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In a seminal paper [Phys. Rev. D 27, 2885 (1983)], Page and Wootters suggest that time evolution could be
described solely in terms of correlations between systems and clocks, as a means of dealing with the “problem
of time” stemming from vanishing Hamiltonian dynamics in many theories of quantum gravity. Their approach
seeks to identify relational dynamics given a Hamiltonian constraint on the physical states. Here we present
a “state-centric” reformulation of the Page and Wootters model better suited to cases where the Hamiltonian
constraint is satisfied, such as anyons emerging in Chern–Simons theories. We describe relational time by encoding
logical “clock” qubits into topologically protected anyonic degrees of freedom. The minimum temporal increment
of such anyonic clocks is determined by the universality of the anyonic braid group, with nonuniversal models
naturally exhibiting discrete time. We exemplify this approach by using SU(2)2 anyons and discuss generalizations
to other states and models.
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In general relativity, the Hamiltonian is constrained to
vanish on physical states [1]. Canonical quantization preserves
this constraint, resulting in the Wheeler–DeWitt equation [2].
This equation embodies the “problem of time” in canonical
quantum gravity: the vanishing of the Hamiltonian on physical
states means that all quantum-mechanical operators, including
the density matrix describing the state of any system, must
be time independent, in contrast to everyday experience. This
apparent paradox has many facets and various approaches
attempt to solve some of them (see Refs. [3–5] for in-depth
reviews). One possible solution is that time is relational [6,7]:
that is, it emerges from correlations between subsystems of the
Universe, some of which we call “clocks.”

One relational approach is the model for a conditional
probability interpretation of Page and Wootters [6,8,9] (PaW),
which was experimentally demonstrated recently [10]. The
PaW Universe is formulated in terms of qubits represented as
spins, which implicitly carry internal Hamiltonian dynamics.
To conform to the Hamiltonian constraint, the state of the
Universe is an energy eigenstate, which factors into “system”
and “clock” subspaces. Then, the “system” dynamics emerge
with respect to correlations with the “clock” subsystem.

In this paper we show how the PaW relational time emerges
in a Universe lacking Hamiltonian dynamics. To do so we
reformulate PaW in state-centric terms, which makes explicit
the need for additional requirements on the global state beyond
the Hamiltonian constraint—requirements implicit in PaW.
A departure from the PaW model’s kinematical clocks is
inevitable—qubits emerge from topologically protected any-
onic degrees of freedom, which arise in the charge sectors
of (2 + 1)-dimensional Chern–Simons theories, and in quan-
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tum double models [11]. We show that these topologically
nontrivial degrees of freedom are useful clocks despite being
gauge invariant. A consequence of our model is that, whereas
in PaW any ordered set of clock states is accessible, the set of
clock measurement outcomes in computationally nonuniversal
anyonic groups is finite, leading to a natural discretization of
relational “time.”

First we give a brief overview of the PaW model. Page and
Wootters divide the Hilbert space into a “clock” part and a “sys-
tem” part, with total Hamiltonian H = Hc + Hs, where Hc,s are
Hamiltonians for the clock and system parts, respectively. In
Page and Wootters [6,8] time emerges kinematically. This is
embodied in their assumption that the “Universe” is in a pure,
maximally entangled state, |�0〉cs, stationary under unitary
evolution U (t) = exp(−iHt), where t is the unobservable
coordinate time. Apart from the initial entanglement in |�0〉cs,
there is no dynamical interaction between the system and the
clock. A reference state, |τ0〉c, which is not an eigenstate of Hc,
is defined to be the “zero” tick of the clock (i.e., “midnight”)
[12,13]. Subsequent clock states |τ 〉c, are then generated
by Hc,

|τ 〉c := e−iHc(τ−τ0)|τ0〉c, (1)

where τ signifies the “clock time.” We note that the clock time
τ is not associated with any particular value of the coordinate
time t ; instead it is a possible outcome for a measurement on
the clock.

The state of the system at clock time τ is defined by
conditioning |�0〉cs on the measured clock state |τ 〉c. PaW
showed that this conditional state of the system is consistent
with Schrödinger evolution of the system under Hs for a time
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τ − τ0, i.e.,

|ψ(τ )〉s := c〈τ |�0〉cs

tr[c〈τ |�0〉cs〈�0|τ 〉c]1/2
(2)

= e−iHs(τ−τ0)|ψ(τ0)〉s. (3)

This remarkable result rests on the fact that the Universe is in
a stationary, maximally entangled state, and that there are no
interactions between the clock and system [6]. This process
is a form of gate teleportation from the clock to the system
[14,15]. We note that global stationarity leads to problems if a
clock is conditioned upon more than once [4, Ch. 13], a point
we discuss at the end.

The PaW approach outlined above is Hamiltonian centric
in that it starts by defining Hamiltonians for the clock and for
the system. Page and Wootters then require the joint state to be
an eigenstate of the total Hamiltonian H. From there, unitary
evolution of the system in clock time follows, as in Eq. (3).

The Hamiltonian-centric approach is conceptually unsat-
isfying for systems which already satisfy any Hamiltonian
constraints. These include Chern–Simons theories in which
the Hamiltonian vanishes on physical states—a consequence of
the Chern–Simons Lagrangian being linear in time derivatives
[11,16].

In the context of anyons, it is more natural to adopt a state-
centric approach in which we start by defining the maximally
entangled clock-system state |�0〉cs as well as a canonically
ordered set of generalized measurement (POVMs) outcomes
on the clock.

Entanglement is also a requirement in the PaW model
and is not guaranteed by the Hamiltonian constraint alone.
In fact, one must choose a specific type of entangled state in
order to recover unitary dynamics [8]. Furthermore, whereas
in the PaW model the ordering is implicit in the choice of a
clock Hamiltonian, in our state-centric approach we impose
it explicitly. One convenient way to describe the ordering is
to introduce an effective clock Hamiltonian Hc that rotates
sequentially between the POVM outcomes. One of the POVM
outcomes, |τ0〉c, on the clock subspace is nominated as the
clock reference state (i.e., midnight), from which the clock
“evolves” in the manner of Eq. (1). We then find an effective
Hamiltonian Hs for the system partition such that the resulting
state after the measurement, Eq. (2), can be obtained from the
initial state |ψ(τ0)〉s by evolving it in clock time, as in Eq. (3).

To exemplify this construction we consider a clock and
a system each consisting of a single qubit, prepared in a
maximally entangled Bell state,

|�0〉cs := 1√
2

(|−+〉 − |+−〉)cs, (4)

where |±〉 are the eigenstates of Pauli X.
In line with the spin-j example in the original PaW paper

[6] we restrict ourselves to clock states on the Bloch sphere’s
equator (x-y plane), and choose |τ0〉c = |+〉c. Subsequent
clock states are defined by rotations around the z axis,

|τ 〉c := R(c)
z [2π (τ − τ0)]|+〉c, (5)

where τ − τ0 = T/Nc with T ∈ {0, . . . ,Nc − 1} enumerates
the Nc “ticks” of the clock, and Rz(φ) ≡ exp(iφZ/2). To
connect with PaW, we observe that this clock time is generated

by Hc = −πZc, so that the Nc clock states are equally spaced
around the Bloch equator, separated by the time interval �τ =
1/Nc. We note that if Nc is larger than the clock Hilbert space,
then the POVM outcomes are not mutually orthogonal.

Conditioning the global state, Eq. (4), on the clock state |τ 〉c

gives the state of the system at clock time τ :

|ψ(τ )〉s = R(s)
z [2π (τ − τ0)]|−〉s. (6)

By noting that |ψ(τ0)〉s = |−〉s, Eq. (6) exactly corresponds
to unitary evolution in clock time, Eq. (3), generated by an
effective system Hamiltonian Hs = −πZs. The state |�0〉cs is
an eigenstate of the total Hamiltonian, H = Hc + Hs. In PaW
this was a requirement; here it is merely a consequence of our
choice of initial state and clock measurements. We emphasize
that Hc and Hs are not fundamental but emerge from the
structure of |�0〉cs and the ordered clock POVM outcomes.

The state-centric approach is applicable to the anyonic
Hilbert space in Chern–Simons theories. Physical states can be
prepared by anyon pair-production from the vacuum, braiding,
and fusion [11].

We describe anyonic relational time explicitly in the context
of the SU(2)2 theory. It deals with three particle species, labeled
1, σ , ψ , where 1 is the vacuum (spin-0 irreducible represen-
tation, or irrep), ψ is a neutral fermion (spin-1 irrep), and σ

is the only non-Abelian anyon (spin- 1
2 irrep). Measurement of

the total topological charge of two σ may have more than one
possible outcome, as given by the fusion rules:

σ × σ → 1 + ψ, σ × ψ → σ, ψ × ψ → 1. (7)

The nondeterministic σ × σ fusion rule is what allows a
collection of three or more non-Abelian anyons to display
nontrivial topological degrees of freedom, even when the
underlying manifold is contractible [17,18]. These topological
degrees of freedom can be used to define qubits, thus enabling
clocks in the anyonic PaW universe.

Consider three σ anyons and the associated fusion Hilbert
space.1 The order in which we choose to fuse them consec-
utively defines a basis for this Hilbert space. A given state
specifies all intermediate outcomes for that fusion order and is
commonly represented as a labeled tree. We define two possible
bases, the “z” and “x” bases, for fusing three σ as {|1z〉,|ψz〉}
and {|1x〉,|ψx〉}, where

|az :=

σσσ

a
σ

, |ax :=

σσ

a

σ

σ

, (8)

with a ∈ {1,ψ}. We can encode a single qubit in this collec-
tive degree of freedom by identifying the z basis with the

1Strictly speaking, due to superselection rules, the Hilbert space
is defined by the anyons and their total charge, whatever it may be.
The SU(2)2 fusion rules constrain the total charge of three σ to be
σ , so we speak of three, rather than four σ as comprising our qubit.
In general, for n anyons in any SU(2)k model, each local subsystem
needs to be postselected on a particular outcome of measurement
on the total charge of its anyons such that there are still degrees of
freedom associated with intermediate fusion outcomes.
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FIG. 1. Three σSU(2)2 anyons with total charge σ encode a
logical qubit. Pauli measurements, X, Y, or Z, on the qubit are
implemented by fusing a pair of anyons (i.e., measuring their total
charge), indicated by the colored ellipses. Fusion of two σ yields 1
or ψ , corresponding to a projective measurement in one of the Pauli
bases {X,Y,Z}, depending on which pair is fused. Braiding among
the three anyons effects π

2 rotations,
√

X,
√

Y,
√

Z, around the three

axes.
√

X,
√

Y,
√

Z are equivalent to swapping anyons (2,3), (1,3),
and (1,2), respectively.

computational basis, |0〉 = |1z〉, |1〉 = |ψz〉. We also define
|+〉 = |1x〉, |−〉 = |ψx〉, so that |±〉 = (|0〉 ± |1〉)/√2.

The transformation between the x and z bases is given by
F, whose elements are determined by the fusion rules

F = 1√
2

[ 1 ψ

1 1 1
ψ 1 −1

]
. (9)

Exchanging two σ is trivial if their total charge is 1 and
introduces a π

2 phase if their charge is ψ . This is encoded the
exchange matrix

Ri,j =
[ 1 ψ

1 1 0
ψ 0 i

]
, (10)

given in a basis where the ith and j th σ share a fusion channel.2

The “y” basis, {|±i〉}, can be defined in terms of the z basis
and braids on anyons 2 and 3 as

|+i〉 := e+iπ/4B2,3|1〉, |−i〉 := e−iπ/4B2,3|0〉, (11)

where B2,3 is given by B2,3 = F† R2,3F.
Qubit measurement is effected by pair-wise anyon fusion

(i.e., detecting the total charge of a pair, yielding 1 or ψ),
indicated by colored ellipses in Fig. 1 (top left). The three
possible ways to fuse pairs of the σ anyons correspond to
measurements in the three Pauli bases X, Y, or Z.

The braid group of three σ anyons is generated by R1,2 and
B2,3, so it follows that the braid group of σ in the SU(2)2 model
is isomorphic to the one-qubit Clifford group [19]. Because
the Clifford group (braiding), normalizes Pauli measurements

2Note that the SU(2)2 model with the same F matrix but with R→iR†

gives the Ising anyon model.

(fusion), braiding in this model does not give access to any
additional measurement bases. Thus, projective measurement
outcomes on a single, anyonic SU(2)2 qubit are restricted to one
of the six states, |0〉, |1〉, |±〉, or |±i〉, of which only four are on
the Bloch equator. We identify these Nc = 4 possible times as
follows: |+〉c ↔|T = 0〉c, |+i〉c ↔|T = 1〉c, |−〉c ↔|T = 2〉c,
and |−i〉c ↔|T = 3〉c, in cyclic order around the Bloch equator.
Below, we discuss how this further in the context of POVM
measurements.

To define relational time in this anyonic Universe, we
require (i) at least two subsystems in the Hilbert space, (ii)
entanglement between the subsystems, and (iii) a POVM on
the clock subsystem.

A minimal anyonic model with two two-dimensional sub-
spaces consists of six σ particles with total charge 1 [20]. We
define the computational basis as

σσ

a

σ

σ

σσσ

a

σ
|az, az cs :=

c s

, a, a ∈ { , ψ} (12)

Entanglement requires braiding between the two subsystems.
A maximally entangled state is produced when pairs of anyons
created from the vacuum are shared between the two subsys-
tems [21] as represented by the following tree:

σ

σ

σ

σ

c s

σ σσσ

= R3, 4 B4, 5 B2, 3

σσσ

σ

σσσ

σ

c s

≡ 1√
2
(|+, 0〉 + |−, 1〉)cs := |Ψ0〉cs .

(13)

To illustrate a possible clock POVM outcome: the braid B2,3

effects a Hadamard gate on the clock [as in Eq. (11)], and a
measurement outcome |1〉1,2 would project the clock onto state
the |+i〉c ↔ |T = 1〉c, in accordance with the bottom left panel
of Fig. 1.

A POVM on the clock can be modelled by coupling the
clock to k ancilla, followed by projective measurements on
the clock and ancilla, as shown in Fig. 2. We initialize the
system (s) and clock (c) qubits in a Bell state, Eq. (13),
and introduce k ancillary qubits. A unitary U, together with
projective measurements on the clock and ancilla, yields a
POVM on the clock qubit with Nc � 2k+1 outcomes. In a
computationally universal model, for which any unitary U is
physically accessible, the inequality can be saturated, so that
the temporal increment of the clock, �τ = 2−(k+1), can be
made arbitrarily fine by increasing k.

The SU(2)2 braid group, however, is isomorphic to the
Clifford group, which is not universal. In this case, the set
of unitary gates generated by the braid group is finite. The
maximum number of POVM outcomes, Nc, on the clock is
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|Ψ0〉cs
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·

|0〉k

U

|ψ(τ)〉s
→zc

0
1z

→z1
0
1z

··
·

→zk
0
1z

→ τ = τ(zc, z1, . . . , zk)

∈ {0, 1/Nc, . . . , 1 − 1/Nc}

FIG. 2. System qubit s and clock qubit c are prepared in a Bell
state |�0〉cs. To implement a POVM on the clock, the clock is coupled
to a collection of k ancilla via a unitary gate U. Depending on the
universality class of the model, U yields a POVM on the clock qubit
with Nc � 2k+1 possible outcomes, which are in direct correspon-
dence with the set of Z-measurement outcomes, {zc,z1, . . . ,zk}, on
the clock and ancilla qubits. An ordering of those outcomes gives the
clock time τ ∈ {0,1, . . . ,Nc − 1}.

thus bounded: Nc � Mc for some Mc which depends on the
braid group. Time in such a Universe is a discrete quantity,
indivisible into intervals smaller than 1/Mc, regardless of the
number of the ancilla used to effect the clock POVM.

We note that Mc is independent of the number of ancillae
used. If we consider the joint clock-plus-ancillae system as a
generalized clock, the input state in Fig. 2 is generic: “c” simply
labels the degree of freedom that is maximally entangled with
the system. Because the SU(2)2 braid group is not universal,
and braiding on the clock qubit is sufficient to generate all
projective measurements in the Pauli basis, the inclusion of
ancillae cannot increase the number of accessible POVM
outcomes and therefore does not change the number of possible
times measurable on the clock.

The construction here extends to other non-Abelian anyonic
models. The Universe is modelled as a collection of N anyons
with trivial total charge. We isolate a subset of the fusion
Hilbert space H having n < N degrees of freedom. These
degrees of freedom are to be interpreted as qudits, with d

depending on the number of possible fusion outcomes. H is
split into two noninteracting subsystems—the “clock” and the
“system”—such that nc “qudits” go to the clock while the
remaining ns go to the system. We do this in a way that results
in an entangled state of the two subsystems. Clock time is
given by an ordered set of POVM outcomes, where the POVM
is implemented by using k ancillary qudits. In nonuniversal
models, the minimum temporal interval, �τmin � 1/Mc, is
determined by the braid group and the number of clock qudits,
independent of the number of ancilla.

The connection between the computational universality
class of the clock system and the discreteness of relational
time is a key result of this paper. For example, the braid

group of SU(2)4 is not computationally universal, so an SU(2)4
Universe would also exhibit discrete relational time [although
we note that SU(2)4 anyonic models are capable of universal
computation under postselection and feedforward [22], which
is not suitable for defining relational time].

In light of this observation, we briefly speculate on several
possible research directions. First, we conjecture that such
discrete relational time is generically present in nonuniversal
theories. An example is the permutation quantum computation
(PQC) model of Marzuoli and Rasetti [23,24], in which
braiding of anyons is replaced by swap gates on spin- 1

2 particles
with total spin S = 0, leaving the total spin invariant.

Second, it is known that nonlocal, multipartite states may
admit a local hidden variable theory when the set of allowed
measurements is constrained [25]. For instance, CHSH in-
equalities cannot be violated with only Pauli measurements [as
in the SU(2)2 anyon model we have considered] [18,21,25–27].
In an SU(2)2 Universe at least five σ pairs (i.e., four qubits)
shared between two parties are needed to show some non-
locality [21]. Thus, nonlocality in nonuniversal measurement
models is somewhat limited and we speculate that this might
be a generic feature of discrete time theories.

Third, in the PaW model one cannot condition more than
once on a clock [4, Ch. 13]. In particular, correlations between
clock and system are lost. To allow for multitime measurements
on the same clock in the context of PaW, Gambini et al. [28]
(GPPT) suggest constructing a stationary “quantum clock”
which is conditioned on a dynamical classical variable, simi-
larly to the way a single system is conditioned on a dynamical
clock in the PaW model. In our context, one could distribute a
second Bell pair |�0〉cs between clock and system and simply
repeat the protocol but with the updated basis of the clock
rotated so that |τ0〉c → |τm〉c.

We have presented a conditional probability approach to
relational time where qudits are defined in an anyonic fusion
space, and where POVMs are generated by braiding and fusion.
Our state-centric reformulation of the Page and Wootters
approach is directly applicable to anyonic models which arise
in Chern–Simons theories, for which physical states are in the
nullspace of the Hamiltonian and thus embody the problem of
time. We have shown that SU(2)k theories which are nonuni-
versal for computation (i.e., k = 2 or k = 4) are only capable
of supporting discrete relational time, which may have impli-
cations for other models that have discrete, emergent time.
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