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Quantum theory does not provide a unique definition for the joint probability of two noncommuting observables,
which is the next important question after the Born’s probability for a single observable. Instead, various definitions
were suggested, e.g., via quasiprobabilities or via hidden-variable theories. After reviewing open issues of the
joint probability, we relate it to quantum imprecise probabilities, which are noncontextual and are consistent
with all constraints expected from a quantum probability. We study two noncommuting observables in a two-
dimensional Hilbert space and show that there is no precise joint probability that applies for any quantum state
and is consistent with imprecise probabilities. This contrasts with theorems by Bell and Kochen-Specker that
exclude joint probabilities for more than two noncommuting observables, in Hilbert space with dimension larger
than two. If measurement contexts are included into the definition, joint probabilities are not excluded anymore,
but they are still constrained by imprecise probabilities.
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Open problems of quantum mechanics revolve around the
notions of noncommutativity and probability [1–8]. In contrast
to classical mechanics, where introducing probability relates to
a limited control over the experimental situation, the quantum
probability presents itself as a fundamental description of a
single quantum observable, as well as pairs of commuting
observables [1–3]. However, the structure and interpretation
of the joint probability for noncommuting observables is
an open problem, primarily because the standard machinery
of quantum mechanics precludes a direct and precise joint
measurement of such observables [1–3]. This need not exclude
the definition of joint probability, since the latter may turn
out to be a construct recovered indirectly through different
measurements, or may even point out to a generalized theory
beyond quantum mechanics. As seen below, many possible
candidates for the joint probability were proposed. This subject
has been active since the inception of quantum mechanics [9],
and it is much alive now with the needs of quantum information
and foundations [10]. Theorems by Bell and Kochen-Specker
demonstrate the nonexistence of the joint probability for more
than two variables living in a Hilbert space H with dimension
dimH > 2 [5,6,11,12]. The Kochen-Specker theorem looks
for a set of observables for which no joint probability exists
for any state, while Bell’s theorem is restricted to specific
(entangled) states. Neither of these theorems restricts joint
probability for two noncommuting observables, which is the
next important case after the probability of a single observable.
Recently Malley added to the Kochen-Specker setup the
consistency with quantum conditional probability, which is
derived assuming (additionally) the projection postulate [13].
This modified setup disallows joint probabilities for any pair
of noncommuting observables for dimH > 2 [13].

Here we show in which sense the joint probability can be
excluded (without assuming the projection postulate) already
for the minimal situation, viz. any pair of noncommuting
observables living in a two-dimensional Hilbert space. Note
that the projection postulate is not necessary for the empiric

applicability of quantum probability; e.g., there are interpreta-
tions of quantum mechanics that do not employ it [14,15]. We
also study how our results depend on the standard assumption
of a single probability space for noncommuting observables.

We illustrate the existing approaches towards defining joint
probabilities for two noncommuting observables (Hermitian
operators) A and B ([A,B] �= 0) living in a Hilbert space H.
Let Pa (Qb) be the eigenprojector of A (B) that corresponds
to the eigenvalue a (b).

Our first condition is that a hypothetical joint probability
pab of eigenvalues of a and b in a state with density matrix ρ

holds marginality conditions:

∑
a
pab = tr(ρQb),

∑
b
pab = tr(ρPa), (1)

where the first (second) summation is taken over all different
eigenvalues of A (B).

We embedded the joint probabilities of noncommuting
observables into a single space; cf. (1). This assumption can be
questioned, since noncommuting Pa and Qb demand different
measurement contexts [16]. But we adopt it (till the end of
the paper), since it is a common point for all approaches–
including the Bell and Kochen-Specker theorems–that look
for the joint probability [5,6]. Below we give examples for a
joint probability.

(1) The best-known approach is that of quasiprobabilities
[9,10]. They are linear over ρ, but they ought to become
negative for certain states [9,10]. This limits their interpretation
as probabilities [17]. In addition, there are many different
quasiprobabilities, and it is not clear which one of them applies
in a concrete situation, even if it is positive. Despite these
issues, quasiprobabilities are widely used, e.g., in quasiclassics
[9], information theory [10], signal processing [18,19], and sta-
tistical mechanics [20,21]. A good example of quasiprobability
is the Terletsky-Margenau-Hill function [22]:

pT
ab = tr[ρ (PaQb + QbPa)]/2. (2)
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pT
ab is negative for certain ρ’s, since PaQb + QbPa has a

negative eigenvalue if [Pa,Qb] �= 0. Equation (2) relates to
weak values [23], and its negativity has a physical meaning
[21]. pT

ab is more convenient than the Wigner’s function, which
is defined only for specific pairs of observables.

The negativity of (2) for certain ρ’s has deeper roots: any
probability defined via

pC
ab = tr(ρ �ab) � 0, due to �ab � 0, (3)

which holds (1) for any ρ (hence
∑

b �ab = Pa and
∑

a �ab =
Qb) and which is forced to be positive by the non-negative
definiteness of Hermitian �ab, will imply that A and B are
commuting: AB = BA [6,7].

(2) The linearity of (2), (3) over ρ has two implications.
First, it means that within the standard measurement theory pT

ab

can be determined via measuring Hermitian PaQb + QbPa in
a state with an unknown ρ [1,3]. Second, consider the process
of mixing: out of two ensembles with different ρ1 and ρ2, one
makes up a new ensemble by takingρk with probabilityμk (k =
1,2). The new ensemble has density matrix ρmix = ∑2

k=1 μkρk .
All quantities that are linear over density matrix (e.g., pT

ab)
will depend directly on ρmix keeping no memory on separate
preparations ρk that contributed into the mixing.

But the linearity is not obligatory: one can define a joint
probability via sacrificing the linearity over ρ, so as to ensure
the positivity for all ρ, keeping correct marginals as in (1) [19].
Such constructs cannot be measured via the standard approach,
but they are determined theoretically once ρ is known. They
are not unique, but they were employed for studying comple-
mentarity [18]. The simplest nonlinear example holding (1)
is

pN
ab = tr(Pa

√
ρ Qb

√
ρ) � 0. (4)

(3) Deterministic hidden-variable theories offer another def-
inition of the joint probability [24]. Here is an example based
on a hidden-variable theory proposed by Bell for dim H = 2
[24]. Recall the Bloch representation for any non-negative
operator R � 0 (density matrix or projector) with tr R = 1 in
dim H = 2:

R = (1 + �βR �σ )/2, �βR = tr(R�σ ), | �βR| � 1, (5)

where �βR = (βR,x,βR,y,βR,z) is a real vector and �σ is the
vector of Pauli matrices. Now the hidden variable is a real
vector �m with | �m| = 1. For any projector P we recover Born’s
rule via the integration over �m with the characteristic function
ϑ[ �βP ( �βρ + �m)] [24]:

tr(ρP ) = 1

2
(1 + �βρ

�βP ) =
∫

d �m
4π

ϑ[ �βP ( �βρ + �m)], (6)

where ϑ[x] is the step function (ϑ[x � 0] = 1 and ϑ[x < 0]
= 0), and

∫
d �m integrates over all directions of three-

dimensional hidden-variable space. Equation (6) is verified
by going to spherical coordinates: d �m = sin(θ ) dθ dφ. This
model suggests the joint probability which holds (1):

pB
ab =

∫
d �m
4π

ϑ[ �βPa
( �βρ + �m)] ϑ[ �βQb

( �βρ + �m)] � 0. (7)

Now (2) and (4) are noncontextual definitions, i.e., pab

depends only on Pa and Qb, and not on other projectors

∑
a Pa = I and

∑
a Qb = I of A and B (I is the unity

operator on H). Equation (7) is also noncontextual, but its
generalizations to dim H > 2 ought to be contextual [25].

Besides (1) there is another natural condition to which a
physical joint probability pab should satisfy [11,12]:

pab = tr(ρPaQb) if (8)

[Pa,ρ] = 0 or [ρ,Qb] = 0 or [Pa,Qb] = 0. (9)

To explain (8) and (9), note that (9) forces tr(ρPaQb) to have
features of joint probability, i.e., it is symmetric with respect to
Pa and Qb, non-negative and holds (1). Imposing (8) and (9) is
especially obvious for [Pa,Qb] = 0, where PaQb is a projector.
For [Pa,ρ] = 0, tr(ρPaQb) can be recovered as the average of
a Hermitian observable (PaQb + QbPa)/2. Alternatively, we
note that measuring Pa does not change ρ statistically. Hence
the joint probability is found by first measuring P and then Q:
tr(ρPaQb) = tr(PaρPaQb), and likewise for [Qb,ρ] = 0.

Now (4) and (7)–which are non-negative for any ρ–do not
hold (8) and (9). Equation (4) does not hold the third condition
in (9), while (7) does not hold the first and second conditions
in (9), as seen already in the simplest case ρ = 1/2. Equation
(2) holds Eqs. (1), (8), and (9), but it is negative for certain ρ’s.
In this context we formulate the following.

Conjecture: There is no joint probability pab(Pa,Qb,ρ) that
is non-negative for any ρ (i.e., quasiprobabilities are excluded),
is noncontextual, and holds (8) and (9); cf. [8]. We stress that
we do not require pab(Pa,Qb,ρ) to be linear over ρ. This
conjecture is yet to be (in)validated.

Below we show that joint probabilities can be excluded from
a different argument that relates to imprecise probabilities. In
contrast to the usual joint probability, the imprecise probabili-
ties are well defined given conditions of noncontextuality and
correspondence with the commutative situation. The physical
reason for this is that there exists a specific type of quantum
uncertainty for two noncommuting observables that is captured
by the quantum imprecise probability, which is consistent with
all conditions expected from a quantum probability.

Before continuing, we comment on joint measurements
schemes for noncommuting observables [1,2,26,27], a known
method for characterizing noncommutativity. Generally, this
method does not provide definitions for joint probabilities
that are new compared with the above analysis. In particular,
it is unclear to which extent the existing schemes for joint
measurements produce intrinsic results that characterize the
system itself and not approximate measurements employed
[28]; e.g., they do not hold condition (1) of the joint probability
[28]. Instead, they focus on different conditions, e.g., the
unbiasedness [26] or stability [27].

Projectors are self-adjoint operators P with P 2 = P . Any
projector P in a Hilbert space H bijectively relates to the
subspace SP of H [29]:

SP = {|ψ〉 ∈ H; P |ψ〉 = |ψ〉}. (10)

Eigenvalues of P are 0 and/or 1, and it is a quantum analog
of the characteristic function for a classical set [29]. Hence
projectors define quantum probability: with a density matrix
ρ, the probability of finding the eigenvalue 1 of P is given by
Born’s formula tr(ρP ).
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The simplest projectors are 0 and I . We define

P � P ′ means 〈ψ |P − P ′|ψ〉 � 0 for any |ψ〉. (11)

Now apply (11) with |ψ〉 = |ψ0〉, where P |ψ0〉 = 0, and then
with |ψ〉 = |ψ1〉, where P ′|ψ1〉 = |ψ1〉. Hence the eigenvalues
of P and P ′ relate to each other leading to

PP ′ = P ′P = P ′ if P � P ′. (12)

Projectors (generally noncommuting) support logical oper-
ations [29]. Negation P ⊥ = I − P is a projector that has
zeros (ones) whenever P has ones (zeros). Conjunction P ∧ Q

contains only those vectors that belong both to SP and SQ.
Thus SP∧Q = SQ ∩ SP . Disjunction P ∨ Q cannot be defined
via SQ ∪ SP (set-theoretic union), because the latter is not a
Hilbert (linear) space. The minimal Hilbert space that contains
SQ ∪ SP , is made of all linear combinations of the vectors from
SQ ∪ SP :

SP∨Q = {|ψ〉P + |ψ〉Q; |ψ〉P ∈ SP ,|ψ〉Q ∈ SQ}. (13)

There are alternative representations [29]:

P ∧ Q = maxR[ R | R2 = R,R � P,R � Q ], (14)

P ∨ Q = minR[ R | R2 = R,R � P,R � Q ], (15)

where the maximization and minimization go over projectors
R [29]. Indeed, if R � P , and R � Q in (14), then due to (10)
and (12), SR is a subspace of both SP and SQ. The maximal
such subspace is SP∧Q. Likewise, if R � P , and R � Q, then
SR has to contain both SP and SQ. The minimal such subspace
is SP∨Q as (13) shows.

Now P ∨ Q = 0 only if P = Q = 0, but P ∧ Q can be
zero also for nonzero P and Q; e.g., for nonzero P and Q in
dimH = 2, we have either P = Q or P ∧ Q = 0 (and then
P ∨ Q = I ).

The above three operations are related with each other and
with a limiting process [29]:

P ∨ Q = (P ⊥ ∧ Q⊥)⊥, P ∧ Q = limn→∞(PQ)n. (16)

They are well known in quantum logics [29], but we shall
employ them without a specific logical interpretation. Equa-
tions (14), (15) were generalized to non-negative operators
[30]. For [P,Q] ≡ PQ − QP = 0 we have from (12)–(16)
ordinary features of classical characteristic functions:

P ∧ Q = PQ, P ∨ Q = P + Q − PQ. (17)

Imprecise classical probability generalizes the usual (pre-
cise) probabilities [32]: the measure of uncertainty for an event
E is an interval [p(E),p(E)], where 0 � p(E) � p(E) are
called lower and upper probabilities, respectively. Now p(E)
[resp. 1 − p(E)] is a measure of a sure evidence in favor (resp.
against) of E. The event E is surely more probable than E′, if
p(E) � p(E′). The usual probability is recovered for p(E) =
p(E). Two different pairs [p(E),p(E)] and [p′(E),p′(E)] can
hold simultaneously (i.e., they are consistent) if

p′(E) � p(E) and p′(E) � p(E). (18)

Every [p(E),p(E)] is consistent with p′(E) = 0, p′(E) = 1.
This noninformative situation is not described by the usual

theory that inadequately offers for it the homogeneous prob-
ability [32]. Now [p(E),p(E)] does not imply that there is
an explicit (but possibly unknown) precise probability for E

located between p(E) and p(E) [31].
There are various imprecise classical probability theories

[32], from a rather weak structures called upper and lower
measures in Ref. [33] to the Dempster-Shafer imprecise prob-
ability [34,35]. The latter has numerous applications e.g., in
decision making and artificial intelligence [32]. Recently it
was applied for describing aspects of the Bell’s inequality
[36–38]. The quantum imprecise probability is to be sought
independently, along the physical arguments. Below we recall
how it is determined.

Imprecise joint quantum probability is sought for two
noncommuting projectors P and Q. We look for upper ω(P,Q)
and lower ω(P,Q) non-negative probability operators. The
respective upper and lower probabilities in a state with density
matrix ρ are given by Born’s rule:

p(P,Q) = tr[ρ ω(P,Q)], p(P,Q) = tr[ρ ω(P,Q)]. (19)

The linearity of p(P,Q) and p(P,Q) over ρ can be motivated
as in (2) above. We determine ω(P,Q) and ω(P,Q) from the
following conditions [39]:

0 � ω(P,Q) = ω(Q,P ) � ω(P,Q) = ω(Q,P ) � I. (20)

[ ω(P,Q),Q ] = [ ω(P,Q),P ] = 0 for ω = ω,ω. (21)

ω(P,Q) = ω(P,Q) = PQ if [P,Q] = 0. (22)

tr[ρ ω(P,Q)] � tr(ρ PQ) � tr[ρ ω(P,Q)] if (9) holds.
(23)

Equations (20) and (19) force 0 � p(P,Q) � p(P,Q) � 1 for
any ρ. Equation (20) also demands symmetry with respect to
P and Q that is natural for the joint probability.

Now ω(P,Q) and ω(P,Q) are noncontextual in the sense
that they depend only on P and Q. Even a stronger feature
holds: Eq. (21) shows that both ω(P,Q) and ω(P,Q) can
be measured together with either P or Q; see also (25).
Hence the imprecise probability of two noncommuting ob-
servables does not lead to additional noncommutativity [40].

For [P,Q] = 0 we revert to the usual joint probability; see
(22). For Q = I we get from Eqs. (22) and (19) the marginal
and precise probability of P . Equations (23) and (9) also
refer to the consistency with the precise probability [cf. (18)],
because the latter is well defined not only for [P,Q] = 0, but
also under conditions (9), where it amounts to tr(ρPQ).

Equations (20)–(23) suffice for deducing [39]

ω(P,Q) = P ∧ Q, ω(P,Q) = P ∨ Q − (P − Q)2, (24)

where ω(P,Q) and ω(P,Q) are (resp.) the largest and the
smallest positive operators holding (20)–(23). Now ω(P,Q) is
a projector, while ω(P,Q) is generally just a non-negative op-
erator. For [P,Q] = 0, we have from (17) and (24): ω(P,Q) =
ω(P,Q) = PQ, as required by (22).

Equations (24) imply (21), because–as follows from (14)
and (15) and checked directly–P ∧ Q, P ∨ Q, and (P − Q)2

commute with each other and with P and Q. Hence

[ ω(P,Q), ω(P,Q) ] = 0. (25)
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The origin of (24) is understood from (20) and (21) and (14)
and (15), i.e., P ∧ Q and P ∨ Q qualify as certain (resp.) lower
and upper probability operators, while the factor (P − Q)2 in
(24) is needed to ensure (22).

In (19) we stress that if we would search for imprecise
probability without assuming the linear dependence on ρ [but
still assuming the analogues of (20)–(23)], we can obtain only
more precise [in the sense of (18)] quantities than p(P,Q)
and p(P,Q) in (19). The same argument is given for (21):
relaxing it (but keeping other features) will lead to more precise
probability. Thus conclusions obtained via linear p(P,Q) and
p(P,Q) will stay intact.

A geometric feature of (24) is that both PQP (i.e., the
restriction of Q into SP ) and QPQ hold:

ω(P,Q) � PQP,QPQ � ω(P,Q). (26)

Now ω(P,Q) � PQP is shown from P ∧ Q � Q [see (14)],
which implies P ∧ Q = P (P ∧ Q)P � PQP . And PQP �
ω(P,Q) follows from ω(P,Q)−PQP=ω(P,Q)−Pω(P,Q)
P = ω(P,Q)(I − P ) � 0 recalling that [ω(P,Q),P ] = 0
from (21) and (24).

Equations (20) and (23) can be deduced from (24) and (26),
which also imply a version of sub- and superadditivity:

∑
a
ω(Pa,Q) � Q �

∑
a
ω(Pa,Q),

∑
a
Pa = I. (27)

Thus the additive marginalization leads to an upper bound∑
a ω(Pa,Q) [and lower bound

∑
a ω(Pa,Q)] for the correct

marginal probability ω(I,Q) = ω(I,Q). We also note from
(27) that non-negative operators ω(Pa,Qb) and ω(Pa,Qb) do
not hold a semispectra resolution, e.g.,

∑
a,b ω(Pa,Qb) � I ,

hence they cannot be interpreted via generalized measurements
[1,2]. Note as well that the monotonicity does not hold:
ω(P,Q) �� ω(I,Q) = Q, though P � I ; cf. (30).

Consistency with quantum conditional probabilities: Two-
time (conditional) quantum probabilities are defined as follows
[1]: first, measure P and assume the validity of the projection
postulate. Now the result P = 1 implies the postmeasurement
density matrix PρP/tr(ρP ). Then measuring Q leads to
conditional probability pQ=1|P=1 = tr(ρPQP )/tr(ρP ) for the
Q = 1. Likewise, we obtain pP=1|Q=1 = tr(ρQPQ)/tr(ρQ)
when measuring first Q and then P . The two-time probabilities
are not usual conditional probabilities, since they do not lead
to joint probabilities, e.g., applying the usual formulas does
not generally lead to unique results due to pP=1|Q=1 tr(ρQ) =
tr(ρQPQ) �= tr(ρPQP ). However, imprecise joint probabil-
ities (19) can lead to conditional imprecise probabilities. They
are defined via the usual formulas, because the marginal [i.e.,
tr(ρP ) and tr(ρQ)] probabilities are precise. Equations (26)
show that two-time probabilities are bound by the conditional
imprecise probability, e.g.,

tr[ρω(P,Q)]

tr(ρP )
� tr(ρPQP )

tr(ρP )
� tr[ρω(P,Q)]

tr(ρP )
. (28)

Inconsistency with precise joint probabilities: We saw above
that imprecise probabilities (19) are consistent [in the sense of
(18)] with all instances, where quantum mechanics provides
reasonable definitions of joint or conditional probability; cf.
(23) and (28). Hence we assume that the reasonable definition

of precise quantum joint probability should also be consistent
with (19).

Thus we study a joint probability pab under two conditions.
First, we require (1). Second, we demand that pab is consistent
with (24) in the sense of (18) for any density matrix ρ and all
a and b:

0 � tr[ρ ω(Pa,Qb)] � pab � tr[ρ ω(Pa,Qb)]. (29)

We do not demand that pab depends only on Pa , Qb; i.e., for
pab we allow contextuality. We also do not demand that its
dependence on ρ is linear. Since for pab we require pab � 0
for all ρ, quasiprobabilities are naturally excluded from con-
sideration. Any theory that generalizes quantum mechanics
and predicts joint probability for any preparation will be
constrained by (29). Note that (29) is not stronger or weaker
than (8) and (9).

Let two noncommuting observables A and B with (resp.)
eigenprojectors P1 + P2 = I and Q1 + Q2 = I live in a two-
dimensional Hilbert space. Due to Pa ∨ Qb = I and Pa ∧
Qb = 0, Eqs. (24) simplify as

ω(Pa,Qb) = 0, ω(Pa,Qb) = tr(PaQb), (30)

i.e., both probability operators reduce to numbers [41].
Our main result is that for given noncommutative A and B,

there is a density matrix that violates (29) or (1). In this sense
the precise joint probability does not exist already in dimH =
2. Indeed, take p22 � tr(P2Q2) = tr(P1Q1) from (29), (30),
p21 � tr(ρQ1) from (1), and employ them in p22 + p21 = 1 −
tr(ρP1) from (1):

tr(P1Q1) + tr(ρP1) + tr(ρQ1) − 1 � 0. (31)

For given P1 and Q1, there is a density matrix ρ for which the
left-hand-side of (31) is negative. Indeed, its positivity amounts
in the Bloch representation (5) to �βP1

�βQ1 + �βρ( �βP1 + �βQ1 ) �
−1, and it can be violated e.g., as follows. If �βP1

�βQ1 = cos α,
then we can choose �βρ → 1 and �βρ

�βP1 = �βρ
�βQ1 = − cos α

2
producing cos α − 2 cos α

2 < −1 for 0 < α < π , i.e., for those
values of α, where [A,B] �= 0.

Thus, no precise joint probability is consistent with the
quantum imprecise probability for all states.

Summary and outlook: We defined a setup of searching
for a joint probability for two noncommuting observables.
This is the next problem after the Born’s probability for
a single observable. An open aspect of this problem was
formulated as a conjecture. We show that there is no joint
probability for two noncommuting observables in a two-
dimensional Hilbert space, if should this probability apply to
any state and should be consistent with the quantum imprecise
probability. This statement does not apply, if measurement
contexts are introduced. Now we look for the joint probability
generalizing out condition (1). Redefine the Born’s probabili-
ties as conditional ones pa|Pa

= tr(ρPa) and pb|Qb
= tr(ρQb),

where conditioning can account for different devices needed
to measure Pa and Qb. We cannot deduce pa|Pa

and pb|Qb

from a single joint probability, i.e., marginality condition (1)
does not apply anymore, and is generalized as follows. We
postulate two different joint probabilities pab|Pa

and pab|Qb

holding
∑

apab|Qb
= tr(ρQb) and

∑
bpab|Pa

= tr(ρPa), where∑
bpab|Qb

= pa|Qb
and

∑
apab|Pa

= pb|Pa
are well defined, but
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they need not be given by Born’s formulas. Equations (21)
and (25) mean that ω(Pa,Qb) and ω(Pa,Qb) can be measured
simultaneously with each other and with eitherPa orQb. Hence
they can be used in both contexts Pa and Qb. We constrain
pab|Pa

and pab|Qb
demanding their consistency with (19) for

any ρ [cf. (30) and (29)]: tr(ρ ω(PaQb)) � pab|Pa
, pab|Qb

�

tr[ρ ω(PaQb)]. Together with generalized marginality these
conditions define a set of probabilities that contains p̂ab|Pa

=
tr(ρPaQbPa) and p̂ab|Qb

= tr(ρQbPaQb); cf. (26). Elsewhere
we shall explore this approach, noting that descriptions
via sets of probabilities are well known in mathematical
statistics [32].
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