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Universal quantum uncertainty relations between nonergodicity and loss of information
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We establish uncertainty relations between information loss in general open quantum systems and the amount
of nonergodicity of the corresponding dynamics. The relations hold for arbitrary quantum systems interacting
with an arbitrary quantum environment. The elements of the uncertainty relations are quantified via distance
measures on the space of quantum density matrices. The relations hold for arbitrary distance measures satisfying
a set of intuitively satisfactory axioms. The relations show that as the nonergodicity of the dynamics increases, the
lower bound on information loss decreases, which validates the belief that nonergodicity plays an important role
in preserving information of quantum states undergoing lossy evolution. We also consider a model of a central
qubit interacting with a fermionic thermal bath and derive its reduced dynamics to subsequently investigate the
information loss and nonergodicity in such dynamics. We comment on the “minimal” situations that saturate the
uncertainty relations.
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I. INTRODUCTION

In practical situations, it is arguably impossible to com-
pletely isolate a quantum system from its surroundings and
it is subjected to information loss due to dissipation and
decoherence. In modeling open quantum systems, the simpler
approach is to consider the environment to be memoryless,
i.e., Markovian [1–5]. The system-environment relation is,
however, more often than not, non-Markovian, and there are
possibilities of information backflow into the system, which
can be considered as a resource in information theoretic
tasks [6–8]. The systems showing such properties are usually
associated with various structured environments without the
consideration of weak system-environment coupling and the
Born-Markov approximation [9–17]. In a Markovian evo-
lution, this information flow is one way and quickly leads
to an unwanted total loss of coherence and other quantum
characteristics. Using structured environments, it may be
possible to reduce information loss of the associated quantum
system.

On the other hand, an important statistical mechanical
attribute of a system interacting with an environment, with the
later being in a thermal state, is the ergodicity of the system.
A physical process is considered to be ergodic if the statistical
properties of the process can be realized from a long-time-
averaged realization. In the study of the realization of a thermal
relaxation process, ergodicity plays a very important role
[3,18,19]. It also has important applications in quantum control
[20–23], quantum communication [24], and beyond [25,26].
Here we intend to capture the notion of “nonergodicity” from
the perspective of quantum channels, i.e., considering only
the reduced dynamics of a quantum system interacting with
an environment. In the framework of open quantum systems,
a rigorous study on ergodic quantum channels can be found
in [27]. Ergodic quantum channels are channels having a

unique fixed point in the space of density matrices [28].
Nonergodicity of a dynamical process can then be quantified as
the amount of deviation from a ergodic process in open system
dynamics.

In this work, we find a connection between information
loss of a general open quantum system and the nonergodicity
therein. We propose a measure of information loss in a quantum
system based on distinguishability of quantum states, which in
turn is based on distance measures on the space of density
operators [29–34]. We quantify the nonergodicity of the dy-
namics based on the distance between the time-averaged state
after sufficiently long processing time and the corresponding
thermal equilibrium state. Within this paradigm, we derive an
uncertainty relation between information loss and the amount
of nonergodicity for an arbitrary quantum system interact-
ing according to an arbitrary quantum Hamiltonian with an
arbitrary environment. The derivation is not for a particular
distance measure, but for all such which satisfies a set of
intuitively satisfactory axioms. In the illustrations, we mainly
focus on the trace distance, and to a certain extent, also on the
relative entropy. We find that our relations are compatible with
Markovian ergodic dynamics, where the system loses all the
information.

Finally, we have considered a particular structured environ-
ment model where a central qubit interacts with a collection of
mutually noninteracting spins in thermal states at an arbitrary
temperature. A spin-bath model of this type, which has been
considered previously in the literature [10,11,16,17,35], shows
a highly non-Markovian nature. Here we have derived the
reduced dynamics of a particular spin-bath model without
the weak coupling and Born-Markov approximations. Subse-
quently, we investigate the information loss and nonergodicity
and find the status of the uncertainty for this system.

The organization of the paper is as follows. In Sec. II,
we present the definitions for loss of information and
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nonergodicity. We derive the uncertainty relations between
information loss and nonergodicity in Sec. III. In Sec. IV, we
consider the central spin model, derive the reduced dynamics
of the central qubit, and analyze the corresponding information
loss and nonergodicity. We conclude in Sec. V.

II. DEFINITIONS: MEASURES FOR LOSS OF
INFORMATION AND NONERGODICITY

Before proceeding to the main results, let us define the two
primary quantities under the present investigation, i.e., loss of
information and a measure of nonergodicity, based on distance
measures.

A. Loss of information

We quantify the loss of information in quantum systems
due to environmental interaction in terms of distinguishability
measures for quantum states. The loss of information, denoted
by I�(t), at any instant of time, can be quantified by the maxi-
mal difference between the initial distinguishability between a
pair of states, ρ1(0),ρ2(0), and that for the corresponding time-
evolved states ρ1(t) = �(ρ1(0)),ρ2(t) = �(ρ2(0)) at time t ,
where � denotes the open quantum evolution of the initial
states. Mathematically, it is given by

I�(t) = max
ρ1(0),ρ2(0)

[D(ρ1(0),ρ2(0)) − D(ρ1(t),ρ2(t))], (1)

where the distance measure D(ρ,σ ) must satisfy the following
conditions:

P1. D(ρ,σ ) � 0 ∀ density matrices ρ,σ .
P2. D(ρ,ρ) = 0 ∀ ρ and D(ρ,σ ) = 0 ⇐⇒ ρ = σ,∀ ρ,σ .
P3. D(�(ρ),�(σ )) � D(ρ,σ ) ∀ ρ,σ and ∀ completely

positive trace-preserving maps �(·), on the space of density
operators B(H) on the Hilbert space H.

The class of distance measures satisfying these conditions
include trace distance, Bures distance, and Hellinger distance
[36–38]. Though the von Neumann relative entropy and
Jensen-Shannon divergence also satisfy the aforementioned
conditions, they are not generally considered as geometric
distances, since they certain other metric properties. But also
note here that the square root of Jensen-Shannon divergence
does satisfy metric properties [39–41] and can be considered
as a valid distance measure. It is also important to men-
tion that all the aforementioned valid distance measures are
bounded.

Loss of information for time-averaged states. To draw
the connection with nonergodicity, discussed below, we now
define the long-time-averaged state as

ρ̄ = lim
τ→∞

1

τ

∫ τ

0
ρ(t)dt. (2)

The information loss for the time-averaged state, which we call
“average loss of information,” can then be defined as

Ī� = max
ρ1(0),ρ2(0)

[D(ρ1(0),ρ2(0)) − D(ρ̄1,ρ̄2)], (3)

which is lower and upper bounded by 0 and 1, respectively.
From Eq. (3) we can infer that when the open system dynamics

has a unique steady state or fixed point, independent of initial
state, the entire information D(ρ1(0),ρ2(0)) is lost for arbitrary
inputs ρ1(0),ρ2(0). Later in the paper, we draw a connection
between average loss of information and nonergodicity of
the underlying dynamics, with the latter being defined in the
succeeding section.

B. Nonergodicity

Ergodicity plays an important role in statistical mechanics
to describe the realization of relaxation of a system to thermal
equilibrium. The ergodic hypothesis states that if a system
evolves over a long period of time, the long-time-averaged
state of the system is equal to its thermal state corresponding
to the temperature of the environment with which the system
is interacting. Ergodicity can also be defined in terms of
observables. For any observable f , if its long-time average
〈f 〉T is equal to its ensemble average 〈f 〉en, the dynamics is
considered to be ergodic for the observables. Here the time and
ensemble averages of the observable are respectively defined
as

〈f̄ 〉 = lim
τ→∞

1

τ

∫ τ

0
Tr[fρ(t)] = Tr[f ρ̄] ; 〈f 〉en = Tr[fρth].

Ergodicity further assumes the equality of 〈f̄ 〉 and 〈f 〉en,
independent of the initial state of the evolution. Therefore,
nonergodicity of the dynamics for the observable can be quan-
tified by the difference between the time average and ensemble
average, i.e., by |〈f̄ 〉 − 〈f 〉en| = |Tr[f (ρ̄ − ρth)]|. Based on
these understandings of ergodicity of a dynamics, we define
a measure of nonergodicity as the distance between the long-
time-averaged state (ρ̄) of the system and its corresponding
thermal state (ρth), and so is given by

Nε(ρ̄) = D(ρ̄,ρth). (4)

Here we impose two further conditions on the allowed distance
measures:

P4. The measure must be symmetric, i.e., D(ρ,σ ) =
D(σ,ρ), ∀ρ,σ .

P5. The measure must satisfy the triangle inequality, given
by D(ρ,σ ) � D(ρ,κ) + D(κ,σ ), ∀ density matrices ρ,σ,κ .

The conditions P1–P5 are satisfied by the geometric
distance measures like trace distance, Bures distance, and
Hellinger distance. Note that the von Neumann relative entropy
neither satisfies the symmetry property nor the triangle inequal-
ity and hence we cannot use it directly for our investigation.
However, we will later show the possibility of overcoming such
“shortcomings” of the relative entropy distance. Interestingly,
it has been shown [40] that Jensen-Shannon divergence satis-
fies the symmetry property and for its square root, the triangle
inequality holds. Therefore, the square root of Jensen-Shannon
divergence can also be taken as a proper distance measure
for our investigation. Note that the measure of nonergodicity,
given in (4), depends on the initial state. Hence, to obtain
a measure of nonergodicity which is state independent, we
introduce

NM
ε = max

ρ(0)
Nε(ρ̄), (5)
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where maximization is performed over all initial states
(ρ(0)).

III. CONNECTING INFORMATION LOSS
WITH NONERGODICITY

With the definitions given in the preceding section, we
now establish a connection between loss of information and
nonergodicity. For the distance measures, which satisfy P1-P5,
we obtain

D(ρ̄1,ρ̄2) � Nε(ρ̄1) + Nε(ρ̄2).

Using Eq. (3), we therefore have the inequality

Ī� � max
ρ1(0),ρ2(0)

[D(ρ1(0),ρ2(0)) − (Nε(ρ̄1) + Nε(ρ̄2))]. (6)

It draws a direct connection between nonergodicity and loss
of information in open system dynamics. Using the state-
independent measure of nonergodicity [Eq. (5)], we can arrive
at an uncertainty relation between information loss and a
measure of nonergodicity, given by

Ī� + 2NM
ε � max

ρ1(0),ρ2(0)
[D(ρ1(0),ρ2(0))]. (7)

The above relation is valid for any distance measure which
satisfies the conditions P1–P5, and for any quantum system
interacting with an arbitrary environment.

In this paper, we mainly work on the uncertainty relation
based on the distance measure given by DT (ρ,σ ) = 1

2 Tr|ρ −
σ | for pairs of states ρ and σ . The importance of quan-
tum relative entropy [42–44] as a “distance-type” measure,
notwithstanding its inability in satisfying symmetry and other
relations, from the perspective of quantum thermodynamics is
unquestionable, and hence obtaining the uncertainty relation in
terms of quantum relative entropy can be interesting. Towards
this aim, we use a relation between relative entropy and trace
distance [45], given by

S(ρ||σ ) ≡ Tr[ρ(log ρ − log σ )] � 2(DT (ρ,σ ))2. (8)

The above inequality helps us to overcome the drawbacks of
relative entropy for not satisfying P4 and P5. Let us first rewrite
(6) in terms of trace distance as

Ī T
� � max

ρ1(0),ρ2(0)

[
DT (ρ1(0),ρ2(0)) − (

N T
ε (ρ̄1) + N T

ε (ρ̄2)
)]

.

(9)

Using inequalities (8) and (9), we arrive at

Ī T
� � max

ρ1(0),ρ2(0)

[
DT (ρ1(0),ρ2(0))

−
(√

N Rel
ε (ρ̄1)

2
+

√
N Rel

ε (ρ̄2)

2

)]
, (10)

where N Rel
ε (ρ̄i) = S(ρ̄i ||ρth) denotes the measure of noner-

godicity for the time-averaged state ρ̄i in terms of relative
entropy. As before, we can define a state-independent measure
of nonergodicity as

NM(Rel)
ε = max

ρ(0)
S(ρ̄||ρth). (11)

The above definition and the inequality (10) leads to another
uncertainty relation,

Ī T
� +

√
2NM(Rel)

ε � max
ρ1(0),ρ2(0)

[DT (ρ1(0),ρ2(0))], (12)

in terms of trace and relative entropy distances. But it is to be
noted that there is a certain limitation in this relation because
of the fact that the relative entropy is not a bounded function.
When suppρ � suppρth, the relative entropy diverges. One
such example is obtained for the zero-temperature bath, where
ρth = |0〉〈0| is pure. In that case, the relation (12) becomes
trivial. But in that case, we can find state-dependent uncertainty
relations by defining state-dependent information loss as

Ī�(ρ̄1,ρ̄2) = [D(ρ1(0),ρ2(0)) − D(ρ̄1,ρ̄2)]. (13)

This will lead us to the state-dependent uncertainty relation

Ī T
� (ρ̄1,ρ̄2) +

∑
i=1,2

√
N Rel

ε (ρ̄i)

2
� DT (ρ1(0),ρ2(0)). (14)

But other than these extreme cases, the relation (12) works
perfectly.

Note that the distinguishability measures like trace distance,
Bures distance, and Jensen-Shannon divergence, mentioned
earlier, not only satisfies all the conditions P1–P5, but they are
also bounded. But in the cases of some unbounded distance
measure, to avoid the triviality of the uncertainty relation (7),
we can use the state-dependent uncertainty relation

Ī�(ρ̄1,ρ̄2) +
∑
i=1,2

Nε(ρ̄i) � D(ρ1(0),ρ2(0)). (15)

Qubits

Until now, we have considered an arbitrary density matrix
of arbitrary dimension. Let us now restrict our view to the
case of a two-level system (TLS) as a simple example to
further understand the connection between nonergodicity and
information loss. For a TLS, the pair of states maximizing
the trace distance is located on the antipodes of the Bloch
sphere, i.e., the pair of states consists of pure and mutually
orthogonal states [46]. Therefore in the case of trace distance,
the uncertainty relation (7), for a qubit, reads as

Ī T
� + 2NM(T )

ε � 1. (16)

Similarly, the uncertainty relation given in (12) reduces to

Ī T
� +

√
2NM(Rel)

ε � 1. (17)

Let us now consider a simple Markovian model, where a
qubit is weakly coupled with a thermal bosonic environment.
In absence of any external driving Hamiltonian, the qubit
eventually thermally equilibrates with the environment. Under
the Born-Markov approximation, the master equation for this
model is given by

ρ̇(t̃) = i

h̄
[ρ(t̃),H0] + γ (n + 1)

(
σ−ρ(t)σ+ − 1

2
{σ+σ−,ρ(t̃)}

)

+ γ n

(
σ+ρ(t̃)σ− − 1

2
{σ−σ+,ρ(t̃)}

)
, (18)
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where H0 = h̄
0|1〉〈1| is the Hamiltonian of the system, γ is
a constant parameter, and n = 1/[exp(h̄
0/KT̃m) − 1] is the
Planck number. Here σ+ and σ− are respectively the raising and
lowering operators of the TLS, with |1〉 being the excited state
of the same. The solution of the Markovian master equation in
(18) is given by

ρ(t̃) = ρ11(t̃)|1〉〈1| + ρ22(t̃)|0〉〈0| + ρ12(t̃)|1〉〈0|
+ ρ21(t̃)|0〉〈1|,

with

ρ11(t̃) = ρ11(0)e−γ (2n+1)t̃ + n

2n + 1
(1 − e−γ (2n+1)t̃ ),

ρ22(t̃) = 1 − ρ11(t̃),

ρ12(t̃) = ρ12(0) exp

(
−γ

(2n + 1)t̃

2
− 2i
0 t̃

)
.

One can find from the solution given above that the long-
time-averaged state for this evolution is independent of ini-
tial states and equal to the thermal state corresponding to
the temperature of the bath T̃m, which can be expressed as
p|0〉〈0| + (1 − p)|1〉〈1|, with p = 1/(1 + exp(−h̄
0/KT̃m)).
Hence the dynamics is ergodic and we find that the information
loss Ī T

� = 1, i.e., the system loses all its information. It is also
noteworthy that the Markovianity of a quantum evolution does
not mean it will be ergodic. An example of such Markovian
nonergodic evolution is the dephasing channel expressed by
the master equation

ρ̇ = i
0[σz,ρ] + γd (σzρσz − ρ ). (19)

Here the Lindblad operator is in the same basis as the system
Hamiltonian σz. A system interacting with a bosonic environ-
ment can lead to such an evolution [3]. The solution of this
equation is given by

ρ11(t̃) = ρ11(0), ρ22(t̃) = ρ22(0),

ρ12(t̃) = ρ12(0)e−2(i
+γd )t . (20)

We realize from Eq. (20) that under this particular evolution,
the system will decohere, but the diagonal elements of the
density matrix will remain invariant, leading to infinitely many
fixed points for the dynamics. So this particular evolution
will certainly be nonergodic, since there exists infinitely many
fixed points and the time-averaged state will depend on the
initial state of the system. This gives a definite example which
proves that Markovianity does not imply ergodicity of the
dynamics.

IV. NONERGODICITY AND INFORMATION BACKFLOW
IN A CENTRAL SPIN MODEL

In this section, we consider a specific non-Markovian model
and study the status of uncertainty relation derived in Sec. III.
The system here consists of a single qubit interacting with N

number of noninteracting spins. The total Hamiltonian of the
system governing the dynamics is given by

H̃ = H̃S + H̃B + H̃I , (21)

where the system Hamiltonian H̃S , bath Hamiltonian
H̃B , and interaction Hamiltonian H̃I are respectively

given by

H̃S = h̄gω0σz,

H̃B = h̄g
ω

N

N∑
i=1

σ i
z , (22)

H̃I = h̄g
α√
N

N∑
i=1

(
σxσ

i
x + σyσ

i
y + σzσ

i
z

)
.

Here σk , k = x,y,z are the Pauli spin matrices, the superscript
i represents the ith spin of the bath, g is a constant factor with
the dimension of frequency, ω0 and ω are the dimensionless
parameters characterizing the energy-level differences of the
system and the bath, respectively, and α denotes the coupling
constant of the system-bath interaction. By using the total
angular momentum operators Jk = ∑N

i=1 σ i
k and the Holstein-

Primakoff transformation, given by

J+ =
√

Nb†
(

1 − b†b

2N

)1/2

, J− =
√

N

(
1 − b†b

2N

)1/2

b,

the bath and interaction Hamiltonians can now be rewritten as

H̃B = −h̄gω

(
1 − b†b

N

)
,

H̃I = 2h̄gα

[
σ+

(
1 − b†b

2N

)1/2

b + σ−b†
(

1 − b†b

2N

)1/2
]

− h̄gα
√

Nσz

(
1 − b†b

N

)
. (23)

We consider the initial (uncorrelated) system-bath state as
ρS(0) ⊗ ρB(0). Let us take the initial system qubit as ρS(0) =
ρ11(0)|1〉〈1| + ρ22(0)|0〉〈0| + ρ12(0)|1〉〈0| + ρ21(0)|0〉〈1| and
the initial bath state to be a thermal state ρB(0) =
exp(−H̃B/KT̃ ) in an arbitrary temperature T̃ with K be-
ing the Boltzmann constant. The reduced dynamics of
the system state can then be calculated by tracing out
the bath degrees of freedom and is given by ρS(t) =
TrB[exp (−iH t)ρS(0) ⊗ ρB(0) exp (iH t)], where

H = H̃

h̄g
, t = gt̃, and T = KT̃

h̄g

are dimensionless, specifying Hamiltonian, time, and tem-
perature, respectively. After solving the global Schrödinger
evolution, the reduced dynamics can be exactly obtained
[17,47] as

ρS(t) =
(

ρ11(t) ρ12(t)
ρ21(t) ρ22(t)

)
, (24)

where

ρ11(t) = ρ11(0)(1 − 1(t)) + ρ22(0)2(t),

ρ12(t) = ρ12(0)�(t), (25)
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with

1(t) =
N∑

n=0

(n + 1)α2(1 − n/2N )

(
sin(ηt/2)

η/2

)2
e− ω

T
(n/N−1)

Z
, 2(t) =

N∑
n=0

nα2(1 − (n − 1)/2N )

(
sin(η′t/2)

η′/2

)2
e− ω

T
(n/N−1)

Z
,

�(t) =
N∑

n=0

e−i(�−�′)t/2

(
cos(ηt/2) − i

θ

η
sin(ηt/2)

)(
cos(η′t/2) + i

θ ′

η′ sin(η′t/2)

)
e− ω

T
(n/N−1)

Z
,

Z =
N∑

n=0

e− ω
T

(n/N−1), η = 2

√[
ω0 − ω

2N
− α

√
N

(
1 − 2n + 1

2N

)]2

+ 4α2(n + 1)
(

1 − n

2N

)
,

η′ = 2

√[
ω0 − ω

2N
− α

√
N

(
1 − 2n − 1

2N

)]2

+ 4α2n

(
1 − (n − 1)

2N

)
,

θ = 2

[
ω0 − ω/2N + α

√
N

(
1 − 2n + 1

2N

)]
, θ ′ = −2

[
ω0 − ω/2N − α

√
N

(
1 − 2n − 1

2N

)]
,

� = −2ω

(
1 − 2n + 1

2N

)
− α√

N
, �′ = −2ω

(
1 − 2n − 1

2N

)
− α√

N
.

The time-averaged state for this system can then be calculated
as

ρ̄11 = ρ11(0)(1 − ̄1) + ρ22(0)̄2, ρ̄12 = ρ12(0)�̄, (26)

with

̄1 =
N∑

n=0

2(n + 1)α2(1 − n/2N )

(
1

η2

)
e− ω

T
(n/N−1)

Z
,

̄2 =
N∑

n=0

2nα2[1 − (n − 1)/2N ]

(
1

η′2

)
e− ω

T
(n/N−1)

Z
,

�̄ = 0.

Note that in general the coherence of the time-averaged
state will vanish as �̄ = 0. But there are specific resonance
conditions under which there can be nonzero coherence present
in the time-averaged state [17]. But in this work, we will not
consider such situations.

Before investigating the uncertainty relation in terms of
trace distance given in (7), we explore the behavior of loss of
information at instantaneous time with different parameters in-
volved in this dynamics. For such study, let us restrict ourselves
to the set of pure initial qubits over which the optimization
involved in (7) is performed. In particular, we take the initial
pair of orthogonal pure states to be cos θ

2 |1〉 + sin θ
2 e−iφ|0〉 and

sin θ
2 |1〉 − cos θ

2 e−iφ|0〉, with 0 � θ � π,0 � φ < 2π . The
instantaneous and average information losses in this case are
given respectively by

I T
� (t) = 1(t) + 2(t), Ī

(T )
� = ̄1 + ̄2. (27)

In Figs. 1, 2, and 3, the instantaneous loss of information
is depicted with time for different values of the number of
bath spins (N ), temperatures (T̃ ), and system-bath interaction
strengths (α), respectively, by keeping the other parameters
fixed. From the figures, we deduce the following:

Observation 1. The instantaneous loss of information shows
oscillatory behavior whose amplitude decreases with time.

Observation 2. The increase of number of spins of the bath,
in temperature as well as in the interaction strength, can be
seen as an increase of influence of bath on the system. Hence,
expectantly in all cases, the loss of information increases with
increase of the above system parameters.

Let us now check the uncertainty relation given in
(16) for the qubit case, taking the same initial pair of
pure orthogonal states and the thermal state at arbitrary
temperature ρth = p1|0〉〈0| + (1 − p1)|1〉〈1|, where p1 =
1
2 [1 + tanh ( h̄gω0

KT̃
)]. After performing the maximization, we

find

Ī T
� + 2NM(T )

ε = ̄1 + ̄2 + 2|p1 − ̄1|. (28)

FIG. 1. Time dynamics of instantaneous information loss. We
plot I T

� (t) on the vertical axis against t on the horizontal axis for
different values of the total number of bath spins N , where the
system-environment duo governed by the Hamiltonian in Eq. (21)
is being considered. We set α = 0.1 and T = 1. All quantities are
dimensionless.
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FIG. 2. I T
� (t) vs t for various temperatures. We set N = 200 and

α = 0.1. The physical system is the same as in Fig. 1. All quantities
are dimensionless.

We now examine the conditions for which the uncertainty
relation (16) saturates. Note that for the ergodic situations, i.e.,
if the steady state is unique and is equal to the thermal state,
the information loss is equals unity, leading to a trivial equality
in (16). Keeping N fixed to 1000 and fixing the temperature to
different values, we investigate the values of Ī T

� + 2NM(T )
ε for

increasing interacting strength. We observe that the sum goes
close to unity for a strong interaction strength, as depicted in
Fig. 4 for high temperature.

In Figs. 5 and 6, we analyze the sum I T
� + 2NM(T )

ε as
the number of bath spins is ramped up from 100 to 1000.
Scrutinizing these figures, we can safely conclude that with
the increase in number of spins of the bath, or in the bath
temperature, or in the system-bath interaction strength, the
sum I

(T )
� + 2NM(T )

ε goes very close to unity in this qubit case,

FIG. 3. I T
� (t) with t for three different values of system-bath

coupling (α). We set T = 1 and N = 200. The physical system is
the same as in Fig. 1. All quantities are dimensionless.

FIG. 4. Behavior of the uncertainty for different system-bath
interaction strengths. We denote the values of I T

� + 2NM(T )
ε for

different α as vertical bars on the horizontal axis that represent α.
Here, N = 1000, and the different panels are for different T . The
system considered is the one given by the Hamiltonian in Eq. (21).
At already a moderate interaction strength, the quantity converges
to a certain value which is higher than unity. The converged value
goes close to unity with the increase of temperature. All quantities
are dimensionless.

provided the optimization involved is restricted to pure qubits.
However, numerical evidence strongly suggests that for this
non-Markovian model, given in Eq. (21), there will be no
nontrivial situation when the uncertainty relation in Eq. (16)
saturates to unity, provided the maximization is carried out
over a pure state.

1.13

30

FIG. 5. Bar diagram for I T
� + 2NM(T )

ε vs α. The situation here is
the same as in Fig. 4, except that the different panels are for different
N for fixed T , which is set to be 10. All quantities are dimensionless.
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FIG. 6. The panels here are the same as in Fig. 5, except that
T = 0.01. All quantities are dimensionless.

We find that the saturation values of ̄1 and ̄2, when α −→
∞, are respectively given by

̄sat
1 = 1

2

n=N∑
n=0

1

4 + N
[1−(2n+1)/2N]
(n+1)(1−n/2N)2

e− h̄ω
KT

(n/N−1)

Z
,

̄sat
2 = 1

2

n=N∑
n=0

1

4 + N
[1−(2n−1)/2N]2

n[1−(n−1)/2N]

e− h̄ω
KT

(n/N−1)

Z
. (29)

If the interaction Hamiltonian given in Eq. (22) is considered in
absence of the z − z interaction, the saturated values of ̄1 and
̄2 in the limit N → ∞,α → ∞ will be ̄sat

1 = ̄sat
2 = 1/8. In

the infinite-temperature limit, we have p1 = 1/2, which leads
to the equality in (16). It is interesting that in the mentioned
limit, the nonergodicity measure is finite and equals 3/8.
Therefore, we find a nonergodic situation where the equality
of the uncertainty relation holds. When the equality of the
mentioned relations hold for a nonergodic evolution, these
relations imply that when the nonergodicity of the dynam-
ics increases, the information loss in the system decreases.
Nonergodic dynamics are, in general, good for information
processing as they have less chance of leakage of information
compared to ergodic dynamics. In particular, for nonergodic
evolution for which the uncertainty relations discussed in this
paper are equalities, the loss of information can be quantified
by and attributed to the nonergodicity in the evolution. It is
also important to mention that spin-bath models do not always
indicate a shows nonergodic dynamics. In a recent work [48],
such dynamics have been considered with the Born-Markov
approximation region to find the effective reduced dynamics. It
is shown in the mentioned work that there are situations where a

unique fixed point (stationary state) can exist for the evolution,
and hence in those situations, the dynamics is ergodic [27].

V. CONCLUSION

In open quantum dynamics, the information exchange
between the system and bath plays an important role, while the
time-evolved state’s correspondence with the Gibb’s ensemble
conspire to imply the ergodic nature of the system. In this
article, we establish a relation between loss of information
and a measure of nonergodicity. Both the definitions are given
in terms of distinguishability, which can be measured by a
suitably chosen distance measure. We have shown that the
information loss and the quantifier of nonergodicity follow an
uncertainty relation, valid for a broad class of distinguishabil-
ity measures, which includes trace distance, Bures distance,
Hilbert-Schmidt distance, Hellinger distance, and square root
of Jensen-Shannon divergence. We have further considered
trace distance between a pair of quantum states as a specific
distinguishability measure and connected the corresponding
information loss with nonergodicity, which is now defined in
terms of relative entropy between the time-averaged state and
the thermal state, maximized over all possible initial states.
We have shown that in a Markovian model, the uncertainty
relation saturates and shows a complete information loss. We
also considered a structured environment model of a central
quantum spin interacting, according to Heisenberg interaction,
with a collection of mutually noninteracting quantum spin-half
particles, leading to non-Markovian dynamics. In this case,
we observed that with the increase of temperature, number
of spins in the bath, and the system-bath interaction strength,
there is increase in information loss at instantaneous time. In
this scenario, we found that the uncertainty relation shows a
nonmonotonic behavior with the increase of temperature for
small values of interaction strength, provided the optimization
is performed over pure qubits. Moreover, we found that
although the uncertainty relation in this model goes close to
the saturation value, it fails to saturate exactly. Interestingly,
however, we found that in the absence of z-z system-bath inter-
action and in the limit of large bath size, high bath temperature,
and strong system bath interaction, the uncertainty relation
between information loss and nonergodicity, based on trace
distance measure, is saturated, providing a nonergodic situ-
ation that saturates the uncertainty. The uncertainty relations
have been obtained by using the usual notion of the ergodicity
where it is required that the unique fixed point of the dynamics
be thermal. We note that the entire analysis follows through for
a more general definition where a single fixed point is sufficient
to imply ergodicity.
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