and (ii)
dephasing effects. We conclude in Sec. VIII.

For notation, we use the following conventions: h̄ω0 is used
to represent the energy difference between the excited state |e〉
and the ground state |g〉; h̄ωk′ (or h̄ck′) is used to represent the
energy of the photon with wave vector k′; μ12 is the electric

transition dipole moment of the molecule;
√

1
a

represents the
molecular size so that the transition dipole moment with a

characteristic charge q is approximately μ12 ≈
√

1
a
q; ς is used

to represent a dephasing rate; U0 denotes the total energy of
an incident pulse; k0 denotes the peak position of an incident
pulse in Fourier space; b is a parameter fixing the width of an
incident pulse in space; and c is the speed of light. We work
below in SI units.

II. THEORY OF SPONTANEOUS EMISSION

For completeness, and because we will work in both one
and three dimensions, it will be convenient to briefly review the
theory of spontaneous emission and dipole radiation. Consider
a molecular species in an excited state |e〉 which can decay to
the ground state |g〉 by emitting a photon spontaneously.

A. The Fermi’s golden rule (FGR) fate

Let the vacuum state for the radiation field be |0〉. Suppose
that initially the system is in state |e〉 ⊗ |0〉. At long times, we
expect to observe spontaneous emission, so that the final state
will be |g〉 ⊗ a

†
q,s |0〉. Here, a

†
q,s creates a photon with wave

vector �q and polarization s.

We now apply Fermi’s golden rule (FGR) for the emission
rate. We further make the dipole approximation, so that the
interaction Hamiltonian for a molecule sitting at the origin

is Hint = −q �̂r · �̂E(0), where q is the electronic charge, �̂r is

the position operator for the quantum system, and �̂E(0) is the
electric field at the origin. In such a case, the decay rate k in
three dimensions (3D) can be calculated as follows [22]:

k3D = 2π

h̄2

∑
�k′,�s

h̄ωk′

2ε0V
| �μ12 · �ε�k′,�s |2δ(ω0 − ck′) (1a)

= 2π

h̄2 2
∫

dϕ

∫
sin θdθ

∫
k′2dk′ V

(2π )3

h̄ωk′

2ε0V

× |μ12|2 cos2 θδ(ω0 − ck′) (1b)

= ω3
0|μ12|2

3πε0c3h̄
. (1c)

Here, μ12 = | 〈e| q �̂r |g〉 | is the three-dimensional transition
dipole moment of the molecule, �ε�k′,�s is the a unit vector in the

direction of the electric field indexed by the wave vector �k′
and the polarization vector �s, and h̄ω0 is the energy difference
between |e〉 and |g〉. Equation (1a) is the usual FGR expression.
In Eq. (1b), if we replace the discrete

∑
�k′ with the continuous∫

dϕdθdk′ sin θk′2η(�k′), where η(�k′) = V/(2π )3 is the three-
dimensional density of states (DOS) for the photons, we
recover Eq. (1c).

In what follows below, it will be useful to study EM radiation
in one dimension (1D) as well as in 3D. To that end, we will
imagine charge distributions that are function of x only; i.e.,
they are uniform in y and z directions. In 1D, the density of
states (DOS) for the photon field is η( �k′) = Lx/2π . Therefore,
the decay rate in 1D is

k1D = 2π

h̄2

∑
k′
x ,s

h̄ωk′
x

2ε0V
|μ12|2δ(ω0 − ck′

x) (2a)

= 2π

h̄2 2
∫

dk′
x

Lx

2π

h̄ωk′
x

2ε0V
|μ12|2δ(ω0 − ck′

x). (2b)

Using V = LxLyLz and defining the one-dimensional
dipole moment |μ1D

12 |2 = |μ3D
12 |2/LyLz, we can rewrite the

final 1D rate as

k1D = ω0

h̄ε0c

∣∣μ1D
12

∣∣2
. (3)

Below, we will use μ12 to represent either μ1D
12 or μ3D

12
depending on context.

Note that, in 1D, the spontaneous decay rate k1D depends
linearly on the frequency ω0 and quadratically on the transition
dipole moment μ12. In 3D, however, k3D depends cubically on
ω0 instead of linearly, but still quadratically on μ12. Note that
for Eqs. (1c) and (3) to apply, two conditions are required: (i)
The dipole approximation must be valid, i.e., the wavelength
of the spontaneous light must be much larger than the width of
the molecule, and (ii) the coupling between the molecule and
the radiation field must be weak so that we may ignore any
feedback on the EM field, i.e., ω0 must be much larger than
the inverse lifetime (k).
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B. The Abraham-Lorentz rate

While FGR is the standard protocol for modeling spon-
taneous emission with quantum mechanics, we can also re-
cover a similar decay rate with classical mechanics by using
the Abraham-Lorentz equation [23]. For a classical charged
harmonic oscillator moving in the x direction with mass m,
the Abraham-Lorentz equation reads

m �̈x(t) = −mω2
0 �x(t) + mτ

...
�x (t), (4)

where τ = q2/6πε0c
3m has the dimensions of time. The last

term in Eq. (4) represents the recoil force on a particle as it
feels its own self-emitted EM field. If we assume τ � 1/ω0,
i.e., we assume the damping effect is small, we may replace
mτ

...
�x (t) by −mω2

0τ �̇x(t) to obtain

m �̈x(t) = −mω2
0 �x(t) − mω2

0τ �̇x(t). (5)

Equation (5) represents a damped harmonic oscillator, which
has a well-known solution

�x(t) = x0 cos

⎛⎝ω0

√
1 − ω2

0τ
2

4
t + φ

⎞⎠e− kAL
2 t êx

≈ x0 cos (ω0t + φ)e− kAL
2 t êx (6)

since ω0τ � 1. In Eq. (6), the amplitude x0 and the phase φ

will depend on the initial conditions, and the decay rate kAL is

kAL = ω2
0τ = q2ω2

0

6πε0c3m
. (7)

At this point, we can write down the total energy of the
harmonic oscillator:

E(t) = 1

2
mω2

0 �x2(t) + 1

2
m �̇x2(t)

= mω2
0x

2
0e−kALt

[
1 + 1

8

k2
AL

ω2
0

cos2 (ω0t + φ)

]
≈ mω2

0x
2
0e−kALt . (8)

To relate the Abraham-Lorentz rate kAL to the FGR rate in 3D,
we require a means to connect a classical system with mass m

to a pair of quantum mechanical states. To do so, we imagine
the oscillator is quantized and that the motion is occurring in

the ground state, where
√

x2
0 = √

h̄/2mω0. This is equivalent

to asserting that the initial energy of the dipole is 1
2 h̄ω0, which

we set equal to the total dipole energy, mω2
0x

2
0 .

If we further assert that the dipole operator is off-diagonal
[as in Eq. (16)], we may substitute qx0 ≈ μ12, which leads to
the following Abraham-Lorentz rate (kAL):

kAL = q2x2
0ω3

0

3πε0c3h̄
= |μ12|2ω3

0

3πε0c3h̄
= k3D

FGR. (9)

With this ansatz, the Abraham-Lorentz decay rate kAL is equal
to the FGR rate in 3D. Note that several ad hoc semiclassical
assignments must be made for this comparison, and it is not
clear how to generalize the Abraham-Lorentz approach to treat
more than two electronic states in a consistent fashion.

C. The asymptotic electromagnetic field

Below, we will analyze different schemes for solving
Maxwell’s equations coupled together with the Liouville
equation, and it will be helpful to compare our results with
the standard theory of dipole radiation. According to classical
electrodynamics, if a dipole is located at the origin and is
driven by an oscillating field, the electromagnetic (EM) field
is generated with the energy density (at time t and position �r)
given in the far field by [24]

u(�r,t) = μ0

c2

ω4
0μ

2
12

16π2

sin2 θ

r2
cos2[ω0(t − r/c)]. (10)

Here, without loss of generality, we assume that the dipole is
pointing in the z direction, so that θ is the polar angle from the
z axis. r is the distance from the observer to the dipole (which
sits at the origin). Equation (10) predicts that, for the energy
density, there is a sin2 θ dependence on the polar angle θ and a
1/r2 dependence on the distance r . Note that Eq. (10) is valid
in the far field when r 
 λ 
 d, where λ is the wavelength of
EM field and d is the size of the dipole.

This concludes our review of spontaneous emission and
classical electrodynamics.

III. THE SEMICLASSICAL HAMILTONIAN

We now return to semiclassical electrodynamics and con-
sider the problem of a two-level system coupled to a radiation
field. After a Power-Zienau-Woolley transformation [25,26] is
applied, the Hamiltonian reads as follows:

Ĥ = Ĥs + 1

2

∫
d�r

[
1

ε0
D̂⊥(�r)2 + 1

μ0
B̂(�r)2

]
−

∫
d�r D̂⊥(�r)

ε0
P̂⊥(�r) + 1

2ε0

∫
d�r|P̂⊥(�r)|2. (11)

Here, B̂ = ∇ × Â and D̂⊥ = ε0Ê + P̂⊥. Â is the vector
potential for the EM field and P̂⊥ is the polarization operator
for the matter. For the EM field, the relevant commutators are
[D̂⊥(�r),Â(�r ′)] = ih̄δ⊥(�r − �r ′), where δ⊥ is the transverse δ

function. Hs is the Hamiltonian of the electronic system, which
will be defined below. We ignore all magnetic moments in
Eq. (11).

Equation (11) is a large Hamiltonian, written in the context
of a quantum field. For semiclassical dynamics, it is convenient
to extract the so-called “electronic Hamiltonian” that depends
only parametrically on the EM field. Following Mukamel [25],
one route to achieve such a semiclassical Hamiltonian is to
consider the equation of motion for an observable of the matter
Q̂:

h̄

i

dQ̂

dt
= [Ĥs,Q̂] − 1

2

∫
d�r([P̂⊥,Q̂]Ê⊥ + Ê⊥[P̂⊥,Q̂])

?= [Ĥ el,Q̂]. (12)

If we approximate that theE field is classical, so that we may
commute Ê⊥ with all matter operators, we find the following
semiclassical electronic Hamiltonian:

Ĥ el(E) = Ĥs −
∫

d�r �E⊥(�r) · P̂⊥(�r). (13)
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Because in this article we will analyze the case of only one
charge center, from now on we will not need to distinguish
between longitudinal and perpendicular components, and so
we will drop the ⊥ notation below.

We will define Hs to be a two-level system Hamiltonian
with ground state |g〉 and electronic excited state |e〉:

Ĥs =
(

0 0
0 h̄ω0

)
. (14)

Furthermore, we assume that (a) the |e〉 and |g〉 states carry
no permanent dipoles and (b) the transition between them is
characterized by two single-electron orbitals ψg and ψe and
an effective charge q such that the transition dipole density is
given by

�ξ (�r) = q�r · ψ∗
e (�r)ψg(�r) (15)

with a corresponding polarization operator:

P̂(�r) =
(

0 1
1 0

)
�ξ (�r). (16)

For example, in 3D, in the common case that ψe(�r) is a pz or-
bital ( 21/2a5/4

π3/4 ze−ar2/2) and ψg(�r) is an s orbital [( a
π

)3/4e−ar2/2],
�ξ (�r) would be

�ξ 3D(�r) = q�r 21/2a2

π3/2
ze−ar2

. (17)

If we consider a charge distribution that is effectively 1D,
changing along in the x direction but polarized in the z

direction, the reduced form of �ξ (�r) would be

�ξ 1D(x) = qêz

1√
2π

e−ax2
. (18)

The magnitude of �ξ (�r) is related to the magnitude of the
total transition dipole moment, �μ12:

μ12 = |�μ12| = |〈e|q �̂r|g〉| = |
∫

d�r �ξ (�r)|. (19)

Equation (19) guarantees that, when the width of P̂(�r) ap-
proaches 0, Eq. (13) becomes the standard dipole Hamiltonian,
Ĥ el = Ĥs − �μ12 · �E(0). This definition allows us to rewrite
Eqs. (17) and (18) above, as follows:

�ξ 3D(�r) = 2a5/2

π3/2
μ12�rze−ar2

, (20a)

�ξ 1D(x) =
√

a

π
μ12êze

−ax2
. (20b)

Note that �ξ 3D and �ξ 1D have different units.
In the appendix, we will show that under the point dipole

limit—where the width of �ξ (�r) is much smaller than the
wavelength of EM field, so that �ξ (�r) can be treated as a δ

function—some analytic results can be derived for the coupled
electronic-photons dynamics.

IV. METHODS

Many mixed quantum-classical semiclassical dynamics
tools have been proposed over the years to address coupled
nuclear-electronic dynamics, including wave-packet dynamics

[27,28], Ehrenfest dynamics [29], surface-hopping dynamics
[30,31], multiple spawning dynamics [32], and partially lin-
earized density matrix dynamics (PLDM) [33]. Except for the
Ehrenfest (mean-field) dynamics, other methods are usually
based on the Born-Oppenheimer approximation, which relies
on the time-scale separation between (slow) classical and (fast)
quantum motions. Such methods cannot be applied in the
present context because the molecular time scales and the
relevant photon periods are comparable [34]. The Ehrenfest
approximation relies on the absence of strong correlations
between interacting subsystems and may be valid under more
lenient conditions. We therefore limit the following discussion
to the application of the Ehrenfest approximation and its
variants [35].

A. Ehrenfest dynamics

According to Ehrenfest dynamics for a classical radiation
field and a quantum molecule, the molecular density operator
ρ̂(t) is propagated according to

d

dt
ρ̂(t) = − i

h̄

[
Ĥs −

∫
d�r �E(�r,t) · P̂(�r), ρ̂(t)

]
, (21)

while the time evolution of the radiation field is given by the
Maxwell’s equations

∂ �B(�r)

∂t
= −�∇ × �E(�r),

∂ �E(�r)

∂t
= c2 �∇ × �B(�r) −

�J (�r)

ε0
.

(22)

Here, the current density operator, �̂J = dP̂ /dt , is replaced by
its expectation value:

�J (�r) = d

dt
Tr[ρ̂P̂(�r)]. (23)

If we substitute Eqs. (16) and (21) into Eq. (23), the current
density �J (�r) can be simplified to

�J (�r) = −2ω0Im(ρ12)�ξ (�r), (24)

where ρ12 is the coherence of the density matrix ρ.
Two points are noteworthy: First, because Eq. (21) does

not include any dephasing or decoherence, there is also an
equivalent equation of motion for the electronic wave function
(with amplitudes C1,C2):

d

dt

(
C1

C2

)
= − i

h̄

(
Hel

11 Hel
12

Hel
21 Hel

22

)(
C1

C2

)
. (25)

Here Hel
ij is a matrix element of the operator Ĥ el = Ĥs −∫

d�r �E(�r) · P̂(�r).
Second, under the dynamics governed by Eqs. (21) and (22),

the total energy of the system Utot is conserved, where

Utot = 1

2

∫
d�r

(
ε0| �E(�r)|2 + 1

μ0
| �B(�r)|2

)
+ Tr(ρĤs). (26)

Altogether, Eqs. (21), (22), and (23) capture the correct physics
such that, when an electron decays from the excited state |e〉
to the ground state |g〉, an EM field is generated to ensure
conservation of energy.
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1. Advantages and disadvantages of Ehrenfest dynamics

The main advantage for Ehrenfest dynamics is a consistent,
simple approach for simulating electronic and EM dynamics
concurrently.

Several drawbacks, however, are also apparent for Ehrenfest
dynamics. First, consider Eq. (24). Certainly, if the initial
electronic state is an eigenstate of Hs , i.e., (C1,C2) = (0,1),
then ρ12(t = 0) = C1C

∗
2 = 0 and there will be no current

density �J (�r) (assuming there is no EM field initially in space).
Thus, in disagreement with the exact quantum result, there is no
spontaneous emission: The initial state (0,1) will never decay.
According to Ehrenfest dynamics, spontaneous emission can
be observed only if C1 �= 0 and C2 �= 0, i.e., if the initial state
is a linear combination of the ground and excited states.

Second, it is well known that, for finite temperature,
Ehrenfest dynamics predicts incorrect electronic populations at
long time: The electronic populations will not satisfy detailed
balance [36]. Here, finite temperature would correspond to a
thermal distribution of photon modes at time t = 0, represent-
ing the black-body radiation. However, for the purposes of fast
absorption and/or scattering experiments, where there is no
equilibration, this failure may not be fatal.

B. The classical path approximation (CPA)

If Ehrenfest dynamics provides enough accuracy for a
given simulation, the relevant dynamics can actually be further
simplified and reduced to the standard “classical path approxi-
mation (CPA)” [37]. To make this reduction, note that the EM
field can be considered the sum of two parts: (i) the external
EM field �Eext(�r) that represents a pulse of light approaching
the electronic system and (ii) the scattered EM field �Escatt(�r)
generated from spontaneous or stimulated emission from the
molecule itself. Thus, at any time, �E(�r) = �Eext(�r) + �Escatt(�r),
where we impose free propagation for the external EM field,
i.e., �Eext(�r,t) = �Eext(�r − ct r̂ext,0). Here, r̂ext represents the unit
vector in the propagation direction of the external EM field.

According to the CPA, we ignore any feedback from
electronic evolution upon the EM field, i.e., we neglect the∫

d�r �Escatt(�r) · P̂(�r) term of Eq. (21). Thus, the electronic
dynamics now obey

d

dt
ρ̂(t) = − i

h̄

[
Ĥs −

∫
d�r �Eext(�r − ct r̂ext) · P̂(�r), ρ̂(t)

]
,

(27)

while the photon dynamics still obey Eq. (22). This so-called
classical path approximation underlines all usual descriptions
of linear spectroscopy and should be valid when | �Escatt| �
| �Eext|. In such a case, the coherence ρ12 and current density
�J are almost unchanged if we neglect the

∫
d�r �Escatt(�r) · P̂(�r)

term.

1. Advantages and disadvantages of the CPA

Obviously, the advantage of Eq. (27) over Eq. (21) is that we
can write down an analytical form for the light-matter coupling
[
∫

d�r �E(�r) · P̂(�r)], since �Eext propagates freely.
That being said, the disadvantage of the CPA is that one

cannot obtain anything close to a consistent description of
spontaneous emission for the electronic degrees of freedom,

because the total energy is not conserved; see Eqs. (22)
and (27). As such, the classical path approximation would
appear reasonably only for studying the electronic dynamics;
EM dynamics are reliable only for short times.

C. Symmetrical quasiclassical (SQC) windowing method

As discussed above, the Ehrenfest approach cannot predict
exponential decay (i.e., spontaneous emission) when the initial
electronic state is (0,1). Now, if we want to model spontaneous
emission, the usual approach would be to include the vacuum
fluctuations of the electric field, in the spirit of stochastic
electrodynamics [38]. That being said, however, there are
other flavors of mean-field dynamics which can improve upon
Ehrenfest dynamics and fix up some failures [33,39] (i.e.,
the inability to achieve branching, the inability to recover
detailed balance, etc.). Miller’s symmetrical quasiclassical
(SQC) windowing [21] is one such approach.

The basic idea of the SQC method is to propagate Ehrenfest-
like trajectories with quantum electrons and classical photons
(EM field), assuming two modifications: (a) One converts
each electronic state to a harmonic oscillator and includes the
zero-point energy (ZPE) for each electronic degree of freedom
(so that one samples many initial electronic configurations
and achieves branching) and (b) one bins the initial and final
electronic states symmetrically (so as to achieve detailed bal-
ance). We note that SQC dynamics is based upon the original
Meyer-Miller transformation [40], which was formalized by
Stock and Thoss [41], and that there are quite a few similar
algorithms that propagate Ehrenfest dynamics with zero-point
electronic energy [39]. While Cotton and Miller have usu-
ally propagated dynamics either in action-angle variables or
Cartesian variables, for our purposes we will propagate the
complex amplitude variable C1,C2 so as to make easier contact
with Ehrenfest dynamics [42]. Formally, Cj = (xj + ipj )/

√
2,

where xj and pj are the dimensionless position and momentum
of the classical oscillator.

For completeness, we will now briefly review the nuts and
bolts of the SQC method for a two-level system coupled to a
bath of bosons.

1. Standard SQC procedure for a two-level
system coupled to a EM field

(1) At time t = 0, the initial complex amplitudes C1(0) and
C2(0) are generated by Eq. (28),

Cj (0) = √
nj + γ u(r)eiθj j = 1,2. (28)

Here, u(r) is a random number distributed uniformly between
[0,1] and nj = 0,1 is the action variable for electronic state
j . nj = 0 implies that state j is unoccupied while nj = 1
implies state j is occupied. θj = 2πu(r) is the angle variable
for electronic state j . Note that |C1|2 + |C2|2 �= 1, but rather,
on average |C1|2 + |C2|2 = 1 + 2γ , such that γ is a parameter
that reflects the amount of zero-point energy (ZPE) included.
Originally, γ was derived to be 1/2 [40], but Stock et al.
[43] and Cotton and Miller [21] have found empirically that
0 < γ < 1/2 often gives better results.

(2) The amplitudes (C1,C2) and the field E,B are propa-
gated simultaneously by integrating Eqs. (25) and (22).
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(3) For each trajectory, we transform the complex ampli-
tudes to action-angle variables according to Eq. (29):

nj = |Cj |2 − γ,

θj = tan−1

(
ImCj

ReCj

)
, j = 1,2.

(29)

(4) At each time t , one may calculate raw populations
(before normalization) as follows:

P̃1(t) =
N∑

l=1

W2(n(l),q(l),t = 0)W1(n(l),q(l),t),

P̃2(t) =
N∑

l=1

W2(n(l),q(l),t = 0)W2(n(l),q(l),t).

(30)

Here, N is the number of trajectories and W1 is the window
function for the ground state |g〉, centered at (n1,n2) = (1,0);
W2 is the window function for the excited state |e〉, centered at
(n1,n2) = (0,1). See below [Eq. (32)].

The superscript (l) denotes the lth trajectory.
(5) The final density matrix at time t is calculated by

normalizing Eq. (30) in the following manner:

P1(t) = P̃1(t)

P̃1(t) + P̃2(t)
, (31a)

P2(t) = P̃2(t)

P̃1(t) + P̃2(t)
. (31b)

Miller and Cotton have also proposed a protocol to calculate
coherences and not just populations [44], but we have so far
been unable to extract meaningful values from this approach.
Future work exploring such coherences would be very inter-
esting.

2. Choice of window function and initial distribution

Below, we will study a two-level system weakly coupled to
the EM field; i.e., the polarization interaction energy will be
several orders less than h̄ω0. For such a case, one must be very
careful about binning. Cotton and Miller [45] have suggested
that triangular window functions with γ = 1/3 perform better
than square window functions in this regime. Therefore, we
have invoked the following triangular window functions with
γ = 1/3:

W1(n1,n2) = 2h(n1 + γ − 1)h(n2 + γ )h(2 − 2γ − n1 − n2),

W2(n1,n2) = 2h(n1 + γ )h(n2 + γ − 1)h(2 − 2γ − n1 − n2).

(32)

Here, h(x) is Heaviside function. Figure 1 gives a visual
representation of the triangular window functions in Eq. (32).
The bottom and upper pink triangles represent areas where
W1 �= 0 and W2 �= 0 respectively.

To be consistent with this choice of triangular window
functions, one must modify the standard protocol in Eq. (28).
Instead of the standard square protocol, assuming we start
in excited state |e〉, one generates a distribution of initial
action variables (n1(0),n2(0)) within the area where W2 �= 0
[see Eq. (32)] uniformly. Visually, this initialization implies a
distribution of (n1(0),n2(0)) inside a triangle centered at (0,1)
in the (n1,n2) configuration space, as demonstrated in Fig. 1.

FIG. 1. A plot of the initial (n1,n2) distribution as required by
the SQC algorithm. The upper and lower pink triangles represent
areas where the triangular window functions are nonzero (W2 �= 0
and W1 �= 0), respectively; see Eq. (32). The initial values of (n1,n2)
(blue dots) are uniformly distributed within the upper triangular area
(W2 �= 0).

The protocol for initializing angle variables is not altered: One
sets θj = 2πu(r), j = 1,2.

3. Advantages and disadvantages of SQC dynamics

Compared with Ehrenfest dynamics, one obvious advantage
of SQC dynamics is that the latter can model spontaneous
emission when the initial electronic state is (0,1). Moreover, the
SQC approach must recover detailed balance in the presence of
a photonic bath at a given temperature [46]—provided that the
parameter γ is chosen to be small enough for the binning [42].

At the same time, the disadvantage of the SQC method is
that all results are sensitive to the binning width γ . γ should be
big enough to give enough branching, but also should be small
enough to enforce detailed balance [42]. As a result, one must
be careful when choosing γ . Although not relevant here, it is
also true that SQC can be unstable for anharmonic potentials
[42]. Lastly, as a practical matter, we have found SQC requires
about 1000 times more trajectories than Ehrenfest dynamics.

D. Classical dynamics with Abraham-Lorentz forces

Although (as shown above) classical electrodynamics
with Abraham-Lorentz forces can be useful to model self-
interaction, we will not analyze Abraham-Lorentz dynamics
further in this paper. Because the correspondence between
Ehrenfest dynamics and Abraham-Lorentz dynamics is not
unique or generalizable, we feel any further explanation
of Abraham-Lorentz equation would be premature. While
a Meyer-Miller transformation [40] can reduce a quantum
mechanical Hamiltonian into a classical Hamiltonian, the
inverse is not possible. Thus, it is not clear how to run
classical dynamics with Abraham-Lorentz forces starting from
an arbitrary initial superposition state (C1,C2) in the {|g〉 , |e〉}
basis. For instance, following the approach above in Sec. II B,
we might set mω2

0〈x2〉 = |C2(0)|2h̄ω0/2. However, doing so
leads to a rate of decay equal to kFGR/|C2(0)|2. This result
goes to infinity in the limit C2 → 0; see Fig. 11. Future
work may succeed at finding the best correspondence between
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TABLE I. Default numerical parameters. Ngrids is the number of
grid points in each dimension for the EM field. Xmax and Xmin are the
boundary points in each dimension. dt and tmax are the time step and
maximum time of simulation respectively. ABC denotes “absorbing
boundary conditions.”

Quantity 1D no ABC 1D with ABC 3D with ABC

h̄ω0
a (eV) 16.46 16.46 16.46

μ12
b (C nm/mol)c 11282 11282 23917

ad (nm−2) 0.0556 0.0556 0.0556
Ngrids 40000 200 60
Xmax (nm) 2998 89.94 89.94
Xmin (nm) −2998 −89.94 −89.94
dt (fs) 2 × 10−4 2 × 10−4 5 × 10−4

tmax (fs) 99 99 500
R0

e (nm) 50 50
R1

f (nm) 84 84

aEquation (14).
bEquations (20a) and (20b).
cAs mentioned before, μ12 has dimension of C/mol in 1D and
C nm/mol in 3D.
dEquations (20a) and (20b).
eEquations (34) and (35).
fEquations (34) and (35).

semiclassical dynamics and the Abraham-Lorentz framework,
but such questions will not be the focus of the present paper.

V. SIMULATION DETAILS

A. Parameter regimes

We focus below on Hamiltonians with an electronic dipole
moment μ12 in the range of 2000–50 000 C nm/mol (1–25
in Debye) and electronic energy gaps h̄ω0 in the range of
3–25 eV. Other practical parameters are chosen as in Table I.
Two different sets of simulations are run: (i) simulations to
capture spontaneous emission (with zero EM field initially)
and (ii) simulations to capture stimulated emission (with a short
incoming EM pulse initially located far away at time zero).

B. Propagation procedure

Equations of motion [Eqs. (21) and (22)] are propagated
with a Runge-Kutta fourth-order solver, and all spatial gradi-
ents are evaluated on a real space grid with a two-stencil in
1D and a six-stencil in 3D. Thus, for example, if we consider
Eq. (22) in 1D, in practice we approximate

dB(i)
y

dt
= E(i+1)

z − E(i−1)
z

2�r
,

dE(i)
z

dt
= c2

B(i+1)
y − B(i−1)

y

2�r
− J (i)

z

ε0
,

(33)

etc. Here (i) is a grid index. This numerical method to
propagate the EM field [Eq. (22)] is effectively a naive finite-
difference time-domain (FDTD) method [47,48].

C. Absorbing boundary condition (ABC)

To run calculations in 3D, absorbing boundary condition
(ABC) are required to alleviate the large computational cost.

FIG. 2. Spontaneous decay rate according to Ehrenfest dynamics
in 1D. Here, we plot the electronic population in the excited state |e〉,
P2, as a function of time t using the default parameters in Table I. The
initial electronic state is (|C1|,|C2|) = (

√
1/2,

√
1/2). The results do

not depend on the initial phases of C1 and C2. The analytical Ehrenfest
result (dotted green line) is plotted according to Eq. (A13) in the
appendix.

For such a purpose, we invoke a standard, one-dimensional
smoothing function [49,50] S(x):

S(x) =

⎧⎪⎪⎨⎪⎪⎩
1 |x| < R0,[
1 + e

−
(

R0−R1
R0−|x| +

R1−R0
|x|−R1

)]−1
R0 � |x| � R1,

0 |x| > R1

(34)

In 1D, by multiplying the E and B fields with S(x) after each
time step, we force the E and B fields to vanish for |x| > R1.

In 3D, we choose the corresponding smoothing function to
be of the form of Eq. (35),

S(�r) = S(x)S(y)S(z), (35)

where S(x), S(y), and S(z) are exactly the same as Eq. (34).
Note that this smoothing function has cubic (rather than
spherical) symmetry.

For the simulations reported below, applying ABC’s allows
us to keep only ∼1% of the grid points in each dimension,
so that the computational time is reduced by a factor of 102

in 1D and by a factor of 106 in 3D. Our use of ABC’s is
benchmarked in Figs. 2 and 3, and ABC’s are used implicitly
for SQC dynamics in Figs. 6, 10, 11, and 14. ABC’s are also
used for the 3D dynamics in Fig. 7.

D. Extracting rates

Our focus below will be on calculating rates of emission;
these rates will be subsequently compared with FGR rates. To
extract a numerical rate (k) from Ehrenfest or SQC dynamics,
we simply calculate the probability to be on the excited state
as a function of time [P2(t)] and fit that probability to an expo-
nential decay: P2(t) ≡ P2(0)e−kt . For Ehrenfest dynamics, all
results are converged using the default parameters in Table I.
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(a) (b)

(c) (d)

FIG. 3. Analyzing the dependence of Ehrenfest spontaneous de-
cay on the system variables in 1D. Here we plot the fitted decay
rate k vs (a) the energy difference between electronic states, h̄ω0;
(b) the electronic transition dipole moment μ12; (c) the Gaussian
width parameter a; and (d) the density of Ngrids. Three approaches
are compared: Ehrenfest dynamics with ABC (red ◦), Ehrenfest
dynamics without ABC (blue �), and Fermi’s golden rule (black
�). Extraneous parameters are always set to their default values in
Table I. The initial electronic state is (C1,C2) = (

√
1/2,

√
1/2). Note

that Ehrenfest dynamics captures most of the correct FGR physics.

For SQC dynamics, longer simulation times are needed (to
ensure P2(tend) < 0.02); in practice, we set tend = 150 fs. Note
that, for SQC dynamics, P2(t) in SQC is calculated by Eq. (31b)
and we sample 2000 trajectories.

VI. RESULTS

We now present the results of our simulations and analyze
how Ehrenfest and SQC dynamics treat spontaneous emission.
We begin in one dimension.

A. Ehrenfest dynamics: 1D

For Ehrenfest dynamics, the initial state is chosen to be
(C1,C2) = (

√
1/2,

√
1/2). In Fig. 2, we plot P2(t) for the

default parameters in Table I. Clearly, including ABC’s has
no effect on our results. For this set of parameters, Ehrenfest
dynamics predicts a decay rate that is ∼ 1/3 slower than
Fermi’s golden rule (FGR) in Eq. (3).

In Fig. 3, we now examine the behavior of Ehrenfest
dynamics across a broader parameter regime. In Figs. 3(a)
and 3(b), we plot the dependence of the decay rate on the
energy difference of electronic states, h̄ω0, and the dipole
moment, μ12. Ehrenfest dynamics correctly predicts linear and
quadratic dependence, respectively, in agreement with FGR in
1D [see Eq. (3)]. Generally, the fitted decay rate from Ehrenfest
dynamics is ∼1/3 slower than FGR. As far as the size of the
molecule is concerned, in Fig. 3(c), we plot the decay rate k

as a function of the parameter a [in Eq. (20b)]. Note that our
results are independent of molecular size whena > 0.05 nm−2.

FIG. 4. The 1D Ehrenfest spontaneous decay rate (k) as a function
of the initial population on the ground state |C1(0)|2. Note that the
decay is not purely exponential and depends on whether we invoke
(a) a long time fit (tend = 99 fs) or (b) a short time fit (tend = 5 fs).
Other parameters are set to their default values in Table I. Three
approaches are compared: FGR (dashed black), Ehrenfest (red ◦),
and the analytical, short time result k = kFGR|C1|2 (dotted blue; see
the appendix). Note that the analytical result matches up well with
the extracted fit in panel (b).

This independence underlies the dipole approximation: when
the width of the molecule is much smaller than wavelength of
light,

√
1/a � c/ω0, the decay rate should not be dependent

on the width of molecule. Note that h̄ω0 = 16.46 eV for these
simulations, which dictates that results will indeed depend on
a for a < 0.05 nm−2. Finally, Fig. 3(d) should convince the
reader that our decay rates are converged with the density of
grid points.

1. Initial conditions

The results above were gathered by setting C1 = √
1/2. Let

us now address how the initial conditions affect the Ehrenfest
rate of spontaneous decay. In Fig. 4, we plot k vs |C1(0)|2. Here,
we differentiate how k is extracted, either from (a) a fit of the
long time decay (tend = 99 fs) or (b) a fit of the short time decay
(tend = 5 fs). Clearly, the decay rates in Figs. 4(a) and 4(b)
are different, suggesting that the decay of P2 is not purely
exponential (see detailed discussion in the appendix); the decay
constant is itself a function of time. Moreover, according to
Fig. 4(b), the short time decay rate appears to be linearly
dependent on |C1(0)|2 and, in the limit that |C1(0)|2 → 1, both
fitted decay rates k approach the FGR result. These results
suggest that the fitted decay rate k satisfies

k = kFGR|C1(0)|2, (36)

where kFGR is the FGR decay rate. In fact, in the appendix, we
will show that Eq. (36) can be derived for early time scales
(2π/ω0 � t � 1/kFGR) under certain approximations. We
also mention that the same failure was observed previously by
Tully when investigating the erroneous long time populations
predicted by Ehrenfest dynamics [46,51,52].

2. Distribution of EM field

Beyond the electronic subsystem, Ehrenfest dynamics al-
lows us to follow the behavior of the EM field directly. In Fig.
5, we plot the distribution of the EM field at times 3.00 fs
[Figs. 5(a) and 5(b)], 30.00 fs [Figs. 5(c) and 5(d)], and 99.00
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. An analysis of the EM field produced by spontaneous emission in 1D. We plot (left) the electric field as a function of position
[Ez(x)] at times (a) 3.00 fs, (c) 30.00 fs, and (e) 99.00 fs and (right) the Fourier transform of the electric field at the same times,

√
ε0Ẽz(kx).

On the right, we have converted all units into energy or energy density for both the ordinate and abscissa. The inset figures on the right zoom
in on the spectral peaks in the neighborhood of h̄ω0 (16.46 eV here). Two methods are compared: Ehrenfest dynamics (red lines) and the CPA
(light gray lines). The default parameters in Table I have been used here. Note that Ehrenfest dynamics and the CPA agree for short times but
only Ehrenfest dynamics predicts a decrease in the EM field for larger times, which is a requirement of energy conservation.

fs [Figs. 5(e) and 5(f)] with two methods: Ehrenfest (red lines)
and the CPA (light gray lines). On the left-hand side, we plot
the electric field in real space [Ez(x)]; on the right-hand side,
we plot the EM field in Fourier space [Ẽz(kx)]. Here, the
Fourier transform is performed over the region x > 0, which
corresponds to light traveling exclusively to the right. In the
insets on the right, we zoom in on the spectra in a small
neighborhood of h̄ω0 (here, 16.46 eV).

From Fig. 5, we find that Ehrenfest dynamics and the CPA
agree for short times. However, for larger times, only Ehrenfest
dynamics predicts a decrease in the EM field (corresponding
to the spontaneous decay of the signal). This decrease is guar-
anteed by Ehrenfest dynamics because mean-field dynamics
conserve energy. By contrast, because it ignores feedback
and violates energy conservation, the CPA does not predict
a decrease in the emitted EM field as a function of time (or
any spontaneous decay). Thus, overall, as shown in Fig. 5(f),
the long time EM signal will be a Lorentzian according to
Ehrenfest dynamics or a δ function according to the CPA. These
conclusions are unchanged for all values of the initial |C1(0)|2.

B. SQC: 1D

The simulations above have been repeated with SQC dy-
namics only now starting with (C1,C2) = (0,1). In Fig. 6(a), we
plot P2(t) for a single trajectory for the default parameters (see
Table I). The remaining three subfigures in Fig. 6 demonstrate
the dependence of the fitted decay rate k on the molecular

width parameter a [Fig. 6(b)], the electronic excited state
energy h̄ω0 [Fig. 6(c)], and the electronic dipole moment μ12

[Fig. 6(d)]. Generally, SQC depends on a, ω0, and μ12 as in a
manner similar to Ehrenfest dynamics. However, for the initial
condition C2 = 1, the overall SQC decay rate k is almost the
same as FGR (less than 10% difference), whereas Ehrenfest
dynamics completely fails and predicts k = 0 [53].

C. Ehrenfest dynamics: 3D

Finally, all of the Ehrenfest simulations above have been
repeated in 3D. Overall, as shown in Fig. 7, the results are
qualitatively the same as in 1D. However, as was emphasized in
Sec. II, the decay rate now depends cubically (and not linearly)
on ω0.

Concerning the radiation of the EM field in 3D, in Fig. 8,
we plot the energy density versus polar angle θ at r = 294
nm when time t = 1.00 fs. For such a short time, Ehrenfest
dynamics (red ◦) and CPA (blue +) agree exactly: Both results
depend on the polar angle θ through sin2 θ . These results are in
very good agreement with theoretical dipole radiation [black
line, Eq. (10)]. Lastly, we plot the energy density as a function
of the radial distance r from the molecule, while keeping
the polar angle fixed at θ = π/2 [Fig. 9(a)] and θ = π/4
[Fig. 9(b)]. Again, Ehrenfest dynamics (red ◦) and the CPA
(blue +) agree with each other and give oscillating results that
agree with Eq. (10) for dipole radiation at asymptotically large
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(a) (b)

(c) (d)

FIG. 6. Analysis of SQC spontaneous emission rates in 1D. In
panel (a), we plot the electronic population of the excited state P2

vs time t . For the remaining subfigures, we replot how the fitted
decay rate k depends on (b) the Gaussian width parameter a, (c) the
energy difference between the two electronic states h̄ω0, and (d) the
electric transition dipole moment μ12. Two results are compared: SQC
dynamics with ABC (green ◦) and Fermi’s golden rule (black �). All
unreported parameters are set to their default values in Table I. The ini-
tial electronic state is (C1,C2) = (0,1). Note that the SQC decay rates
are very close to the FGR rates (less than 10% difference), whereas
Ehrenfest dynamics completely fail and predicts k = 0 for this case
(when C2 = 1 initially). For these simulations, we apply ABC’s.

distances (r 
 λ 
 d). Given that the Ehrenfest decay rate
does not match spontaneous emission, one might be surprised
at the unexpected agreement between Ehrenfest and the CPA
dynamics with the classical dipole radiation in Figs. 8 and 9.
In fact, this agreement is somewhat coincidental (depending
on initial conditions), as is proven in the appendix.

VII. DISCUSSION

The results above suggest that, for their respective domains
of applicability, both Ehrenfest dynamics and SQC can recover
spontaneous emission. We will now test this assertion by
investigating the response to (i) photoinduced dynamics and
(ii) dephasing.

A. An incoming pulse in one dimension

To address photoinduced dynamics, we imagine there is an
incident pulse at t = 0 of the form:

√
ε0Ez(x) = −Bz(x)√

μ0
= A(b,k0,x0)e−b(x−x0)2

cos(k0x).

(37)

Here, A(b,k0,x0) is an normalization coefficient with value

A(b,k0,x0) =
√

2U0√
π/2b[1 + cos(2k0x0)e−k2

0/2b]
.

FIG. 7. The fitted decay rate k (as predicted by Ehrenfest dy-
namics in 3D) vs (a) the energy difference between electronic states
h̄ω0; (b) the electronic transition dipole moment μ12; (c) the Gaussian
width parameter a; and (d) the density of grid points Ngrids in each
dimension. Two results are compared: Ehrenfest dynamics with ABC
(red ◦) and Fermi’s golden rule (black �). All unreported parameters
are set to their default as in Table I. The initial electronic state is
(C1,C2) = (

√
1/2,

√
1/2). The Ehrenfest decay rates in 3D depend

correctly only a, ω0, and μ12 and roughly match FGR. For these
simulations, we apply ABC’s.

The total energy of the incident pulse is U0. The parameter
b determines the width of the pulse in real space; k0 defines
the peak of the pulse in reciprocal space; and x0 represents the
center of the pulse in real space at t = 0.

At time zero, the Fourier transform of Ez(x) is

Ẽz(kx) = 1√
2π

∫ ∞

−∞
dx Ez(x)eikxx

= ε0A(b,k0,x0)

2
√

2b

(
e− (kx−k0)2

4b ei(kx−k0)x0

+ e− (kx+k0)2

4b ei(kx+k0)x0
)
. (38)

Ez(kx) is the sum of two Gaussians centered at kx = ±k0 with
width σ = √

2b. Qualitatively, if b � k2
0 , Ẽz(kx) shows two

peaks at kx = ±k0; if b 
 k2
0 , Ẽz(kx) resembles a single large

packet at kx = 0. For resonance with the molecule, |Ẽz(kx)|
should be large at h̄ckx = h̄ω0 (16.46 eV by default). In what
follows (Fig. 10), we choose b = 0.0556 nm−1, and we will
consider both cases (b � k0 and b 
 k0).

1. Electronic dynamics

In Fig. 10, we plot the electronic population of the excited
state as a function of time after exposure to incident pulses of
different intensity (U0) and wave vector (k0); see Eq. (37). We
plot short and long times on the left- and right-hand sides,
respectively. For strong, resonant pulses, (U0 = 19.7 keV,
k0 = 0.013 nm−1), there is obviously a strong response [see
Figs. 10(a) and 10(b)]. For strong, off-resonant pulses (U0 =

032105-10



MIXED QUANTUM-CLASSICAL ELECTRODYNAMICS: … PHYSICAL REVIEW A 97, 032105 (2018)

FIG. 8. The energy density of the spontaneous EM field (as
predicted by Ehrenfest dynamics in 3D) vs polar angle θ when
t = 1.00 fs. Here, all data have been averaged over a sphere with r =
294 nm. The simulation parameters are Ngrids = 210, Xmax = 315 nm,
and Xmin = −315 nm for each dimension. Unreported parameters are
as in Table I. ABCs are not applied here. The initial electronic state
is (C1,C2) = (

√
1/2,

√
1/2). Note the strong and perhaps surprising

agreement between Ehrenfest/CPA dynamics and the classical dipole
radiation; this agreement depends on the choice of initial electronic
states, as is proven in the appendix.

19.7 keV, k0 = 0.334 nm−1), obviously the response is weaker.
In both situations, SQC (dashed green line) and Ehrenfest
dynamics (red line) agree almost exactly for short times. At
longer times, however, the SQC P2(t) value decays ∼2 times
faster than the Ehrenfest dynamics result.

At this point, we turn our attention to weak pulses. In
Figs. 10(e)–10(h), we plot the excited-state population when
the incident pulse is weak (U0 = 3.29 keV), keeping all other
parameters unchanged. Now, there is much less agreement
between SQC and Ehrenfest dynamics, especially for long
times. Generally, SQC predicts a much faster decay rate for
P2(t) than Ehrenfest dynamics for small |Ez(ω0/c)|.

The statement above is quantified in Fig. 11. Here, we
vary U0, which results in a change in the initial absorption
(which is quantified by 1 − P2(t = 0.5 fs) on the x axis).
This graph quantifies how the population decay on the excited
state depends on the initial condition. For both Ehrenfest and
SQC dynamics, the decay rate (k) decreases when the initial
excited-state population increases.

While this dependence on initial state was already demon-
strated for Ehrenfest dynamics in Fig. 4, the new piece of data in
Fig. 11 is the SQC data. For an initial state near (1,0), the decay
of P2 becomes unphysically large. At the same time, however,
the decay of the state (0,1) is very close to the FGR result (just
as noted in Sec. VI). Thus, Ehrenfest and SQC dynamics would
appear to be appropriate in different regimes: By including

(a)

(b)

FIG. 9. The energy density of the spontaneous EM field (as
predicted by Ehrenfest dynamics in 3D) vs radius r when t = 1.00 fs.
The polar angle is (a) θ = π/2 and (b) θ = π/4. All parameters are
the same as in Fig. 8. The radial distribution of the EM energy density
is the same for Ehrenfest and the CPA at short times and, just as
in Fig. 8, these radial distributions agree with the classical dipole
radiation result [provided the initial electronic state is (C1,C2) =
(
√

1/2,
√

1/2)].

the zero-point energy of the electronic state, SQC is able to
include some aspects of true spontaneous decay, but the binning
procedure introduces other unnatural consequences. Future
work on the optimal binning procedure for SQC (triangles,
squares, etc. [45]) must address this dilemma.

2. Distribution of the EM field

At this point, we should also comment on the EM field that is
produced following incident radiation for the two-level system.
Effectively, our results are consistent with Fig. 5 above. In
Fig. 12, on the left, we plot Ez(x) at times 14.00 fs [Fig. 12(a)],
55.99 fs [Fig. 12(c)], and 149.00 fs [Fig. 12(e)]. On the
right-hand side, we plot the Fourier transform Ẽz(kx) (rescaled
in units of energy). As above, we find that, for short times,
Ehrenfest dynamics (red lines) and the CPA (light gray lines)
are in good agreement. Thereafter, however, the agreement
ends because only Ehrenfest dynamics obeys energy conser-
vation. At long times, Ehrenfest dynamics predicts an overall
dip (narrow decrease) in the electric field at the frequency of the
two-level system (oscillator), while the CPA predicts an overall
spike (narrow increase). Thus, if we calculate the absorption
spectrum of the molecule by subtracting the total transmitted
signal from the freely propagated signal, as in Fig. 13, only
the Ehrenfest absorption spectrum is strictly positive; the CPA
result makes no sense. This state of affairs reminds us when
and how we should use semiclassical theory for understanding
light-matter interactions.

Note that, for Fig. 13, we are operating in the linear response
regime: The incoming pulse energy U0 is relatively weak. In
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FIG. 10. A plot of the excited-state electronic population P2 as
a function of time after exposure to an incident pulse of light. Early
time dynamics are plotted on the left, and longer time dynamics
are on the right. Pulse parameters are listed in the table below.
Unreported parameters are set to their default values in Table I.
The initial electronic state is (C1,C2) = (1,0). Two methods are
compared: Ehrenfest dynamics (red line) and SQC (dashed green
line). Note that SQC and Ehrenfest dynamics disagree for long times,
especially for weak pulses. See Fig. 11. For these simulations, we
apply ABC’s. Numerical results for Ehrenfest dynamics show that
enforcing ABC’s does not make any difference at all.

No. U0 (keV) b(nm−1) k0 (nm−1) x0 (nm)
Figs.10(a) and 10(b) 19.7 0.0556 0.013 −15.0
Figs.10(c) and 10(d) 19.7 0.0556 0.334 −15.0
Figs.10(e) and 10(f) 3.29 0.0556 0.013 −15.0
Figs.10(g) and 10(h) 3.29 0.0556 0.334 −15.0

the appendix, we plot the absorption spectra for a few different
incoming fields and demonstrate that the results are linear with
U0. We also show that standard linear response theory yields a
good estimate of the overall line shape.

FIG. 11. The fitted decay rate k versus 1 − P2(t = 0.5 fs) fol-
lowing an incident pulse. Ehrenfest rates are basically identical with
the spontaneous emission rates in Fig. 4. SQC yields the correct rate
when the initial excited-state population is close to one (P2 ≈ 1), but
strongly overestimates k in the weak resonance regime (P2 � 1).
The behavior of SQC is roughly proportional to kFGR/P2 (t = 0.5 fs)
(which goes to infinity as P2 (t = 0.5 fs) goes to zero). Parameters
for the incident pulse: k0 = 0.334 nm−1, b = 0.0556 nm−2, x0 =
−15.0 nm, and U0 varies from 3.29 to 658 keV. All other parameters
are the same as in Fig. 10. For these simulations, we apply ABC’s.
Numerical results for Ehrenfest dynamics show that enforcing ABC’s
does not make any difference at all.

B. Dephasing effects

In the present article, we have now shown that semiclas-
sical theories—Ehrenfest and SQC—can both recover some
elements of spontaneous emission, which is mostly thought to
be a quantum effect [14,19]. With this claim in mind, however,
there is now one final subject that must be addressed, namely
the role of dephasing. After all, in a large simulation with an
environment, dephasing can and will occur; therefore one must
wonder whether or not such dephasing will affect the rate of
spontaneous emission.

To answer this question, we have run several simple calcu-
lations that replace Eq. (21) by Eq. (39),

d

dt
ρ̂(t) = − i

h̄

[
Ĥs −

∫
d�r �E(�r) · P̂(�r), ρ̂

]
−

(
0 ςρ12

ς∗ρ21 0

)
.

(39)

Thus, we have propagated electron-photon dynamics by alter-
ing the electronic equation of motion but keeping the classical
EM equations the same. ς in Eq. (39) is an empirical dephasing
rate: When ς = 0 there is no dephasing, and when ς > 0 there is
a finite rate of coherence loss between the two electronic states.

In Fig. 14(a), we plot the rate of spontaneous emission k as
a function of the dephasing rate ς . When dephasing increases,
the coherence between the electronic states is expected to
decrease, and so the current should decrease, and thus the
rate of spontaneous emission is expected to decrease as well.
However, perhaps surprisingly, the fitted rate for establishing
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(a)

(c)

(b)

(d)

(e) (f)

FIG. 12. For an incident pulse in 1D, we plot (left) the spatial distribution of Ez(x) at times (a) 14.00, (c) 55.99, and (e) 149.00 fs; (right)
the Fourier transform Ẽz(kx) at the same times (rescaled in units of energy or energy density). The inset figures zoom in on (left) the “molecule”
at the origin of the x axis, and (right) the two-level energy gap h̄ω0 (here, 16.46 eV). Two methods are compared: Ehrenfest dynamics (red
lines) and the CPA (light gray lines). Parameters for the incident pulse are U0 = 65.82eV, k0 = 0.08338 nm−1, b = 5.56 × 10−6nm−2, and
x0 = −2098.6 nm. All other parameters are the same as in Fig. 10. Note that Ehrenfest and and CPA dynamics agree at short times but disagree
at long times when energy conservation becomes important.

equilibrium actually increases, which must be related to the
data in Fig. 11. More importantly, in Fig. 14(b), we plot the
final population of the excited state P2(tend). Unsurprisingly,
the long time excited-state population increases (does not
reduce to zero) when dephasing increases with either SQC or
Ehrenfest dynamics. This graph highlights the limitations of
semiclassical methods: As currently implemented, one cannot
include both spontaneous emission and dephasing.

(a) (b)

FIG. 13. 1D Ehrenfest (red) and CPA (light gray) absorption
spectra at times (a) 55.99 fs and (b) 149.00 fs. Spectra were obtained
by subtracting |Ẽfree

z (kx)|2 − |ẼEhrenfest/CPA
z (kx)|2. Here, Efree

z denotes
the freely propagated pulse [i.e., we set �J to zero in Eq. (22)]. All
simulation parameters are the same as in Fig. 12. Because of energy
conservation, only Ehrenfest dynamics predict an overall positive
absorption spectrum.

VIII. CONCLUSION

In this article, we have simulated the semiclassical dynamics
of light coupled to a two-level electronic system with three
different methods: Ehrenfest, the CPA, and SQC. Most results

(a) (b)

FIG. 14. An analysis of the effects of dephasing on spontaneous
emission for Ehrenfest and SQC methods in 1D. (a) The fitted decay
rate k as a function of the dephasing rate ς ; (b) the normalized
long time population of P2, P2(tend)/P2(t = 0) as a function of ς .
All simulation parameters are set to their default values in Table I;
tend = 400 fs. The initial electric population for the excited state
is set to P2(0) = 1/2 for Ehrenfest dynamics and P2(0) = 1 for
SQC dynamics. Note that both methods fail to recover spontaneous
emission in the presence of strong dephasing. For these simulations,
we apply ABC’s. Numerical results for Ehrenfest dynamics show that
enforcing ABC’s does not make any difference at all.
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have been reported in one dimension, but we have also
considered Ehrenfest dynamics in 3D with absorbing boundary
conditions. As far as spontaneous emission is concerned, we
find the following: (i) The CPA cannot consistently recover
spontaneous emission and violates energy conservation. That
being said, (ii) Ehrenfest dynamics do predict spontaneous
decay consistently, but only provided that we start in a
nontrivial superposition state (with C1,C2 �= 0). (iii) Using
electronic ZPE, SQC dynamics predicts spontaneous decay
even with C1 = 0. Both latter methods yield results fairly close
to the correct FGR rate. In all cases, unfortunately, spontaneous
emission is destroyed when dephasing is introduced, which
represents a fundamental limitation of semiclassical dynamics.

Perhaps most interestingly, we have also studied photoiniti-
ated excited dynamics and, in this case, we find very different
dynamics as predicted by the different semiclassical methods.
First, as far the EM field is concerned, we have demonstrated
that Ehrenfest dynamics can recover the correct absorption
spectra, at least qualitatively; at the same time, however,
CPA dynamics give qualitatively incorrect spectra because
the method ignores feedback and does not conserve energy.
Second, and equally interesting, Ehrenfest dynamics predicts
that the overall stimulated decay rate will depend smoothly
on initial state (C1,C2) but will approach the FGR rate only
in the weak resonance regime. Third and vice versa, SQC
recovers FGR when (C1,C2) = (0,1) but overestimates the
stimulated decay rate, sometimes by as much as a factor of
10 for weak incoming fields. These SQC anomalies should be
very important for designing improved binning protocols in
the future [45]. At present, because the cost of SQC dynamics
is roughly 1000 times greater than Ehrenfest dynamics and
because the method appears to fail for low-intensity applied
fields, further modification will likely be required before the
method can be practical for large-scale simulations.

Looking forward, many questions remain. (i) There are
many other semiclassical methods for studying coupled nu-
clear electronic dynamics [21,54–57]; will these methods
give us new insight into electrodynamics? (ii) Might we
learn more about spontaneous emission by considering ZPE
effects through RPMD-like algorithms [58]? (iii) Will different
semiclassical methods behave similarly or differently with
more than two electronic states? (iv) Can we converge multiple-
spawning [59–63] and/or MC-TDH [64–66] calculations and
generate exact quantum electrodynamical trajectories so that,
in the future, we may benchmark other, less exact, semiclas-
sical approximations? And lastly, (iv) are there other new and
nonintuitive features that will emerge when we study multiple
pulses incoming upon a molecule? These questions will be
answered in the future.
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APPENDIX

1. Connecting Ehrenfest dynamics with
Fermi’s golden rule in 1D

We now prove analytically that the spontaneous decay rate
of Ehrenfest dynamics in 1D is exactly the FGR result in the
limit that the initial excited-state population is small (P2 → 0).

For Eq. (22), we can directly write down an analytic solution
for �E(x) in one dimension using the well-known solution for
a wave equation with a source:

�E(x,t) = ω0

cε0

{
Imρ12(0)

∫ x+ct

x−ct

dx ′�ξ (x ′)

+
∫ t

0
dt ′Imρ̇12(t ′)

∫ x+c(t−t ′)

x−c(t−t ′)
dx ′�ξ (x ′)

}
. (A1)

Here, ρ̇12 is the time derivative of ρ12. If we average over many
different initial electronic populations with different phases,
such that Imρ12(0) = 0, we need consider only one term in
Eq. (A1). Then, if we consider the coupling, we find

Hel
12 = −

∫
dx �E(x) · �ξ (x)

= − ω0

cε0

∫ +∞

−∞
dxξ (x)

∫ t

0
dt ′Imρ̇12(t ′)

×
∫ x+c(t−t ′)

x−c(t−t ′)
dx ′ξ (x ′). (A2)

Here, we have denoted ξ (x) = |�ξ (x)|. Now, for simplicity,
suppose that the width of the molecule is infinitely small (i.e.,
a point-dipole approximation), ξ (x) ≈ μ12δ(x). In such a case,
Eq. (A2) can be simplified as

Hel
12 = − ω0

cε0
|μ12|2Imρ12(t), (A3)

and therefore, from Eq. (21),

dP2

dt
= −dP1

dt
= 2

h̄
H el

12Imρ12(t)

= − ω0

cε0h̄
|μ12|2 × 2[Imρ12(t)]2. (A4)

At this point, we make the weak coupling approximation
and assume that the off-diagonal terms in Hel are infinites-
imally small, so that ρ12(t) ≈ √

P1P2e
−iω0t is a meaningful

first-order approximation. Equation (A4) then reads

dP2

dt
= −dP1

dt
= −2kFGRP1P2 sin2(ω0t), (A5)

where kFGR = ω0
cε0 h̄

|μ12|2 is the FGR spontaneous decay rate
in 1D [see Eq. (3)]. From Eq. (A5), we can derive the
instantaneous transfer rate plus an analytical solution for all
times as follows.
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We consider the behavior of Ehrenfest dynamics for P2 over
a window of time [t,t + τ ] and integrate Eq. (A5):

ln
P2(t + τ )

P2(t)
= −2kFGR

∫ t+τ

t

dt ′P1(t ′) sin2(ω0t
′), (A6)

Here, we choose τ to satisfy 2π/ω0 � τ � 1/kFGR. Thus, on
the one hand, the time scale τ is chosen to be much smaller
than the time scale of spontaneous decay (τ � 1/kFGR) so
that P1(t ′) does not change much and P1(t ′) ≈ P1(t). On the
other hand, τ is much larger than the phase oscillating period
(2π/ω0 � τ ), so that sin2(ω0t

′) can be viewed as a rapid
oscillation and we can approximate the integral by∫ t+τ

t

dt ′ sin2(ω0t
′) =

[
t ′

2
− sin(2ω0t

′)
4ω0

]t+τ

t

≈ τ

2
(A7)

Therefore we find

ln
P2(t + τ )

P2(t)
≈ −kFGRP1(t)τ. (A8)

As a result, for Ehrenfest dynamics, we can express P2 in the
form of an exponential decay

P2(t) = P2(0)e−κ(t)t , (A9)

where the instantaneous decay rate is time dependent

κ(t) = kFGRP1(t). (A10)

Thus, for short times, the decay rate is proportional to the
initial population kFGRP1(0) as shown in Fig. 4(b), and we
conclude that Ehrenfest dynamics recovers the FGR rate only
when P1(0) → 1.

At this point, let us also recast Eq. (A5) in terms of the
population difference, �P = P2 − P1,

d�P

dt
= −kFGR(1 − �P 2) sin ω0t. (A11)

As above, the behavior within the time window [t,t + τ ] can
be integrated over, yielding[

1

2
ln(1 + �P ) − 1

2
ln(1 − �P )

]t+τ

t

≈ −kFGR
τ

2
. (A12)

Hence, we find an analytical form for P2 according to Ehrenfest
dynamics:

P2(t) = e−kFGRt

P1(0)
P2(0) + e−kFGRt

. (A13)

For the initial population P1(0) = P2(0) = 1/2, as was con-
sidered in Fig. 2, the analytical solution becomes P2(t) =
e−kFGRt /(1 + e−kFGRt ). This analytical formula agrees with the
numerical result in Fig. 2.

2. Connecting Ehrenfest dynamics with classical
dipole radiation in 3D

Here, we show that Ehrenfest dynamics agrees with clas-
sical dipole radiation at short times assuming that the initial
conditions satisfy (|C1|,|C2|) = (

√
1/2,

√
1/2). See Sec. VI C.

First, consider classical dipole radiation, and let the oscillating
dipole (in the z direction) be situated at the origin. The current
takes the form �I = −qω sin(ωt + φ)êz and if the dipole width
d is small enough, the current density is

�J (�r) = lim
d→0

[d · �I ]δ(�r) = −μ12ω sin(ωt + φ)δ(�r)êz. (A14)

This is the source that acts as input for Maxwell’s equations
and yields classical dipole radiation.

Second, consider Ehrenfest dynamics, so that �J (�r) takes
the form of Eq. (24). If we further make the weak coupling
approximation, i.e., we assume that ρ12 ≈ √

P1P2e
iω0t eiφ , as

well as the point dipole approximation, ξ (�r) ≈ μ12δ(�r), then
Eq. (24) becomes

�J (�r) = −2
√

P1P2ω0μ12 sin(ω0t + φ)δ(�r)êz. (A15)

Lastly, if the initial electronic state satisfies (|C1|,|C2|) =
(
√

1/2,
√

1/2), then P1P2 = 1/4. Thus, this initial electronic
state guarantees that Eqs. (A14) and (A15) will be identical at
short times: The EM field from Ehrenfest dynamics will agree
with classical dipole radiation exactly. This exact agreement
will fail for other initial states or at long times. Even though
both methods have the same geometric form, in general,
Ehrenfest dynamics would need to be rescaled to match
classical dipole radiation in absolute value.

(a) (b) (c)

FIG. 15. 1D simulated Ehrenfest (red) absorption spectra for different incoming fields at time 149.00 fs. Spectra were obtained in the same
manner as in Fig. 13 while varying the incoming energy (U0) of the incident pulse. The value of U0 is chosen to be (a) 16.45 eV, (b) 32.91 eV,
and (c) 65.82 eV. Note that the overall signal is linearly proportional to U0 and the line-shape width is nearly a Lorentzian centered at ω0 with
width equal to the Fermi golden rule rate (black). This figure proves that the data in Fig. 13 were obtained in the weak field regime where linear
response holds.
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3. Absorption spectra with different incoming field intensities

In this subsection, we plot the absorption line shape for a
variety of different incoming fields and prove that the data in
Fig. 13 is indeed occurring in the linear regime. Note that,
according to Fig. 15, the overall absorption signal is linearly
proportional to the incoming energy U0. The absorption line

shape can be recovered approximately by simply assuming a
Lorentzian signal with width kFGR and a uniform fitting for the
total norm. Note also that there is a small shift in the maximal
signal location: According to Ehrenfest dynamics, the peak is
centered at

√
h̄2ω2

0 + �2 (rather than h̄ω0), where � is the
time-averaged off-diagonal coupling in the Hamiltonian Ĥ el .
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