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Controlling the stability of nonlinear optical modes via electromagnetically induced transparency
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We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically
induced transparency (EIT). The system we consider is a resonant atomic ensemble having � configuration.
We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a
saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a
random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics,
including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole
bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase
transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by
controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons
can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided
by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others
entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton
solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition,
we present the possibility of using the random potential to stabilize various solitons and vortices.
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I. INTRODUCTION

Spatial optical solitons are special wave packets resulting
from the interaction between diffraction and nonlinearity. Their
rich nonlinear physics and important practical applications
[1–5] have attracted a lot of attention among researchers.
However, in order to avoid significant optical absorption, a
very high light intensity is used to obtain enough nonlinearity
for balancing the diffraction effect via passive optical media.

Recently, there has been much interest in highly resonant
media via electromagnetically induced transparency (EIT)
[6], in which many striking characteristics—including the
suppression of optical absorption [7], a large reduction of group
velocity [8], a giant enhancement of Kerr nonlinearity with
very low power light field [9], and many adjustable parameters
such as field intensity, detuning, and atomic density—have
been discussed. Thus, much research—including ultraslow
optical transmission and storage [10,11], phase gates [12],
optical clocks [13], efficient four-wave mixing [14], bistable
states [15], and high-dimensional spatiotemporal optical soli-
tons [16]—has been reported. In addition, due to the similarity
between the light field transmission equation and the quantum
Schrödinger equation, the EIT system is also used to simulate
some quantum systems [17], such as the Anderson model
[18,19], the parity-time symmetrical model [20–24], and the
Thirring model [25].

There have been discussions of the (2+1)-dimensional
[(2+1)D ] saturable nonlinear Schrödinger equation (SNLSE)
[26,27] (or the cubic-quintic nonlinear Schrödinger equation
[28]) and its related soliton solutions in coherent atomic media.
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Bright ground solitons, vortices [29,30], and double-hump
solitons (the amplitude functions of which cross zero once) [31]
have been found in the (2+1)D SNLSE, and lattice solitons
[32] and discrete solitons [33] have also been found in the
SNLSE in which there was the periodical modulation potential
in the denominator of the saturable nonlinear term. However,
the linear-type multipole solitons, the ring-type multipole
solitons, and the higher-order defect mode are not found.
Except for the bright ground solitons and lattice solitons [32],
all others solitons are unstable. Thus, it is important to generate
and stabilize these high-dimensional nonlinear solutions for the
SNLSE.

In this paper, we propose a scheme to generate and stabilize
high-dimensional spatial solitons via EIT. The system we
consider is a cold, resonant atomic scheme having �-type level
configuration and interacting with a probe, control, far-detuned
laser, and magnetic field. The resonant atomic scheme having
�-type level configuration and interacting with a probe and
control field has been used to construct the SNLSE [26],
but we introduce the potential generated by the ac Stark and
Zeeman effects for generating stable and diverse solitons. We
show that under some conditions the envelope equation of
the probe field can be reduced into a (2+1)D SNLSE with
the trapping potential formed by the far-detuned static laser
field and the random magnetic field. A similar nonlinearity has
been studied in [32,34–38] based on the biased photorefractive
crystal [39]. Lattice solitons [32], defect solitons [35,37],
interface kink solitons [36], and surface lattice solitons [38]
have been discussed. However, all the optical lattice potentials
are in the denominator of the saturable nonlinear term except
for the model in [36]. Additionally, except for the model in
[32], all the models discussed are in the (1+1) dimension.
However, in our model, not only are various soliton solutions

2469-9926/2018/97(2)/023844(14) 023844-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.023844&domain=pdf&date_stamp=2018-02-27
https://doi.org/10.1103/PhysRevA.97.023844


KUN ZHANG, YI-ZENG LIANG, JI LIN, AND HUI-JUN LI PHYSICAL REVIEW A 97, 023844 (2018)

FIG. 1. (a) Excitation scheme of the lifetime broadened three-
state atomic system interacting with a weak probe field with the half
Rabi frequency �p , and a strong continuous-wave control field with
the half Rabi frequency �c. (b) Possible experimental arrangement
of the laser and magnetic fields.

such as ground solitons, multipole solitons, higher-order defect
modes, and vortices found, but also they are stable. In addition,
we can control the phase transition between bright solitons
and higher-order defect modes by the nonlinear coefficient
or the intensity of the trapping potential. We demonstrate
that the system can be used to not only find and stabilize
various high-dimensional soliton solutions but also display the
feasibility of the phase transition from the bright solitons to
the higher-order defect modes.

The paper is arranged as follows. In the next section, we
give an introduction of the model under study. In Sec. III, we
derive the nonlinear equations for the envelope of the probe
field, which can be reduced to a (2+1)D SNLSE. In Sec. IV,
the properties and stability of various solitons are shown. In
the final section, we summarize the main results obtained in
our paper.

II. MODEL AND EQUATIONS OF MOTION

A. Model

We consider a lifetime-broadened atomic system with
a �-type energy-level configuration, as shown in Fig. 1.
A weak probe field Ep = exEp(x,y,z,t) exp [i(kpz − ωpt)]
+ c.c. and a strong control field Ec = exEc exp[i(−kcz −
ωct)] + c.c. interact resonantly with levels |1〉 → |3〉 and
|2〉 → |3〉, respectively. Here ej , kj , and Ej are, respectively,
the polarization unit vector in the j th direction, the wave
number, and the envelope of the j th field. The levels |l〉
(l = 1,2,3) together with Ep and Ec constitute a well-known
�-type EIT core in which the absorption of the probe field is
suppressed due to the quantum interference effect induced by
the control field.

Furthermore, we assume that a far-detuned (Stark) optical
lattice field

EStark = ey

√
2E0(x,y) cos(ωLt) (1)

is applied to the system, where E0 and ωL are, respectively, the
field amplitude and angular frequency. Due to the existence
of EStark, a small Stark shift of level Ej to the state |j 〉
occurs in the transverse direction, i.e., Ej → Ej + �Ej with
�Ej = − 1

2αj 〈E2
Stark〉t = − 1

2αjE
2
0 (x,y), where αj is the scalar

polarizability of the level |j 〉, and 〈· · · 〉t denotes the time
average in an oscillating cycle.

In addition, we assume that another random weak magnetic
field

B(x,y) = eyB1(x,y) (2)

is added to the system, where B1(x,y) is a random distribution
magnetic field along the transverse direction, which will
contribute to a small random Zeeman level shift �EZeeman =
μBg

j

F m
j

F B1(x,y) = μjB1(x,y). Such a random magnetic field
can be realized by adding a demagnetized neodymium-iron-
boron ferromagnet [40].

As will be shown below, the Stark shift contributed by
the far-detuned Stark field EStark given by Eq. (1) and the
Zeeman level shift contributed by the magnetic field B given
by Eq. (2) will provide the refractive index to the probe filed.
Additionally, the form of the refractive index will be decided
by the spatial distribution of the Stark field and magnetic field.
In Fig. 1(a), �p = (ex · p13)Ep/h̄ and �c = (ex · p23)Ec/h̄

are, respectively, the half Rabi frequencies of the probe and
control fields, where pij signifies the electric dipole matrix
element of the transition from state |i〉 to |j 〉, and �3 and
�2 are, respectively, one- and two-photon detunings in the
relevant transitions. Figure 1(b) shows a possible experimental
arrangement.

B. Maxwell-Schrödinger equations

Under electric dipole and rotating-wave approximations,
the Hamiltonian of the system in the interaction picture
reads Ĥint = −h̄

∑3
j=1 �′

j |j 〉〈j | − h̄(�p|3〉〈1| + �c|3〉〈2| +
H.c.), where H.c. denotes the Hermitian conjugate, and

�′
j = �j + αj

2h̄
|E0(x,y)|2 − μj

h̄
B1(x,y). (3)

The motion of atoms interacting with the light field is described
by the Schrödinger equation

(
i

∂

∂t
+ d ′

2

)
a2 + �∗

ca3 = 0, (4a)

(
i

∂

∂t
+ d ′

3

)
a3 + �pa1 + �ca2 = 0, (4b)

with
∑3

j=1 |aj |2 = 1 and d ′
j = �′

j + iγj = dj + αj

2h̄
|E0(x,y)|2−

μj

h̄
B1(x,y), where aj and γj are the probability amplitude and

the decay rate of the states |j 〉 (j = 2, 3).
Under a slowly varying envelope approximation, the

Maxwell equation of the probe field is reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p + κ13a3a

∗
1 = 0,

(5)

where κ13 = Nωp|ex · p13|2/(2ε0h̄c) with N being the atomic
concentration.

III. (2+1)D NONLINEAR ENVELOPE EQUATION
FOR THE PROBE FIELD

We focus on the steady-state regime of the system, in which
time-derivative terms in Eqs. (4) and (5) can be neglected.
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Such a regime can be realized by using the probe field with
a large time length (i.e., |dj |τ0 � 1, where τ0 is the pulse
length of the probe field) and hence the response of atoms
can follow the variation of the probe field adiabatically. The
solutions of Eq. (4) are acquired as a3 = d ′

2�pa1/D
′ and

a2 = −�∗
c�pa1/D

′, with |a1|2 = 1
1+W ′|�p |2 , W ′ = (|�c|2 +

|d ′
2|2)/|D′|2, and D′ = |�c|2 − d ′

2d
′
3.

In general, we consider that the probe field is weaker than
the control field, and the Stark and Zeeman energy shifts are
smaller than the detuning �j . After some simple calculations,
and neglecting the higher-order terms, Eq. (5) is reduced into
the (2+1)D equation with saturable nonlinearity and trapping
potential:

i
∂�p

∂z
+ c

2ωp

∇2
⊥�p + κ13d2

D

�p

1 + W |�p|2
+α|E0(x,y)|2�p + βB1(x,y)�p = 0, (6)

with α = κ13[α2D + d2(α2d3 + α3d2)]/(2h̄D2), β = κ13

[μ2D + d2(μ2d3 + μ3d2)]/(h̄D2), W= (|�c|2 + |d2|2)/|D|2,
and D = |�c|2 − d2d3. Equation (6) can be written into the
dimensionless form

i
∂u

∂s
+

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u + c1u

1 + c2|u|2
+ c3|v|2u + c4wu = 0, (7)

where s = z/Ldiff , (ξ,η) = (x,y)/R⊥, u = �p/U0, v =
E0(x,y)/V0, and w = B1(x,y)/W0, with Ldiff (≡ 2R2

⊥ωp/c),
R⊥, U0, V0, and W0 being, respectively, characteristic diffrac-
tion length, beam radius, half Rabi frequency of the probe
field, intensity of the far-detuned (Stark) optical lattice field,
and intensity of the magnetic field. The coefficients in Eq. (7)
are given by c1 = κ13d2Ldiff/D, c2 = WU 2

0 , c3 = αLdiffV
2

0 ,
and c4 = βLdiffW0.

For a practical example, we select the D1 line transition
5 2S1/2 → 5 2P1/2 of 87Rb atoms. The levels of the system
are taken as |1〉 = |5S1/2,F = 1,mF = −1〉, |2〉 = |5S1/2,F =
2,mF = −1〉, |3〉 = |5P1/2,F = 2,mF = −2〉. The parame-
ters are γ1 = �1 = 0, 2γ2 = 300 s−1, 2γ3 = 3.6 × 107 s−1,
ωp = 2.37 × 1015 s−1, and Rx = 2.52 × 10−3 cm [41].
According to the formulas below Eq. (7), and tak-
ing �c = 6.0 × 107 s−1, κ13 = 1.0 × 1011 cm−1 s−1, �1 =
0, �2 = 3.6 × 104σ1 s−1, �3 = 1.0 × 109 s−1, U0 = 6.0 ×
107√σ2 s−1, V0 = 380σ3 V/cm, and W0 = 0.09σ4Gs, σ1,2,3,4

are the free parameters that can be adjusted by the detuning
and the field intensity. Substituting these parameters into the
coefficient expressions of the SNLSE (7), we can obtain the
typical diffraction length Ldiff = 1.0 cm, and

c1/σ1 = 1.0 + 0.01i, c2/σ2 = 1.0, (8a)

c3/σ3 = 1.0 + 0.001i, c4/σ4 = 1.0 + 0.001i. (8b)

According to the above results, the imaginary parts of
σi (i = 1–4) can be neglected. Therefore, Eq. (7) can be written
as

i
∂u

∂s
+

(
∂2

∂ξ 2
+ ∂2

∂η2

)
u + σ1u

1 + σ2|u|2
+ σ3|v|2u + σ4wu = 0, (9)

FIG. 2. Curves of coefficients σi (i = 1 to 4) with the detuning
�2/�

′
2. The parameters are shown as above, and �′

2 = 3.6 × 104 s−1.

where the size and sign of σ1, σ2, σ3, and σ4 can be controlled
by �2, U0, V0, and W0, respectively. From the coefficient
expressions below Eq. (6), we find that σ1−4 relate to �2, but
the effect of �2 on σ2,3,4 can be ignored as shown in Fig. 2.
Thus, these coefficients can be controlled individually by the
system parameters. Thus, we obtain the (2+1)D SNLSE (9)
with the trapping potential, and the nonlinear coefficient and
the intensity of the trapping potential can be adjusted at will.

IV. SOLITON SOLUTIONS AND THEIR PROPERTIES

In this section, we discuss the soliton solutions of Eq. (9),
their properties, and their stability. First, we assume there is
the plane-wave solution u = ψ0 exp (iβs) for Eq. (9); then we
obtain

u0 =
√

σ1 − β

βσ2
, (10)

where we take σ3 = σ4 = 0. According to Eq. (10), we may
find the soliton with uniform background by taking σ1/β � 1
when βσ2 > 0.

In the linear case, we suppose u = ψ(ξ,η) exp (iλ′s), and
Eq. (9) becomes the eigenvalue problem[(

∂2

∂ξ 2
+ ∂2

∂η2

)
+ σ3|v|2

]
ψ = λ′ψ, (11)

where we have taken σ1 = σ4 = 0. After taking |v|2 = e− ξ2+η2

25 ,
we obtain the curves of eigenvalue spectrums as a function
of σ3 shown in Fig. 15. In Fig. 15(a), the shaded regions
denote the spectra for continuous eigenvalues. And with the
changing of σ3, we plot 12 spectrum lines l1–l9 and l′1–l′3,
their eigenfunctions for discrete eigenvalues are shown in Figs.
15(b)–15(m).

On the other hand, considering the nonlinear terms and tak-
ing u = ψ(ξ,η) exp (iβs), where β is the propagation constant,
Eq. (9) becomes

−βψ +
(

∂2

∂ξ 2
+ ∂2

∂η2

)
ψ + σ1ψ

1 + σ2|ψ |2
+ σ3|v|2ψ + σ4wψ = 0. (12)

Now, we consider a rough approximation; that is, substituting
Eq. (11) into Eq. (12), we obtain

λψ − βψ + σ1ψ

1 + σ2|ψ |2 = 0, (13)
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FIG. 3. (a) Existence intervals of var-
ious solitons as a function of σ1 and σ3.
(b) Existence intervals of various solitons
as a function of β and σ3. (c) Stability
intervals of various solitons shown in panel
(a) as a function of σ1 and σ3. In panel (a),
the different color shaded regions are used
to distinguish the types of nonlinear modes.
Here, we use the numbers 1–20 and 10′–12′

to denote the types of nonlinear modes. For
example, the number 1 in the interval of
σ1 < 0.1 and 10 in the interval of σ1 > 0.1
denote the bright ground soliton and the
bright soliton with the uniform background
in the red region, respectively. There are
various coexisting nonlinear modes in the
gray shaded regions. In panel (b), the same
numbers 1–20 and 10′–12′ are used to
denote the same type of nonlinear modes
as in panel (a).

where σ4 = 0, and then

β − λ = σ1

1 + σ2|ψ |2 . (14)

From this formula, we find the existing region of soliton
solutions:

σ1 > β − λ > 0,or β < σ1 + λ,if β > λ, (15a)

σ1 < β − λ < 0,or β > σ1 + λ,if β < λ. (15b)

By using the the Newton conjugate gradient method [42],
the profiles and power Pn = ∫ +∞

−∞ |ψ |2dξdη or the renor-

malized power Pn − P 0
n = ∫ +∞

−∞ ||ψ |2 − |ψ0|2|dξdη (mainly
for the soliton with background) of the soliton solutions are
obtained in the following sections, where ψ0 is the amplitude
of the background. Once the soliton solutions ψ are obtained,
one can analyze their stability by considering a perturbation to
them, i.e.,

u = {ψ + ε[w0(ξ,η)e−λs + v∗
0 (ξ,η)e−λ∗s]}eiβs, (16)

where w0 and v0 are the normal modes, and λ is the correspond-
ing eigenvalue of the perturbation. Substituting Eq. (16) into
Eq. (9), one obtains the following linear eigenvalue problem:(

L1 L2

−L∗
2 −L1

)(
w0

v0

)
= iλ

(
w0

v0

)
, (17)

with L1 = −β + ∇2
⊥ + σ1

1+σ2|ψ |2 − σ1|ψ |2
(1+σ2|ψ |2)2 + σ3|v|2 + σ4w

and L2 = − σ1ψ
2

(1+σ2|ψ |2)2 , which can be solved numerically by
using the Fourier collocation method [42]. The soliton solu-
tions ψ are stable if the real parts of all the eigenvalues are

positive or zero. We also prove their stability by the split-step
Fourier propagation method.

A. Soliton solutions with Gaussian potential

We now present the soliton solutions of Eq. (12) with
σ2 = 2 and σ4 = 0, and check their stability by using the
numerical simulations. Here we take the trapping potential

|v|2 = e− ξ2+η2

25 .
We show bright soliton and higher-order defect mode

solutions of Eq. (12) in different parameter intervals of σ1

and σ3. After choosing the propagation constant β = 0.1 or
nonlinear coefficient σ1 = 0.1, we obtain the existence and
stability regions of various solitons, shown in Fig. 3. In
Figs. 3(a) and 3(b), the phase diagrams of soliton types are
shown. The different color shaded regions marked by the
numbers 1–20 and 10′–12′ are used to distinguish the different
types of nonlinear modes. For example, in the red region of
Fig. 3(a), the number 1 in the interval of σ1 < 0.1 and the
number 10 in the interval of σ1 > 0.1 denote the bright ground
soliton shown in Fig. 4(a1) and the bright soliton with the
uniform background shown in Fig. 4(a10), respectively. There
are various coexisting nonlinear modes in the gray shaded
regions. The same numbers 1–20 and 10′–12′ in Fig. 3(b)
denote the same type of nonlinear modes as shown in Fig. 3(a).
The profiles of nonlinear modes will be shown in the following
figures. After taking β = 0.1, σ2 = 2, we show two curves of
phase transition for the types of nonlinear modes σ3 = 0 and
σ1 = 0.1 in Fig. 3(a). However, not all these nonlinear modes
in Fig. 3(a) are stable; we show the stable intervals in Fig. 3(c).
Through Fig. 3(c), we know there are stable regions for every
kind of nonlinear mode in Fig. 3(a).

In Fig. 4, the profiles of solitons are shown. From
Figs. 4(a1)–4(a9), if we fix σ1 = 0.09 (σ1 < β), the number of
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FIG. 4. (a1–a20) Profiles |ψ | of various solitons, with corresponding parameters marked by the dots (or numbers 1–20) in Figs. 3(a) and
3(b). There are the ground solitons, dipole solitons, quadrupole solitons, and multipole solitons with and without uniform background, which
we call the multipole solitons and the multipole defect modes. Insets: Profiles ψ by taking ξ = 0 or the two-dimensional projection.

peaks will increase with σ3. The profiles of the ground soliton,
the dipole soliton, the ring quadrupole soliton, the linear-
quadrupole soliton along the η direction, the ring sextupole
soliton (consisting of six peaks), the dual ring octupole soliton
(consisting of eight peaks), the single ring octupole soliton,
the linear-sextupole soliton along the η direction, and the dual
ring 12-pole soliton (consisting of 12 peaks) are shown in
Figs. 4(a1)–4(a9), respectively. These ring-type solitons were
also called “necklace” solitons [43].

After changing σ1 into 0.6 (σ1 > β), a uniform background
will appear in the soliton profiles. The bright ground soliton

in Fig. 4(a1) becomes the bright soliton with uniform back-
ground as shown in Fig. 4(a10), but the multipole solitons in
Figs. 4(a2)–4(a9) become higher-order defect modes as shown
in Figs. 4(a11)–4(a19), in which there are many peaks, so we
call them the multipole defect modes. By comparing Fig. 4(a3)
with Figs. 4(a12) and 4(a13), we find the ring quadrupole
soliton will become two kinds of defect mode denoted by two
colors. Because the profiles in Figs. 4(a3) and 4(a13) have
similarity except for the uniform background, the same color is
used. After taking σ3 < 0, we find another defect mode shown
in Fig. 4(a20). In general, the bright soliton and dark soliton are
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(c1) (c2) (c3) (c4)

FIG. 5. (a, b) Existence and stability intervals of various uniform ring defect modes as a function of σ1 and σ3, respectively. (c1–c4) Profiles
of various ring solitons, with corresponding parameters marked by the dots in panel (a). There are the single-ring defect modes, the binary-ring
defect modes, the ternary-ring defect modes, and the quaternary-ring defect modes. Insets: Profiles by taking ξ = 0. In panel (a), the numbers
1–4 are used to denote the type of nonlinear modes. In the regions of σ1 < 0.1, all these existence solitons do not have the uniform background.

determined by the nonlinearity of self-focusing or defocusing.
However, the type of soliton is determined by the sign of the
trapping potential in our scheme.

Through the phase diagram shown in Figs. 3(a) and 3(b),
we not only find two distinct phase transition points σ1 = 0.1
between the bright and the defect mode and σ3 = 0 between
two kinds of higher-order modes, but we also define the exis-
tence range of the defect mode. After some further numerical
experiments, we find that the height of the uniform background
will increase with σ1, and the phase transition point σ1 = 0.1
is related to β1, σ1/β = 1 as shown in Eq. (10), which will be
shown in the following figures. From Fig. 3(c), we find that
most of the solitons shown in Figs. 3(a) and 3(b) are stable.
These results for σ3 > 3.25 will also be shown below.

In the same parameter region as in Fig. 3(a), there are other
types of solitons. By further numerical calculation, we find

uniform ring defect modes as shown in Fig. 5 other than the
“necklace-ring” multipole solitons as shown in Fig. 4.

In Fig. 5(a), the phase diagram of the bright soliton and de-
fect mode with different ring numbers are shown. We also prove
that all of the ring bright solitons and the ring defect modes are
stable in some existence regions by Fig. 5(b). In Fig. 5(a), the
numbers 1–4 are used to denote the type of nonlinear mode.
In the regions of σ1 < 0.1, all the existence solitons do not have
the uniform background. From Figs. 5(c1)–5(c4), we show
the single-ring defect mode, the binary-ring defect mode, the
ternary-ring defect mode, and the quaternary-ring defect mode,
in which there are one, two, three, and four extreme value
rings shown by the peak value of these insets, respectively.
Additionally, the number of rings increases with σ3.

The above results illustrate that the profiles of solitons are
related to the parameters σ1, σ3, and β. Through these results

FIG. 6. (a, b) Power and stability curves of three types of the ring defect modes as a function of β. (c1–c3) Profiles of these ring solitons.
The corresponding parameters are also marked by the (yellow) triangles in Fig. 5(a). The inset in panel (a) shows the detail. The insets in panels
(c1)–(c3) show the profiles by taking ξ = 0.
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FIG. 7. (a, b) Renormalized power and stability curves of the ground solitons as a function of σ1. (c) Phase diagram between the ground
soliton without and with the uniform background as a function of β and σ1. The red (blue) region is used to denote the existence regions of
the bright soliton without (with) the uniform background. (d1, d2) Profile of the ground soliton by taking β = 0.12, σ1 = 0.1 and the evolution
results of the ground soliton in the presence of the random perturbation by simulating Eq. (9). (e1, e2) Analogous results as shown in panels
(d1) and (d2) with β = 0.08, σ1 = 0.14. Insets: Profiles by taking ξ = 0.

shown in Fig. 5(a), even if the parameters σ1, σ3, and β are
fixed as marked by the (yellow) triangles, there still exist two
types of solitons. We need to know whether there are others
types of solitons. By numerical search, we find three kinds of
solitons as shown in Fig. 6 when we take σ1 = 0.5 and σ3 =
0.9. Figures 6(a) and 6(b) illustrate the power and stability
curves as a function of the propagation constant β. From the
stability curves, we know that there exist stable solitons in
some regions. From Fig. 6(a), when β = 0.2, the powers of
solitons are approximately equal, but their profiles shown in
Figs. 6(c1)–6(c3) are entirely different.

From the above results, we know that the types of solitons
are diverse. Furthermore, the relationship between the prop-

agation constant β and the phase transition point about σ1

is also worth proving further. We choose the ground soliton
without and with uniform background, the ring bright soliton
and the ring defect mode, the ring multipole bright soliton and
the ring multipole defect mode, and the higher-order defect
mode to discuss their properties and the effect of β on the
phase transition point about σ1.

In Fig. 7, we show the results of the ground soliton without
and with uniform background. After choosing σ3 = 0.2, we
take β = 0.08, 0.10, and 0.12, respectively. The power curves
in Fig. 7(a) and the stability curves in Fig. 7(b) tell us that all
the ground solitons without and with uniform background are
stable. In Fig. 7(c), the phase diagram of the ground soliton is

FIG. 8. (a, b) Renormalized power and stability curves of the uniform ring soliton as a function of σ1. (c) Phase diagram between the uniform
ring bright soliton and the uniform ring defect mode as a function of β and σ1. The red (blue) region is used to denote the existence regions of the
ring bright soliton (the ring defect mode with the uniform background). (d1, d2) Profile of the uniform ring bright soliton by taking β = 0.08,
σ1 = 0.076 and the evolution results of the uniform ring bright soliton in the presence of the random perturbation by simulating Eq. (9). (e1,
e2) Analogous results as shown in panels (d1) and (d2) with β = 0.12, σ1 = 0.26. Insets: Profiles by taking ξ = 0.
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FIG. 9. (a, b) Renormalized power and stability curves of the ring multipole soliton and defect mode as a function of σ1. (c) Phase diagram
between the ring multipole bright soliton and the ring multipole defect mode as a function of β and σ1. The red (blue) region is used to denote
the existence regions of the ring multipole soliton (the ring multipole defect mode with the uniform background). (d) Existence regions of
the defect mode as a function of β and σ1. The blue region denotes the existence regions of the higher-order defect mode with the uniform
background. (e1, f1, g1) Profiles of various solitons marked by the triangles in panel (a). (e2, f2, g2) Evolution results for various solitons in
panels (e1), (f1), and (g1), respectively. Insets: Two-dimensional projections of the profiles |ψ |.

shown. The red regions denote the ground solitons without uni-
form background, the blue regions denote the ground solitons
with uniform background, and the blank regions denote that
there is no ground soliton. It is obvious that the straight line
β = σ1 is the boundary of two types of the ground solitons.
If we carefully observe Figs. 7(a) and 7(c), the first turning
point of every power curve is the phase transition point just
right. In Fig. 7(d1), we plot the profile of the ground soliton;
its parameters are marked by the small (red) dot in Fig. 7(a).
Its stability is proved further by a numerical propagation of
Eq. (9), and adding the random perturbations into them, i.e.,
we take u(s = 0,ξ,η) = ψ(1 + εf ), where ε = 0.1, f is a
random variable uniformly distributed in the interval [0, 1].
The evolution results are shown in Fig. 7(d2). The analogous
results taking the parameters β = 0.08 and σ1 = 0.14 marked
by the (blue) triangle are shown in Figs. 7(e1) and 7(e2).

The results for the uniform ring bright soliton and the
uniform ring defect mode are shown in Fig. 8. As in Fig. 7, the
renormalized power and stability curves are shown in Figs. 8(a)
and 8(b). The strictly stable regions correspond to the regions
in front of the first turning point of the power curve. In Fig. 8(c),
the phase diagrams for the uniform ring bright and defect
modes are drawn, and the straight line β = σ1 is the boundary
of two phases. The conclusion that the first turning point of
the power curve is the phase transition point also holds. In
Figs. 8(d1) and 8(d2), the corresponding soliton profile marked
by the (blue) triangle in Fig. 8(a) and its evolution results are
shown. Taking the soliton marked by the (red) dot in Fig. 8(a),
though the uniform ring defect mode shown in Fig. 8(e1) is
unstable according to Fig. 8(b), the numerical evolution in
Fig. 8(e2) tells us that the soliton profile is still conserved after
propagating 100 cm.
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FIG. 10. (a) Existence and stability regions for the soliton as a function of σ1 and σ3 with β = 0.1. The solid (blue) dots marked by letter b

denote that there exist unstable solitons; the solid (red) dots marked by letters c and d denote that there exist stable solitons; the circles denote
that there are no solitons. Of course, we only choose σ1 = 0.1 and 0.2. (b1, c1, d1) Profiles of multipole solitons marked by letters b, c, and d

in panel (a). (b2, c2, d2) Evolution results for various solitons in panels (b1), (c1), and (d1), respectively. Insets: Two-dimensional projections
of the profiles |ψ |.

We now investigate whether the above conclusions are
suitable for the multipole solitons and higher-order defect
modes. In Fig. 9, we take β1 = 0.1 and σ3 = ±1.6 as examples.
The renormalized power and stability curves are shown in
Figs. 9(a) and 9(b). We find that the ring multipole bright
soliton is stable, but the stability region of the ring multipole
defect mode is very narrow. In Fig. 9(c), the phase diagrams

for the ring multipole bright solitons and defect modes are
drawn, and the straight line β = σ1 is still the boundary of two
phases. The phase diagram for the existence of the higher-order
defect mode is shown in Fig. 9(d), in which the higher-order
defect mode only exists in the regions of σ1 � β. In Figs. 9(e1),
9(f1), and 9(g1), the corresponding soliton profiles marked
by the triangle in Fig. 9(a) are shown. Taking these solitons

FIG. 11. (a, b) Power and stability curves of vortices as a function of σ3. (c1, c2, d1, d2) Profiles and evolution results of these vortices
marked by the (red) triangle in panel (a). Insets: Phases.
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FIG. 12. (a) Profile of the random potential provided by the random magnetic field. (b, c) Power and stability curves for the dark solitons,
the ground solitons with the uniform background, and the darklike solitons as a function of σ4. (d1, e1, f1) Profiles of various solitons marked
by the triangles in panel (a). (d2, e2, f2) Evolution results for various solitons in panels (e1), (f1), and (g1), respectively. Insets: Profiles by
taking ξ = 0. In the inset of panel (f1), the (blue) dashed line denotes the profile |ψ |, which can be used to compare with the evolution results
conveniently.

as the initial values, and adding the random perturbations
into them, the numerical propagation results of Eq. (9) are
shown in Figs. 9(e2), 9(f2), and 9(g2), which tell us that these
soliton profiles are still conserved after propagating 100 cm,
except that there are some small perturbations appearing in the
background of the multipole defect mode shown in Fig. 9(f2).

Through the above three figures, we conclude that the
boundary of the phase transition is β = σ1, which is consistent
with the theoretical analysis. Solitons such as the higher-order
defect mode, the ground soliton, and the multipole soliton can
transform continuously by controlling the parameters σ1 and
σ3. From Fig. 3, we know that the number of peaks in every
multipole soliton will increase with σ3. When σ3 is increased
further, we find some interesting results.

In Fig. 10, we show the results of 5 < σ3 < 200 after
choosing β = 0.1 and σ1 = 0.1 or 0.2. The phase diagram of
σ1 and σ3 is shown in Fig. 10(a), in which the solid dots denote
that there exist solitons, and the circles denote that there are
no solitons. The red (blue) solid dots denote that these solitons
are stable (unstable). The solitons marked by the letters b, c,
and d in Fig. 10(a) are shown in Figs. 10(b1), 10(c1), and
10(d1). Their propagation results are shown in Figs. 10(b2),
10(c2), and 10(d2). We can observe clearly that the defect mode

in Fig. 10(b1) is unstable through the insets in Figs. 10(b1)
and 10(b2). The conclusion that the number of peaks in the
multipole soliton increases with σ3 still holds.

In this scheme, we have found diverse solitons. We now
investigate whether there are stable vortices. After some
numerical experiments, we find that when the propagation
constants β and σ1 are both less than zero there exist vortices.
Taking β = −0.4 and σ1 = −0.6, we show the power and
stability curves as a function ofσ3 in Figs. 11(a) and 11(b). With
the increasing of σ3, the vortices will become stable. That is,
we can obtain the stable vortices by adding a Gaussian trapping
potential in our scheme. In Figs. 11(c1) and 11(d1), two vor-
tices are shown. However, after propagating 70 cm, the unstable
vortex breaks down into two solitons as shown in Fig. 11(c2); in
contrast, the profile and phase of the stable vortex will remain
the same after propagating 100 cm as shown in Fig. 11(d2).

B. Soliton solutions with random potential

It is known that there are not stable high-dimensional
solitons and vortices in the SNLSE without trapping poten-
tial except for the ground soliton. In the above subsection,
the Gaussian potential can be used to stabilize the high-
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FIG. 13. (a, b) Power and stability curves for the ground and dipole solitons as a function of σ4. (c1, c2, d1, d2) Profiles and evolution
results of the ground soliton marked by the (blue) triangle in panel (a) and the dipole soliton marked by the (red) triangle in panel (a). Insets:
Profiles by taking ξ = 0. In the inset of panel (d1), the (red) solid line clearly denotes the profile of the dipole soliton, and the (blue) dashed
line can be used to compare with the evolution results conveniently.

dimensional solitons and vortices. It is also worth exploring
whether there are other simple projects to stabilize these
nonlinear solutions. Because the random potential is easy to
design and appears inevitably in the experimental scheme, we
now investigate whether the random potential can be used
to stabilize solitons and vortices. In our scheme, the random
potential can be realized by taking |v|2 = ρ(ξ,η), which can be
designed by laser speckles [44], or taking w = ρ(ξ,η), which
can be designed by adding a demagnetized neodymium-iron-
boron ferromagnet [40], where ρ is a random variable. It is well
known that the random potential contributes to the localization
of the linear eigenstate in the linear model. We need to know
how it effects the solitons and vortices in the SNLSE.

In this subsection, we take σ2 = 2, σ3 = 0, and w = 1 −
0.5ρ(ξ,η), where ρ is a random variable uniformly distributed
in the interval [0,1] when ξ 2 + η2 � 52, otherwise ρ = 0.

Thus, the widths of the random and the Gaussian potential
are the same.

In Fig. 12(a), the profile of the trapping potential is shown.
After fixing β = 0.1 and σ1 = 0.3, we obtain the power and
stability curves as shown in Figs. 12(b) and 12(c). With σ3 from
−1 to 1, the graylike soliton, the ground soliton with uniform
background, and the darklike soliton are found, and all of them
are stable in some regions as shown in Fig. 12(c). Their profiles
marked by the triangles in Fig. 12(b) are shown in Figs. 12(d1),
12(e1), and 12(f1). Taking them as the initial values, and
adding the random perturbations, we obtain the evolution
results after propagating 100 cm by numerical simulation of
Eq. (9) in Figs. 12(d2), 12(e2), and 12(f2). Through these
results, the stability of solitons is proved further. From the
above results, we conclude that the random potential can be
used to stabilize the soliton. However, the random potential

FIG. 14. (a) Profile of the random potential provided by the random magnetic field. (b, c) Power and stability curves of vortices as a function
of σ4. (d1, d2, e1, e2) Profiles and evolution results of these vortices marked by the (red) triangle in panel (a). Insets: Phases.
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FIG. 15. (a) Eigenvalue spectrum of Eq. (11) as a function of σ3. (b–m) Eigenfunctions corresponding to the eigenvalue spectrum.

destroys the symmetry of the trapping potential, and the ring
multipole soliton cannot be found.

Under the phase transition point, that is, σ1 < β, we obtain
the ground soliton and the dipole soliton using the same random
potential as shown in Fig. 12(a). The power and stability curves
are shown in Figs. 13(a) and 13(b). The profile of the ground
soliton marked by the (blue) triangle in Fig. 13(a) is shown
in Fig. 13(c1), and its stable propagating result is shown in
Fig. 13(c2). The dipole soliton is shown in Fig. 13(d1), the
(red) solid line of the inset denotes the profile ψ after taking

ξ = 0, and the (blue) dashed line of the inset denotes the profile
|ψ | after taking ξ = 0. The propagating result is shown in
Fig. 13(d2). Though the dipole soliton shown in Fig. 13(d1) is
unstable through Fig. 13(b), it can retain its profile perfectly
after propagating 100 cm as shown in Fig. 13(d2).

Through the above two figures, it is obvious that the random
trapping potential can be used to stabilize the soliton. We
now investigate whether it can also be used to stabilize the
vortices. We find that the simple potential w = ρ(ξ,η) shown
in Fig. 14(a) is enough to supply the vortices, rather than
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the composite potential w = 1 − 0.5ρ(ξ,η). In Figs. 14(b)
and 14(c), we show the power and stabilized curves for the
vortices. There exists the vortex solution even if σ4 = 0, but
these vortices are all unstable. We find that the stability will
strengthen with the random potential increasing. The corre-
sponding profiles marked by the (red) triangle in Fig. 14(a)
are shown in Figs. 14(d1) and 14(e1). By the numerical
propagating results in Figs. 14(d2) and 14(e2), we find that the
unstable vortex will break down into two solitons, but the stable
one retains its profile and phase after propagating 100 cm.

V. SUMMARY

In this paper, we have proposed a scheme to design the
SNLSE in an active optical medium via EIT. The system we
considered was an ensemble of resonant, lifetime-broadened
� three-level atoms. By the use of the EIT effect induced by a
cw control field, the absorption of a probe field was largely
suppressed. The envelope equation of the probe field was
depicted by a (2+1)D SNLSE with trapping potentials, which
include the Gaussian and random potentials. The Gaussian and
random potentials were provided by the far-detuned laser field
and the random magnetic field, respectively. In this model,
we not only found diverse solitons—i.e., the ground soliton
with and without uniform background, the ring multipole
soliton, the linear-multipole soliton, the multipole defect mode,
the higher-order defect mode, the uniform multiring soliton,
and the vortex, which resulted from the potential—but also
identified the boundary of the phase transition between the
bright soliton and the defect mode. In addition, the effect of
random potential on the stability of the soliton was also studied,

and we found that the random potential can be used to stabilize
the soliton and vortex. However, the random potential also
broke the symmetry of the potential, so we only found some
kinds of solitons. The results presented here may be useful
for understanding the physical properties of coherent atomic
systems and guiding experimental study of optical solitons,
which may have potential applications in optical information
processing and transmission.
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APPENDIX: EIGENVALUE SPECTRA
AND EIGENFUNCTIONS IN SEC. IV

The curves of eigenvalue spectra as a function of σ3 are
shown in Fig. 15. The shaded regions denote the spectra
for continuous eigenvalues. With the changing of σ3, 12
spectrum lines l1–l9 and l′1–l′3 for discrete eigenvalues are
shown in Figs. 15(b)–15(m). Nine kinds of eigenfunctions in
Figs. 15(b)–15(j) and solitons in Figs. 3(d1)–3(d9) have very
similar profiles. Three kinds of eigenfunctions in Figs. 15(k)–
15(m) related to lines l′1–l′3 of Fig. 15(a) and solitons without
considering uniform background in Figs. 4(c2)–4(c4) also
have very similar profiles. Thus, all these solutions without
uniform background are just the nonlinear extension of the
linear modes.
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