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Comment on “Nonuniqueness of algebraic first-order density-matrix functionals”
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Wang and Knowles (WK) [Phys. Rev. A 92, 012520 (2015)] have given a counterexample to the conventional
in reduced density-matrix functional theory representation of the second-order reduced density matrix (2RDM)
�ij,kl in the basis of the natural orbitals as a function �ij,kl(n) of the orbital occupation numbers (ONs) ni . The
observed nonuniqueness of �ij,kl for prototype systems of different symmetry has been interpreted as the inherent
inability of ON functions to reproduce the 2RDM, due to the insufficient information contained in the 1RDM
spectrum. In this Comment, it is argued that, rather than totally invalidating �ij,kl(n), the WK example exposes its
symmetry dependence which, as well as the previously established analogous dependence in density functional
theory, is demonstrated with a general formulation based on the Levy constrained search.
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In their recent work [1], Wang and Knowles (WK) have
given a counterexample to a conventional representation of
the electronic energy E in reduced density-matrix functional
theory (RDMFT) [2–8]

E =
∑

i

nihii + 1

2

∑
ijkl

�ij,kl(n)〈ij |kl〉. (1)

Here, hii is the diagonal matrix element of the one-electron
operator in the basis of the natural orbitals (NOs) and ni is
the occupation number (ON) of the NO χi , with the former
being the eigenvalue and the latter being the eigenfunction of
the first-order reduced density matrix (1RDM) γ ,

γ (x,x′) =
∑

i

niχ
∗
i (x)χi(x′). (2)

Here, x stands for both spatial r and the spin s coordinates.
�ij,kl in (1) is the second-order RDM (2RDM) in the NO
representation and for the present discussion it is essential,
that �ij,kl is conventionally expressed in RDMFT as a function
�ij,kl(n) of the ONs. To provide a counterexample to (1), WK
have compared the ONs ni and 2RDMs �ij,kl obtained in the
minimal basis set for the square-planar H4 (I) and the H2 +
2H (II) systems from the corresponding ground-state wave
functions. It has been shown that, for certain combinations
of the length of the square side of I and the bond length of
the H2 molecule in II, these systems possess the same ONs ni ,
while their �ijkl are distinctly different.

In this Comment it is argued that, rather than invalidating
the conventional RDMFT energy expression (1), the example
given in [1] exposes the dependence of the function �ij,kl(n)
on the symmetry of the generic wave function. The symmetry
dependence of functionals is a well-known feature of density
functional theory (DFT) [9,10]. As was concluded in the
celebrated Parr-Yang textbook [11], “ …there is the unhappy
fact that the Hohenberg-Kohn functional F [ρ] will in general
differ from symmetry to symmetry” (ρ is the electron density
and the definition of F [ρ] will be given below). Note that in
DFT it was exclusively considered the dependence FA[ρ] of

F [ρ] on the irreducible representations (irreps)Aof the generic
ground- and lowest excited-state wave functions �A belonging
to the same symmetry group S of a system.

This consideration can be extended to RDMFT and to
different symmetry groups. To accomplish this for a system
specified with the external potential vext(x), one can apply the
Levy constrained search [5] over all symmetry groups S and,
within each group, over all its irreps A(S). Within this search,
the ground-state energy E0 is found as the double minimum

E0 = minS{minA(S){EA(S)}} (3)

over S and A(S) of the energies EA(S). Each EA(S) is determined
through the following minimization:

EA(S) = minμA(S)

{
FA(S)[μA(S)] +

∫
vext(x)ρA(S)(x)dx

}
,

(4)

which involves the above-mentioned Hohenberg-Konh (HK)
functional FA(S)[μA(S)]

FA(S)[μA(S)] = min�A(S)→μA(S){〈�A(S)|T̂ + V̂ee|�A(S)〉}. (5)

In (4) and (5) μA(S) is the electron density in the case of DFT,
μA(S) = ρA(S), and it is the 1RDM in the case of RDMFT,
μA(S) = γ A(S). In the latter case ρA(S) in (4) is the diagonal
part of γ A(S), ρA(S)(x) = γ A(S)(x,x). The function μA(S) is
generated from the wave function �A(S) belonging to the irrep
A of the symmetry group S.

Equations (3) and (4) show that the ground-state energy
E0 is determined with the lowest EA(S), while other EA(S)

represent, in agreement with [9,10], the energies of the lowest
excited states of the symmetries A(S). The energies EA(S) are
obtained with the functionals FA(S) of (5) which are, in general,
different for the different combined symmetry indices A(S). In
the case of RDMFT the potential parts of the symmetry-specific
functionals FA(S)[γ A(S)] determine the functions �

A(S)
ij,kl (n)

1

2

∑
ijkl

�
A(S)
ij,kl (n)〈ij |kl〉A(S) = 〈

�A(S)
m

∣∣V̂ee

∣∣�A(S)
m

〉
, (6)
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which, in general, are also different for different A(S). In
(6) �A(S)

m minimizes (5), while ni and χi in the two-electron
integrals are the eigenvalues and eigenfunctions of the corre-
sponding γ A(S).

Based on (6), one can argue that, rather than totally in-
validating (1), WK have exposed the dependence of �

A(S)
ij,kl (n)

of �ij,kl(n) on the symmetry A(S). Let us assume, for a
certainty, that four atoms H of II arrange a trapezoidal structure
with the shorter of two parallel sides being the H2 bond, while
the lengths of other sides of the trapezoid tend to infinity.
The ground state of this system belongs to the symmetry
1A1(C2v), while the symmetry of the ground state of I is
1B1g(D4h) [12]. Then, the fact that WK have obtained different
2RDMs for the same ONs of I and II can be interpreted as the

explicit construction of the different functions �
1B1g(D4h)
ij,kl (n)

and �
1A1(C2v)
ij,kl (n) for the different symmetries 1B1g(D4h) and

1A1(C2v), respectively.
Note that the interpretation of the considered example in [1]

appears to contradict the very idea of a reduced density-matrix
functional. Indeed, according to WK, “ … the information
of the one-matrix spectrum is not enough to fix the wave
function. Functional based on the one-matrix eigenvalues thus
cannot generate a N -representable two-matrix for the square
H4 system”.

True, the one-electron 1RDM by itself and, especially, its
spectrum contain much less information than the total N -
electron wave function. But, from this does not automatically
follow that a function of the ONs cannot represent 2RDM. To
the contrary, the use of the reduced quantities with a limited
information content as arguments of functions and functionals
is a trademark of RDMFT. Then, the missing information is

supplied with the adequate functional dependence on these
arguments. For instance, the present functions �

A(S)
ij,kl (n) can

have a complicated, highly nonlinear form to adequately
represent 2RDMs for different symmetries.

Unlike the original interpretation, the present interpretation
of the results of [1] as a manifestation of the symmetry
dependence �

A(S)
ij,kl (n) is based on the general formulation

(3)–(6), which includes the previously established symmetry
dependence of the DFT functional F [ρ] [9,10] as a special
case. As the practice of RDMFT shows [8,13–17], when de-
veloping approximate two-index JK- or JKL-type functionals,
one can, usually, neglect the symmetry dependence, applying
symmetry-nonspecific approximations to systems of various
symmetries. However, the present interpretation of WK results
of [1] warns that for certain relatively high symmetries, such
as D4h, the development of the specialized symmetry-specific
JK- or JKL-type RDMFT functionals might be necessary.

In particular, the system II can be considered as a combi-
nation of two two-electron systems, the H2 molecules, one
of which is dissociated. In this case, to construct �ij,kl(n)
of a RDMFT functional for the 1A1(C2v) symmetry, it is
natural to use the square-root ON dependence

√
npnq of

the paradigmatic exact two-electron RDMFT functional of
Löwdin and Shull [2]. In its turn, for the system I a proper
approximate RDMFT functional for the 1B1g(D4h) symmetry
can use a more complicated �ij,kl(n) dependence, such as that
of the Padé approximant type employed in Ref. [15], in order
to construct a JK-type functional. With such a dependence, a
successful JK or JKL functional would not only approximate
the corresponding elements of the generic 2RDM, but it would
also effectively absorb the contributions from non-JK (or
non-JKL) 2RDM elements.
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