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Disturbance by optimal discrimination
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We discuss the disturbance by measurements which unambiguously discriminate between given candidate
states. We prove that such an optimal measurement necessarily changes distinguishable states indistinguishable
when the inconclusive outcome is obtained. The result was previously shown by Chefles [Phys. Lett. A 239,
339 (1998)] under restrictions on the class of quantum measurements and on the definition of optimality. Our
theorems remove these restrictions and are also applicable to infinitely many candidate states. Combining with
our previous results, one can obtain concrete mathematical conditions for the resulting states. The method may
have a wide variety of applications in contexts other than state discrimination.
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I. INTRODUCTION

Optimal quantum measurements play fundamental roles in
many subjects in quantum foundations and quantum infor-
mation. The subjects include error-disturbance relations [1],
quantum coding theorems [2], entanglement distillation [3]
state estimation [4], state discrimination [5], state protection
[6], etc. Although it is sometimes difficult to obtain concrete
forms of optimal measurements, the characterization of those
measurements that maximize the precision, maximize the
transmission rate, etc., gives fundamental bounds in quantum
mechanics and on efficiency of various information processing.
In this paper, we discuss a natural and intuitive principle in
optimality: the measurement which does “something” the best
leaves no room for doing something afterwards. Intuitively, if
the room remained, one would be able to improve the original
measurement by composing that with a measurement which
does an amount of something later. This simple reasoning
seems to have a wide scope. However, it is not necessarily
trivial to implement the idea as a rigorous statement in general
or in each subject. One must carefully choose the definition of
optimality, assumptions and conclusions. We will demonstrate,
as a prototype, that the principle works well and makes the
original problem more transparent in the context of unambigu-
ous state discrimination, where we also notice subtleties in
the application thereof. The principle generalizes the previous
results and simplifies the proof, which may not be achieved by
other approaches such as extremity (in the mathematical sense)
of the optimal measurements, even if we restrict ourselves to
convex evaluation functions.

Unambiguous discrimination is one of possible frameworks
for state discrimination. There, one must answer the correct
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input state among the candidates after performing a quan-
tum measurement. One must not take a state for another,
though one can answer “inconclusive” or “?”. Unambiguous
discrimination between two states was introduced by Ivanovic
[7] and developed in Refs. [8–10]. Chefles [11] showed that
finitely many pure states are distinguishable if and only if they
are linearly independent. Feng et al. [12] extended the result
to mixed states. There are also interesting examples where
infinitely many candidate states are involved. An example is
the set of coherent states corresponding to a lattice in the
classical phase space, which was considered by von Neumann
[13] in the context of simultaneous measurements of position
and momentum. The present authors [14] generalized the
results above on unambiguous discrimination to infinitely
many candidate states. The application to von Neumann’s
lattice led to a natural characterization of Planck’s constant
from the viewpoint of state discrimination.

The studies of unambiguous discrimination above mainly
discuss its possibility and accuracy. Not much attention was
paid to the disturbance caused by unambiguous discrimination
measurements. One exception is a part of Chefles’s work [11].
He showed, under some restrictions explained below, that
optimal discrimination measurements change the input states
to linearly dependent (and thus indistinguishable) ones if the
inconclusive outcome ? is obtained. The claim is interesting be-
cause it concerns the disturbance of an optimal measurement.
However, besides the finiteness of the candidate states, the
results obtained there were restrictive in the following sense.
First, the states to be discriminated were assumed to be pure.
Second, not all measurements allowed by quantum mechanics
were considered. The measurements were restricted to those
which change pure states to pure states when the outcome is
inconclusive. It is quite common, however, that the output
state is mixed even if the input is pure. Third, a particular
evaluation function was considered to define the optimality.
Namely, existence of a prior probability distribution is assumed
and the average success probability was chosen. Even in the
unambiguous discrimination between a finite number of states,
it may be as natural, for example, to define the optimality by
maximization of the minimum success probability taken over
the candidate states.
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In this paper, we show that optimal unambiguous discrim-
ination measurements make distinguishable states indistin-
guishable provided that the outcome is the inconclusive one.
We apply the simple principle described at the beginning of
this paper and derive the result directly from the definition
of the optimality, not resorting to the detailed mathematical
properties of the states. The results are free from all restrictions
mentioned above, and are valid for mixed states, for general
measurements, for a wide class of evaluation functions (which
are not necessarily convex), and for infinitely many candidate
states. A careful treatment is necessary for infinitely many
states since distinguishability naturally splits into slightly dif-
ferent levels, distinguishability and uniform distinguishability
[14]. One can obtain detailed mathematical characterization of
the states resulting from optimal measurements by combining
the results in Ref. [14] and those in the present work.

The paper is organized as follows. In Sec. II, we briefly
review quantum measurement theory. We introduce the con-
cept of unambiguous discrimination in Sec. III. We present
our main result on distinguishability in Sec. IV and that on
uniform distinguishability in Sec. V. The excluded case in the
main results, which is itself of interest, is addressed in Sec. VI.
Section VII is for conclusion and discussions.

II. BRIEF REVIEW OF QUANTUM
MEASUREMENT THEORY

In this section, we quickly review quantum measurement
theory [15] to the extent that is necessary for this paper. We
consider the measurement with countably many outcomes. Let
� denote the set of possible outcomes andH denote a system (a
separable Hilbert space) to be measured. A state is expressed by
a density operator ρ ∈ B1(H), ρ � 0, tr ρ = 1, where B1(H)
denotes the Banach space of trace class operators on H. A
measurement on H with the outcome set � is mathematically
described by an instrument (Iω)ω∈�. Each element Iω of
the instrument is a linear map Iω : B1(H) → B1(H) [that is
bounded with respect to the trace norm on B1(H)], which
describes a weighted state change caused by the measurement.
Each Iω sends a state ρ to an “unnormalized” state, namely,

Iωρ = Pr(ω|ρ)ρω, (1)

where Pr(ω|ρ) is the probability of obtaining an outcome
ω ∈ � and ρω is the resulting state when the outcome ω is
obtained. Equation (1) defines Pr(ω|ρ) and ρω uniquely (unless
tr[Iωρ] = 0):

Pr(ω|ρ) = tr[Iωρ], ρω = Iωρ

tr [Iωρ]
. (2)

In order to interpret these quantities as probabilities and
quantum state, respectively, an instrument is assumed to satisfy
the following two conditions.

(CP) Completely positivity: Iω is completely positive for
all ω ∈ �, i.e., its trivial extensions Iω ⊗ idCn×n : B1(H ⊗
Cn) → B1(H ⊗ Cn) are positive maps for all n ∈ N.

(TP) Trace preserving property: the sum
∑

Iω preserves
trace of operators, i.e., tr[(

∑
Iω)ρ] = tr ρ for all ρ ∈ B1(H).

The property CP, especially the positivity, guarantees pos-
itivity of ρω and Pr(ω|ρ). The property TP guarantees the
conservation of probability. It is known that the instruments

with the above two properties correspond exactly to the
realizable measurements (e.g. [16]).

III. UNAMBIGUOUS DISCRIMINATION

We begin with the precise definition of unambiguous dis-
crimination.

Definition 1. An unambiguous discrimination measurement
between (ρj )j∈J is an instrument (Iω)ω∈J∪{?} that satisfies, for
j,k ∈ J with j �= k,

tr[Ijρk] = 0, tr[Ijρj ] > 0. (3)

We call tr[Ijρj ] success probabilities. The states (ρj )j∈J

are said to be distinguishable when they admit at least one
unambiguous discrimination measurement between them.

Let (ρj )j∈J be distinguishable candidate states. Then
(ρj )j∈J admit an unambiguous discrimination measurement
(Iω)ω∈J∪{?}. When the true state is ρj , one obtains the outcome
j or ? with probabilities tr[Ijρj ] or tr[I?ρk], respectively,
and does not obtain any other outcome, namely, tr[Ijρj ] +
tr[I?ρj ] = 1. When the outcome is j , we can decide the true
state is ρj with certainty.

In the rest of this section, we would like to discuss the
ways to quantify how good an unambiguous discrimination
measurement is. In the presence of a prior probability density
(pj )j∈J , which was assumed by Dieks [8] and Chefles [11],
it is reasonable to evaluate an unambiguous discrimination
measurement (Iω)ω∈J∪{?} by the average success probability

fav :=
∑
j∈J

pjqj , (4)

where qj = tr[Ijρj ] are success probabilities.
However, this is not the only way. Even in the case of finite

J , there are important examples in which f is not of the form
(4). The minimum success probability

fmin := min{qj | j ∈ J } (5)

is such an example. Roughly speaking, 1/fmin trials are enough
to determine the true state. This is the operational meaning
of the minimum success probability fmin. Generalizing these
two examples, we define the class of evaluation functions for
unambiguous discrimination.

Definition 2. We call a function f : (0,1]J → R an evalua-
tion function if

xj > yj for all j ∈ J ⇒ f (xj ) > f (yj ) (6)

holds for all (xj )j∈J , (yj )j∈J ∈ (0,1]J . We say an unambiguous
discrimination measurement (Iω)ω∈J∪{?} between the states
(ρj )j∈J is better if the value f (tr[Ijρj ]) is larger and optimal
if no other measurement exceeds the value.

The class of “evaluation functions” defined here is so large
that, when J is finite, one could hardly imagine any functions
that suit the term and do not belong to the defined class.
For example, the class contains fav and fmin. An evaluation
function need not be convex nor linear. When J is infinite,
however, finf [see (16)], which is a natural generalization of
fmin, is excluded from the class. Such functions are more
suitably discussed in the context of uniform distinguishability
(see Sec. V).
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IV. RESULT ON DISTINGUISHABILITY

Now, we can state the first main result.
Theorem. Optimal discriminations make distinguishable

states indistinguishable when the discrimination fails (gives
?). Namely, assume that the measurement (Iω)ω∈J∪{?} achieves
an optimal unambiguous discrimination between the states
(ρj )j∈J and that the condition

tr[Ij ρj ] < 1 for all j ∈ J (7)

holds. Then the resulting states under the condition that the
outcome is ?, defined by( I?ρj

tr[I?ρj ]

)
j∈J

, (8)

are not distinguishable. Here, the optimality is defined by an
arbitrary evaluation function in Definition 2.

Note that the condition tr[Ijρj ] < 1 is equivalent to
tr[I?ρj ] > 0 and this ensures the well definedness of the
resulting states (8). We will discuss the case that this condition
fails in Sec. VI.

We explain the idea of the proof first and then give the
formal one. The simple but important idea is to prove the
contrapositive, namely, if the states (8) are distinguishable then
the discrimination measurement (Iω)ω∈J∪{?} is not optimal.
We thus construct a discrimination measurement that is better
than the original one, (Iω)ω∈J∪{?}, assuming that (8) are
distinguishable. The measurement consisting of the following
two steps does the task.

(1) Perform the original discrimination (Iω)ω∈J∪{?}. If the
outcome of this measurement is j ∈ J , then decide the true
state is ρj regardless of the second step. If the outcome is ?,
then defer the decision and proceed to the next step.

(2) Perform the discrimination of states (8), whose existence
is guaranteed by the assumption. If the outcome of this
measurement is j ∈ J , decide the true state is ρj . Otherwise,
give up on the decision and answer ?.

We show below that this combined discrimination measure-
ment truly improves the original one (Iν)ν∈J∪{?}.

Proof of the Theorem. Note that

tr[I?ρj ] = 1 − tr[Ijρj ] > 0 (9)

by the assumption of the Theorem.
We will prove the contrapositive. Let us assume (8) ad-

mits an unambiguous discrimination measurement (I ′
ω)ω∈J∪{?}.

Because (Iω)ω∈J∪{?} and (I ′
ω)ω∈J∪{?} discriminate between

(ρj )j∈J and between (8), respectively, one obtains, by Defi-
nition 1,

tr[Ijρk] = 0, tr[Ijρj ] > 0, (10)

tr

[
I ′

j

I?ρk

tr[I?ρk]

]
= 0, tr

[
I ′

j

I?ρj

tr[I?ρj ]

]
> 0 (11)

for j,k ∈ J with j �= k.
Let us define an instrument (Jω)ω∈J∪{?} by

Jj :=
( ∑

ω′∈J∪{?}
I ′

ω′

)
Ij + I ′

jI?, j ∈ J, (12)

J? := I ′
?I?. (13)

We will prove that the instrument (Jω)ω∈J∪{?} unambiguously
discriminates states (ρj )j∈J better than (Iω)ω∈J∪{?} in the rest
of this proof.

First, it is readily seen that (Jω)ω∈J∪{?} is an instrument since∑
ω∈J∪{?} Jω = ∑

ω′,ω∈J∪{?} I ′
ω′Iω.

Second, we calculate the probabilities tr [Jjρk] for all
j,k ∈ J :

tr[Jjρk] = tr
[(∑

I ′
ω

)
Ijρk

]
+ tr[I ′

jI?ρk]

= tr[Ijρk] + (tr[I?ρk]) tr

[
I ′

j

I?ρk

tr[I?ρk]

]

= δj,k

(
tr [Ikρk] + (tr[I?ρk]) tr

[
I ′

k

I?ρk

tr[I?ρk]

])
,

(14)

where the first equality is by the definition of (Jω)ω∈J∪{?}, the
second follows from the TP property of

∑
I ′

ω, and the third is
by (10) and (11).

Finally, we show that (Jω)ω∈J∪{?} unambiguously discrimi-
nates between (ρj )j∈J better than (Iω)ω∈J∪{?}. We see that each
tr[Jj ρj ] is strictly larger than tr[Ijρj ]:

tr[Jj ρj ] − tr[Ijρj ] = tr[I?ρj ] tr

[
I ′

j

I?ρj

tr[I?ρj ]

]
> 0, (15)

where the equality is by (14) and the inequality is by (9)
and (11). Equations (14) and (15) prove, in particular, that
(Jω)ω∈J∪{?} unambiguously discriminate (ρj )j∈J . Let f be
any evaluation function described in the Definition 2. Then,
by (15), we have f (Jjρj ) > f (Ijρj ). In other words, the
instrument (Jω)ω∈J∪{?} discriminates between (ρj )j∈J better
than (Iω)ω∈J∪{?}. This completes the proof. �

We will discuss the assumption (7) in the Theorem in
Sec. VI.

V. RESULT ON UNIFORM DISTINGUISHABILITY

As the number of states becomes infinite, the concept of
distinguishability is naturally divided into two: “distinguisha-
bility” and “uniform distinguishability” [14]. We discussed the
former in the preceding sections. We consider the latter in this
section.

We recall that the class of evaluation functions in the
Definition in Sec. III becomes slightly restricted when the
index set J is not finite. Although fav is included in the class,
an important evaluation function

finf(xj ) := inf{ xj | j ∈ J }, (16)

which generalizes fmin, is excluded. The function finf has a
definite operational meaning similar to fmin. Hence it is a
natural demand to include such an evaluation function. It can be
done by introducing the uniform distinguishability. We provide
the uniform version of Definitions 1 and 2 and the Theorem.

Definition 1′. A uniform unambiguous discrimination mea-
surement between (ρj )j∈J is an instrument (Iω)ω∈J∪{?} that
satisfies, for j,k ∈ J with j �= k,

tr[Ijρk] = 0, inf{tr[Ijρj ] | j ∈ J } > 0. (17)
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The states (ρj )j∈J are said to be uniformly distinguishable
when they admit at least one uniform unambiguous discrimi-
nation measurement between them.

Distinguishability is a weaker condition than uniform dis-
tinguishability. Consider, for example, the states (ρj )j∈N that
are merely distinguishable with success probabilities qj =
tr[Ij ρj ] = 1/j . In this case, one cannot predict how many
trials suffices to determine the true state before perform-
ing the discrimination since 1/finf(qj ) = 1/0 = ∞. Uniform
distinguishability cures this problem and provides a natural
framework for infinitely many states.

Definition 2′. We call a function f : (0,1]J → R an evalu-
ation function for uniform discrimination if

inf{xj > yj | j ∈ J } > 0 ⇒ f (xj ) − f (yj ) > 0 (18)

holds, where (xj )j∈J , (yj )j∈J ∈ (0,1]J .
Note that the function finf is an evaluation function for

uniform discrimination as well as fav. Evaluation functions
for uniform discrimination comprise a larger class than mere
evaluation functions do.

Theorem′. Optimal uniform discrimination measurements
make uniformly distinguishable states not uniformly distin-
guishable when the discrimination fails (gives ?). Namely,
assume that the measurement (Iω)ω∈J∪{?} achieves an opti-
mal uniform unambiguous discrimination between the states
(ρj )j∈J and that the condition

sup{tr[Ijρj ]} < 1 (19)

holds. Then the resulting states under the condition that the
outcome is ?, defined by( I?ρj

tr[I?ρj ]

)
j∈J

, (20)

are not uniformly distinguishable. Here, the optimality is
defined by an arbitrary evaluation function for uniform dis-
crimination in Definition 2 ′.

The definitions and theorem with prime symbols are equiv-
alent to those without prime in Sec. IV when J is finite. When
J becomes countably infinite, “uniform distinguishability”
becomes a stronger condition than mere “distinguishability”
and evaluation functions for uniform discrimination form a
larger class than that of mere evaluation functions. The proof
of the Theorem′ can be given in a way similar to that of the
Theorem and is omitted [the essential point is to replace the
inequalities “· · · > 0” with “inf{· · · | j ∈ J } > 0” in Eqs. (9),
(10), (11), and (15)].

We note that an assumption (19), which is stronger than (7)
in the previous Theorem, is necessary in the Theorem′. In fact,
when sup qj = 1 and qj < 1, the original uniform discrimina-
tion (with success probabilities qj ) is not necessarily uniformly
improved by a subsequent uniform discrimination measure-
ment (with q ′

j ). The reason is because the improvements in
success probabilities are given by (1 − qj )q ′

j [see (15)].

VI. SEPARATION OF PERFECTLY
DISTINGUISHABLE STATES

In the Theorem, we assumed that optimal discrimination
measurement satisfies tr[Ij ρj ] < 1. The excluded case was
tr[I?ρj ] = 0, or equivalently, tr[Ijρj ] = 1. We discuss such
cases in this section.

Definition 3. Let (ρj )j∈J be states and K be a subset of
J . The states (ρj )j∈K are said to be perfectly distinguishable
if there exists an unambiguous discrimination measurement
(Iω)ω∈J∪{?} between (ρj )j∈J such that

tr[Ikρk] = 1 (21)

holds for all k ∈ K .
Proposition. Assume that the states (ρj )j∈J are distinguish-

able and that (ρj )j∈K,K ⊂ J , are perfectly distinguishable.
Then there exists a (two-outcome projection) measurement
(L,L′) such that

Lρk = ρk, L′ρk = 0, k ∈ K, (22)

and
Lρ� = 0, L′ρ� = ρ�, � ∈ J \ K (23)

holds.
Proof. Assume (ρk)k∈K are perfectly distinguishable by

an unambiguous discrimination measurement (Iω)ω∈J∪{?}. Let
L ∈ B(H) be an operator such that, for all ρ ∈ B1(H),∑

k∈K

tr[Ikρ] = tr[LL∗ρ], (24)

i.e., LL∗ is the sum of so-called positive-operator valued
measure (POVM) elements for outcomes in K . Then LL∗ � 1.
Let P be the projection onto the (norm) closure of LH = { Lξ |
ξ ∈ H }. Then PL = L. Define the instrument (L,L′) by

Lρ = PρP, L′ρ = (1 − P )ρ(1 − P ), (25)

where ρ ∈ B1(H). We will prove this instrument satisfies the
conditions (22) and (23) in the Proposition.

First, we prove (22). Fix k ∈ K . Because (Iω)ω∈J∪{?} is
perfect on K , we have

1 = tr[Ikρk]

�
∑
k′∈K

tr[Ik′ρk] = tr[LL∗ρk] = tr[LL∗(PρkP )]

� tr[1(PρkP )]. (26)

Therefore, tr[PρkP ] = 1. Thus, by the cyclic property of trace,
tr[(1 − P )ρk(1 − P )] = 0. Then one has ρ

1/2
k (1 − P ) = 0,

which proves (22).
Second, we prove (23). Fix � ∈ J \ K . By the assump-

tion that (Iω)ω∈J∪{?} unambiguously discriminates between
the states, we have tr[Ikρ�] = 0 for all k ∈ K . Then 0 =∑

k∈K tr[Ikρ�] = tr[L∗ρ�L] and ρ
1/2
� L = 0. Since P is the

projection onto the closure of LH, we have ρ
1/2
� P = 0. Thus

(1 − P )ρ�(1 − P ) = ρ�, which proves (23). �
By the measurement described in the Proposition, we can

see whether the true state ρj is in (ρk)k∈K or (ρ�)�∈J\K , without
disturbing the set that contains ρj .

The Theorem in Sec. IV is not applicable when an optimal
instrument perfectly discriminates between some of the states.
In such a case, one can remove all perfectly distinguishable
states beforehand by the Proposition above and then apply
the Theorem. Therefore, we can assume (7) in the Theorem
without loss of generality. However, we cannot always assume
(19) in the Theorem′ physically. When qj := tr[Ijρj ] < 1 and
sup qj = 1, the states after an optimal uniform discrimination
measurement with the inconclusive outcome may be uniformly
distinguishable.
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VII. CONCLUSION AND DISCUSSIONS

We have shown that optimal unambiguous discrimina-
tion makes distinguishable states indistinguishable under the
condition that the inconclusive outcome ? is obtained. The
results extend the previously known ones to infinitely many
candidates and output states, which can be pure or mixed, to all
quantum mechanically possible measurements, and to virtually
all evaluation functions that define optimality. Our proof was
based on a simple principle. The best measurements leave no
room to carry out the task further. If the resulting states are
distinguishable, we can achieve more accurate discrimination
by discriminating the resulting states. This made the proof
almost obvious and, at the same time, removed restrictions
in the previous work [11]. We would like to emphasize that
our proofs of the Theorems do not depend on the criteria of the
distinguishability such as linear independence. The Theorems
are direct consequences of the definition of optimality.

We have also discussed the uniform discrimination, which
becomes slightly stronger than the mere distinguishability
when the number of candidate state becomes infinite. We
showed the Theorem′ for the uniform distinguishability. The
conclusion of the Theorem′ becomes slightly weaker, while
the class of evaluation functions is enlarged so that it includes
a natural measure finf. The difference between the Theorem
and Theorem′ exhibits the subtlety of the handling of infinite
many states.

Besides the main results, we have discussed the case that
some candidate states are perfectly distinguishable. We showed
that such candidate state can be separated by a two-outcome
measurement without disturbing the true state. This reflects the
nature of unambiguous discrimination.

If one is interested in more detailed descriptions of the
property of the resulting states, he or she can make use of the
results in our previous work. It was proved that countably many
pure states are distinguishable if and only if they are minimal
and that they are uniformly distinguishable if and only if
they are Riesz-Fisher (both of the mathematical properties are
generalizations of the linear independence). We also derived
the condition for the countably many general (possibly mixed)
states to be distinguishable (see also [12] for the case of finitely

many states). On the other hand, the condition for countably
many general states to be uniformly distinguishable can be
stated based on our previous work in principle, though the
derived condition seems to be complicated so that it is not
practical enough. It may be an interesting problem to simplify
the condition, which helps understand the resulting states and
the disturbance of the optimal discrimination.

The main results in this paper show that most accurate un-
ambiguous discrimination must destroy the distinguishability
of given states, which is an extreme case of error-disturbance
trade-off relation. We expect that there exist other trade-off
relations that can be understood clearly within the framework
of unambiguous discrimination. An example is wave-particle
duality, which is formulated as various trade-off relations
between coherence and distinguishability of quantum states
[17,18]. Among them, Bera et al. [18] used the average success
probability of unambiguous discrimination as a measure of
distinguishability. Our argument may be useful in the context of
wave-particle duality when one wants to generalize the results
in some directions or simplify the problem.

Finally, we would like to make a general comment on the
principle which we have used to prove the theorems (that the
optimal measurements leave no room to carry out the task
further). The idea is itself very simple and obvious so that
everyone understands it readily. However, it is not trivial in
what context this idea really works well and how to apply the
idea to each context. Note that the fact that the idea works in the
context of unambiguous discrimination under an appropriate
setting, as we have demonstrated in this paper, is itself not
trivial. For example, without the inconclusive outcome, it
might be impossible to make use of the idea in a similar manner.
The idea seems to be applicable to a wide variety of subjects and
to allow a unified discussion as well. It would be an interesting
work to find other subjects in which the idea can draw useful
conclusions.
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