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Persistence and stochastic periodicity in the intensity dynamics of a fiber laser during the transition
to optical turbulence
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Many natural systems display transitions among different dynamical regimes, which are difficult to identify
when the data are noisy and high dimensional. A technologically relevant example is a fiber laser, which can
display complex dynamical behaviors that involve nonlinear interactions of millions of cavity modes. Here we
study the laminar-turbulence transition that occurs when the laser pump power is increased. By applying various
data analysis tools to empirical intensity time series we characterize their persistence and demonstrate that at the
transition temporal correlations can be precisely represented by a surprisingly simple model.
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I. INTRODUCTION

Fiber lasers are technologically relevant laser systems that
can display complex spatiotemporal dynamics which involve
nonlinear interactions of a huge number of cavity modes [1–3].
The transition to “optical turbulence” as the laser pump power
is increased has received attention and experimental observa-
tions of spatiotemporal dynamical regimes have yielded new
insight into the rich underlying nonlinear physics [4–7].

In [4,5] the laser output intensity was investigated by
exploiting the analogy with a spatially extended system: the
evolution of the intensity during one cavity round-trip time
occurs in a “spacelike dimension,” while the evolution during
many round trips occurs in a “temporal dimension.” This
two-dimensional representation of the output of dynamical
systems that have a well-defined characteristic time scale (such
as the cavity round-trip time) has proven to be very useful
to uncover hidden spacelike features, such as defects and
dislocations [8,9].

In the fiber laser, long-range correlations from one round
trip to the next (i.e., in the temporal dimension) have been
identified [4,5], and during the laminar-turbulence transition
shorter correlations (in the spacelike dimension) have also been
detected [7]. They were identified with two time-series analysis
methods: the horizontal visibility graph (HVG) [10,11] and
ordinal analysis [12–15] (described in Appendix A).

The HVG method maps a time series into a graph that keeps
information about the temporal ordering of the data points in
the time series. In [7] the graph was characterized by Shannon
entropy, S[P ], computed from the degree distribution, P (k),
that gives the probability that a node (i.e., a data point Ii) has
k links. S[P ] (referred to as HVG entropy) was computed for
various laser pump powers. When the intensity time series were
preprocessed such that only the intensity peaks higher than a
threshold were analyzed, a sharp decrease of the HVG entropy
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was detected at the transition. In contrast, the HVG entropy
decreased smoothly when all the data points were analyzed.
Ordinal analysis transforms a time series into a sequence of
symbols (ordinal patterns, OPs), also keeping the information
about the temporal ordering of the data points in the time
series. The OPs sequence is then characterized by the ordinal
probabilities and the associated entropy (permutation entropy,
PE). In [7] it was shown that the PE displays, as the pump
power increases, the same variation as the HVG entropy. In
addition, by using a lag time to define the OPs, short scale
correlations (in the spacelike dimension) were detected.

Temporally correlated signals have been observed in many
fields (examples include EEG signals, stock market prices,
water flows through rivers, earthquake inter-event intervals,
rainfall and climatic time series, among many others). A lot
of work has been devoted to characterize them (typically
the persistence, measured by the Hurst exponent, H [16]),
and to understand the physical mechanisms underlying such
correlations.

Here we reanalyze the fiber laser empirical data studied
in [7] to address both issues. In the first part, by using
the HVG method, we identify synthetic data with similar
short correlations as the laser data. Specifically, we consider
a stochastic processes with known H: fractional Brownian
motion (fBm) [16–22]. WhenH > 0.5 consecutive increments
tend to have the same sign and the fBm process is persistent; in
contrast, when H < 0.5 consecutive increments tend to have
opposite signs, and the process is antipersistent. In the second
part of our paper we demonstrate, by using ordinal analysis,
that a very simple model accounts for the correlations among
lagged intensity values that were identified in [7].

II. EXPERIMENTAL SETUP AND DATASETS

The experimental setup and datasets are described in [7]:
the laser is a Raman fiber (normal dispersion) of 1 km placed
between two fiber Bragg gratings acting as cavity mirrors; the
pump power is varied from below to above the transition (which
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occurs for 0.9 W), and for each pump power a time series
with 5 × 107 data points was recorded, with resolution dt =
0.0125 ns.

Examples of intensity time traces and the corresponding
Fourier spectra are shown in Fig. 1. At the transition noisy
oscillations are seen with a periodicity of about 2.5 ns, while
in the broadband power spectrum there is a narrow peak at
0.4 GHz. As it will be shown later, the appearance of this
noisy periodicity can be understood in terms of a surprisingly
simple model.

III. RESULTS

A. Horizontal visibility graph analysis

First, we compare the empirical intensity time series with
synthetic series generated by fBm, which is a family of pro-
cesses, BH(t), that is Gaussian, self-similar, and endowed with
stationary increments, WH(t) = BH(t + 1) − BH(t) (which
are known as fractional Gaussian noise, fGn). fBm has tunable
memory and BH=0.5 corresponds to ordinary, memoryless
Brownian motion, for which successive increments, WH=0.5,
represent Gaussian white noise.

Using the HVG method (described in Appendix A) we
transform the empirical and synthetic time series into graphs,
and then compare the graphs by comparing their degree
distributions, P (k). The simplest way to do this is to fit
P (k) to an exponential, P (k) ∝ exp(−λk), and compare the
values of λ. A second way is based in comparing information
measures computed from P (k): the HVG entropy and the
Fisher information [23].

Figure 2(a) displays the degree distribution, P (k), obtained
from the “raw” intensity time series below, at and above the
transition to turbulence, and also from Gaussian white noise.
These distributions can be fitted to exp(−λk) with λ = 0.59,
0.69, and 0.75 for pump power 0.8 W (before), 0.9 W (at), and
1.5 W (after the transition). By comparing these λ values with
those obtained from fBm generated with different H values
[23], and considering the same scaling region (3 � k � 20),
we infer the Hurst exponent to be H = 0.3, 0.5, and 0̃.6–0.7
for 0.8, 0.9, and 1.5 W, respectively. Therefore, the dynamics
changes from antipersistent (before the transition) to persistent
(after the transition). At the transition, λ is comparable to the
one found for fBm with H = 0.5 that corresponds to pure
Brownian motion.

In contrast, if we first threshold the raw data and keep only
the intensity peaks that are higher than a certain threshold (as
in [7], we use a threshold equal to the intensity mean value
plus two standard deviations) we find that the thresholded data
have very different properties: λ values are consistent with
those found for fGn [23] with λ = 0.403 (H = 0.5) before the
transition, λ = 0.43 (H = 0.7) at the transition, and λ = 0.395
(H ∼ 0.4–0.5) after the transition. λ = 0.43 at the transition
suggests a persistent fGn, while all other λ values are close to
the λ expected for Gaussian white noise (λ = 0.405).

This effect of the threshold resembles the threshold sen-
sitivity found in certain chaotic systems, where varying the
threshold can lead from clustering to repelling of extreme
events, or vice versa [24].

The fit of P (k) to an exponential has the drawback that
detailed information about the shape of P (k) is lost, and also

FIG. 1. (a) Intensity time series (separated vertically for clarity)
below, during, and above the transition. (b) Power spectra at low
frequencies (separated vertically for clarity), for the same pump
powers as in panel (a). At the transition (0.9 W, second line, blue
online) there is a narrow peak at ∼0.4 GHz, while for a slightly
higher pump power (0.95 W, third line, red online) the peak is at
∼0.93 GHz. (c) As (b) but the horizontal axis covers all the range of
frequencies.
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FIG. 2. HVG degree distributions of “raw” intensity time series
for various pump powers. For comparison the distribution obtained
from Gaussian white noise is also displayed.

that λ depends on the scaling region. Therefore, to compare the
distributions, P (k), derived from empirical and from synthetic
data, we use information-theory measures: the HVG entropy,
S[P ], and the Fisher information, F [P ] [25]. In this approach,
each time series is represented as a dot in the S × F plane
[26] and “trajectories” are obtained when the experimental
parameter (laser pump power) and the synthetic parameter
(Hurst exponent H) are varied.

In Fig. 3 the results of the analysis of the raw and the
thresholded intensity data are compared to synthetic data (fBm
and fGn). In the raw data there is a good agreement to what
was inferred with the λ fit: the raw data are well modeled
by the fBm process; before and at the transition is close to

FIG. 3. The HVG entropy, S (normalized to the entropy of
Gaussian white noise), and the Fisher information, F , computed from
the empirical intensity time series are compared with synthetic data.
For the empirical data, the color code indicates the laser pump power
in watts; for the synthetic data (black symbols) the numbers indicate
the Hurst exponent.

FIG. 4. Probabilities of the ordinal patterns computed from the
laser intensity vs the sampling time. The pump power is as in Fig. 1:
(a) 0.8 W, (b) 0.9 W, (c) 0.95 W, and (d) 1.0 W.

fBm with H ∼ 0.5 (ordinary Brownian motion), while after
the transition is close to fBm with H > 0.5, which indicates
a persistent process. The thresholded intensity peaks are well
represented by the fGn processes, also in good agreement with
the λ fit. The transition point (0.9 W) has the lowest S and the
lowest F (is a return point of the trajectory in the S × F plane).
The H values estimated from the comparison of the empirical
and synthetic datasets in the S × F plane and from the fit
of P (k) are quantitatively different, but agree qualitatively:
for the raw data, both methods reveal a gradual transition, as
the pump power increases, to a persistent process, while for
the thresholded data, according to the λ fit, at the transition
H ∼ 0.7 while the S × F plane suggests H > 0.9.

In Fig. 3 we note that the raw intensity datasets are
located close to the fBm “trajectory,” but there is a more or
less constant distance to this line, which indicates that fBm
does not fully represent the empirical data. This is consistent
with the analysis of [27], where the probabilities of ordinal
patterns of length 3 were computed analytically for a fBm
process, and it was shown that they have a particular symmetry
[P (012) = P (210) = p, while the other four probabilities are
equal to (1/2 − p)/2], which does not hold for the probabilities
computed from the empirical data [as it can be seen in [7],
Fig. 2(a)].

B. Ordinal analysis

Next, we show that the correlations uncovered in [7] by
applying lagged ordinal analysis to the raw intensity data can
be understood in terms of a surprisingly simple model. The
ordinal method (described in Appendix A) is used to uncover
order relations among three intensity values (Ii,Ii+τ ,Ii+2τ ),
where τ is an integer that gives an effective sampling time of
τdt . In this way, each symbol encodes information about the
intensity evolution during an interval of 3τdt .

The analysis of the ordinal probabilities versus τ , shown
in Fig. 4, reveals that below and above the transition there
are no long-range correlations, as, in Figs. 4(a) and 4(d), for τ

large enough, the six patterns are equally probable. In contrast,
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at the transition [Fig. 4(b)] the pattern probabilities oscillate
regularly with periodicity of about 2.5 ns. For a pump power
slightly above the transition, Fig. 4(c), there are also regular
oscillations of the probabilities with τ , but the oscillations are
of smaller amplitude.

Let us next show that these oscillations are captured by
a remarkably simple model: a phase equation describing a
stochastic limit cycle.

Considering that the polar coordinates of a particle moving
in a limit cycle trajectory are a(t)eiφt and neglecting the
amplitude variations, the dynamics is described by a single
rate equation for the phase:

dφ/dt = ω0 + f (φ,t) + ζ (t), (1)

where ω0 is the angular rotation frequency, f (φ,t) is a 2π

periodic function [f (φ,t) = f (φ + 2π,t)] that represents the
variability of the instantaneous frequency, and ζ represents
stochastic fluctuations.

By stroboscopic sampling every time interval �T , the limit
cycle evolution is described by a circle map [28]:

φ(t + �T ) = φ(t) + ω0�T + F (φ,t) + ξ (t), (2)

where F (φ,t) is a 2π periodic function that represents
the phase accumulated over the time interval �T , due
to the variability of the instantaneous frequency, and ξ repre-
sents the influence of the stochastic term. Assuming F (φ,t) =
K sin(φ) gives

φi+1 = φi + ερ + (K/2π ) sin(2πφi) + Dξi, (3)

where φi = φ(t), φi+1 = φ(t + �T ), ρ = ν0�T with ν0 =
ω0/2π . We also include a parameter ε = ±1 that determines
the direction of the rotation (anticlockwise or clockwise). In
the following we assume that ξi is a Gaussian white noise and
D is the noise strength.

Next, we apply ordinal analysis to phase increments, �φi =
φi − φi−1, generated from iterations of this map. We keep
constant the strength of the nonlinearity, K , and the strength
of the noise, D, and vary ρ as a control parameter. We chose
ρ because it is proportional to the stroboscopic sampling time,
�T , which is analogous, in the experimental situation, to the
effective sampling time of the laser intensity, τdt , used to
define ordinal patterns from lagged intensity values.

For appropriated values of K and D we find that the circle
map gives a set of ordinal probabilities that are in remarkable
agreement with those computed from the laser data at the
transition.

Figure 5 allows a precise comparison: panels (a) and (b)
display in detail the oscillatory behavior of the probabilities
with the effective sampling time of the intensity time series,
while panels (c) and (d) display the probabilities computed
from iterations of the circle map. We observe an excellent
agreement as the same hierarchical structure (more/less prob-
able patterns) and clustered structure (pairs of patterns with
the same probability) are seen when comparing the empirical
and the synthetic data. We note that the ordinal probabilities
at the transition, Fig. 5(a), are reproduced by the iterations
of the circle map with ε = 1, Fig. 5(c), while slightly above
the transition, Fig. 5(b), they are reproduced by the iterations
of the circle map with ε = −1, Fig. 5(d). This suggests that
immediately after the transition there is a change of rotation.

FIG. 5. Comparison of the ordinal probabilities computed from
empirical data (a, b) and from synthetic data (c, d). In (a) and (b), the
probabilities are computed from the laser intensity time series and the
horizontal axis is the sampling time; the laser operating condition is
(a) at the transition and (b) slightly above the transition (pump power
0.9 W and 0.95 W, respectively). In panels (c) and (d), the probabilities
are computed from data generated by iterating the circle map, Eq. (3),
and the horizontal axis is the map parameter, ρ; the other parameters
are (c) K = 0.1, D = 0.02, ε = 1 and (d) K = 0.25, D = 0.075,
ε = −1.

Contrasting similar situations in Figs. 5(a) and 5(c), we
observe that ρ = 1 in the circle map data corresponds to τ =
2.5 ns in the laser data (as indicated with arrows). Because ρ =
ν0τ , using ρ = 1 and τ = 2.5 ns we can estimate the frequency
of the rotation in the limit cycle as ν0 = 1/τ = 0.4 GHz,
in agreement with the narrow peak seen in the spectrum in
Fig. 1. Also comparing similar situations immediately after
the transition, in Figs. 5(b) and 5(d), we observe that ρ = 2
in the circle map data corresponds to τ = 4.3 ns in the laser
data (as indicated with arrows). The same argument gives
ν0 = 2/τ = 0.46 GHz, and in the spectrum in Fig. 1 we see
the peak at about 0.93 GHz, which is consistent with 2ν0.

The agreement found is unexpected because, as shown in
Fig. 1, the spectrum is extremely broad and thus it is surprising
to find that, in the symbolic representation, the intensity
temporal dynamics is described by a stochastic limit cycle with
rotation frequency ν0. It is worth noticing that statistics of the
intensity values are not described by the statistics of the phase
increments, �φi = φi − φi−1, which are positive or negative.

IV. CONCLUSIONS

To summarize, we have applied two data analysis tools to
characterize persistence and temporal correlations in the inten-
sity dynamics of a fiber laser. To characterize the persistence,
intensity time series (raw and thresholded data) were trans-
formed to graphs through the horizontal visibility algorithm
and then compared with well-known stochastic processes,
fractional Brownian motions and fractional Gaussian noises.

Two different techniques that use the graph degree distribu-
tion (fitting the distribution to an exponential and computing,
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from the degree distribution, the Shannon entropy and the
Fisher information) gave consistent results, with the raw
intensity data being modeled by a fBm process, and the
thresholded data being modeled by a fGn process. The analysis
of the raw data revealed that the dynamics is very close to the
fBm process, but there is a distance that suggests a degree of
determinism in the dynamics. With respect to the thresholded
data, the HVG analysis reveals that the empirical data are fully
consistent with a stochastic fGn process.

Using ordinal analysis we have also demonstrated that, at
the transition, correlations among three lagged intensity values
can be precisely represented by a surprisingly simple model: a
circle map. The physics underlying the emergence of stochastic
periodicity at the transition could be mode locking; however,
it is computationally unfeasible to simulate the fiber laser
model with a realistic number of modes (up to 1 × 106 in
the turbulent region). Therefore, in Appendix B, in order to
check the generality of our results, we analyze two multimode
laser models and find, for certain parameters, a variation of the
ordinal probabilities with the lag, similar to that found in the
empirical laser data at the transition.

Because of the unavailability of a model that reproduces
the fiber laser dynamics in a time scale shorter than the cavity
round-trip time, our paper is limited to the characterization of
the empirical data, and leaves several relevant open questions:
the physical origin of the temporal correlations, the relation
between the characteristic time scale and the physical laser
parameters, and the reason why the statistics of the raw and
thresholded time series are different. We hope that our results
will motivate further experimental and theoretical studies to
address these issues.

Extracting information from observed data is a main chal-
lenge in diverse areas of engineering and science, and the
analysis tools used here can be very useful for investigating the
output signals of other systems that undergo similar transitions
to turbulent regimes [29,30]. They provide complementary
insights into the correlations present in the data: the HVG
method is parameter free and captures correlations the range
of which is limited only by the actual values of the data points;
on the other hand, the ordinal method (that only considers the
temporal order of the data points but not their actual values) has
two parameters (the length of the pattern and the lag between
the data points) which allow tuning the scale of the analysis.
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FIG. 6. Horizontal visibility graph obtained from empirical laser
data.

APPENDIX A: METHODS OF TIME-SERIES ANALYSIS

In this Appendix we describe the two methods used in the
main text to uncover temporal correlations in the intensity
dynamics: the horizontal visibility graph [10] and ordinal
analysis [12].

1. Horizontal visibility graph

This method transforms a real time series, x =
{x1, . . . xi, . . . xN }, into a graph, by connecting pairs of data
points if there is “horizontal visibility” between them: xi and
xj are connected if xi > xk and xj > xk for all k such that
i < k < j .

As an example, we consider the following time series:

x = {0.71, 0.53, 0.56, 0.89, 0.50,

0.77, 0.21, 0.6, 0.72, 0.35}. (A1)

The number of links, ki , that each data point, xi , has is

k = {3, 2, 3, 4, 2, 5, 2, 3, 3, 1}. (A2)

The degree distribution, P (k), is the probability that a data
point has k links. As an example, Fig. 6 displays a graph that
is obtained from the empirical laser data.

2. Ordinal analysis

This method transforms a real time series, x =
{x1, . . . xi, . . . xN }, into a sequence of symbols (known as
ordinal patterns), which are determined by considering the
temporal order in which D data points occur in the time
series. To fix the ideas, considering pairs of consecutive values,
xi < xi+1 gives symbol “01,” while xi > xi+1 gives “10.” If
we consider D = 3 values, as shown in Fig. 7, there are six
possible symbols: xi < xi+1 < xi+2 gives “012,” xi < xi+2 <

xi+1 gives “021,” etc. When two data values are identical,
a small random value is added to one of them to break the
symmetry.

FIG. 7. The six possible ordinal patterns that can be obtained from
D = 3 data points.
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More generally, D! symbols represent the possible order
relations among D data points. By labeling the symbols from
1 to D!, a time series with N real data values is transformed
into a sequence of N − D integers.

As an example, we consider the same time series used in
the previous section:

x = {0.71, 0.53, 0.56, 0.89, 0.50,

0.77, 0.21, 0.6, 0.72, 0.35}. (A3)

The symbolic sequence obtained by considering the ordering
of D = 3 consecutive values is

s = {201, 012, 120, 201, 120, 201, 012, 120}, (A4)

from which we obtain the following set of probabilities (ordinal
probabilities):

P (012) = 2/8, P (021) = 0, P (102) = 0,

P (120) = 3/8, P (201) = 3/8, P (210) = 0.

By considering a lag the ordinal method can be used to
analyze order relations among nonconsecutive data values. In
this case the ordinal patterns are defined from the temporal
ordering of D lagged data points, xi,xi+τ , . . . ,xi+Dτ , where τ

is an integer that, if dt is the sampling time, gives an effective
sampling time of τdt .

In order to gain insight into the probabilities computed when
data points are not consecutive but have a lag between them,
we analyze the case of a noisy periodic signal: we consider
a synthetic time series generated from a sinusoidal of period
T = 1:

x(t) = sin(2πt) + ηξ, (A5)

where ξ is a Gaussian white noise with zero mean and unit
variance, and η is the noise strength.

We first generate a time series of N = 4000 data points
with η = 0.01 (small noise in comparison with the oscillation
amplitude, which is equal to 1). The data points are sampled
with �t = 1/20 (i.e., the time series covers 200 periods).
Figure 8 displays a short section of the time series (five periods)
and the probabilities of the six D = 3 ordinal patterns versus
the lag (the integer numbers between 1 and 6 label the six
patterns shown in Fig. 7). We note that the probabilities are
divided in two groups: in one group are the V patterns (102,
201) and the � patterns (120, 021), while the other group
includes the two “trend” patterns (012 and 210). The groups
are either more or less probable, depending on the lag. An
inspection of the time series allows us to gain insight into this
dependency: if three data points are lagged by τ = T/2 they
form either a V or a � pattern, while if the three data points
are lagged by τ = T they are equal if η = 0 (as we have a
pure sinusoidal of period T ), but when η �= 0 the differences
among the three data points are fully random and thus their
temporal order is random. Therefore, when τ = T all patterns
are equally probable.

Next, we consider stronger noise. As seen in Fig. 9, which
is done in the same way but with η = 1, the variation of
the ordinal probabilities with the lag is more smooth, and
resembles that found in the empirical laser data in the main
text.

FIG. 8. Top: Synthetic time series generated by sampling a
sinusoidal of unit amplitude and period T = 1, which has a small
stochastic term added (the noise strength η = 0.01). Three data points
(filled circles) lagged by τ = T/2 give either a V pattern (102, 201)
or a � pattern (120, 021). The filled squares indicate three data points
lagged by τ = T , which give, due to the small added noise, any pattern
with equal probability. Bottom: Ordinal probabilities computed from
the synthetic time series vs the lag. We note that for τ = T/2 and
3T/2 the V and � patterns have high probability, while for τ = T all
patterns are equally probable.

APPENDIX B: MULTIMODE LASER MODELS

In this Appendix we present simulations of different laser
models, and compare the results with those obtained from the
empirical laser data (presented in the main text).

We performed extensive simulations of the laser model used
in [4]; however, with a limited number of modes this model
only gives a good description of the temporal dynamics over
many round trips (considering the space-time representation
used in [4], the model describes the dynamics in the temporal-
like dimension), but fails to describe the fast temporal evolution

FIG. 9. As Fig. 8 but when stronger noise, η = 1, is added to the
sinusoidal.
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FIG. 10. Numerical results obtained from simulation of the multimode model with N = 4 modes. The modal intensities (top) and the total
intensity (center) are plotted vs time. The bottom panel displays the ordinal probabilities (computed from the total intensity time series, with
ordinal patterns determined by the ordering of three intensity data points separated by a lag τ ) vs the lag τ .

(in the spacelike dimension), and we were unable to reproduce
the correlations studied in the main text.

As it is computationally unfeasible to simulate the model
with a realistic number of modes (up to 1 × 106 in the turbulent
region), we have used other laser models to check the generality
of our results.

We first use a multi-longitudinal-mode model where modal
competition leads to an oscillatory behavior of the total
intensity [31], and then we use a two-mode model, which is
well known to describe the dynamics of two orthogonal linear
polarization modes of vertical cavity surface emitting lasers
(VCSELs) [32]. In both cases we show that, for appropriated
parameters, the models predict an output intensity that has a
similar variation of the ordinal probabilities with the lag as that
described for the fiber laser in the main text. Understanding the
underlying mechanisms will require detailed investigations, as
they will likely be different in the different models. However,
our goal here is only to demonstrate that the correlations
detected with ordinal analysis in the empirical data (fiber laser)
can also be found in the output of two multimode laser models.

FIG. 11. Influence of the number of modes in the total intensity
dynamics of the multimode model. Top: Eight modes. Bottom: 16
modes.

A detailed analysis of the models’ predictions is in progress
and will be reported elsewhere.

1. Multi-longitudinal-mode model

In [31] mode switching in a multimode semiconductor
laser was studied experimentally and it was observed that the
intensity of each mode displays large amplitude oscillations,
which obey a highly organized antiphase dynamics leading
to an almost constant total intensity output. A multimode
model was proposed that identified four-wave mixing as the
dominant mechanism at the origin of the observed dynamics.
Here we simulate the model rate equations that couple N modal
complex fields, Am(t), with N spatial harmonics of the carrier
density, Fm(t) ∼ ∫

N (z,t)φ2
m(z)dz, that represent the grating

in the carrier density created by the standing waves of the field.
The model equations are

dAm

dt
= (Gm − 1)Am − iσ

∑
k,p

AkApA∗
k+p−m

η(p − m)
,

η
dFm

dt
= J − Fm

(
1 +

∑
n

βmn|An|2
)

.

FIG. 12. Entropy computed from the ordinal probabilities in color
code (normalized to the maximum entropy value, which corresponds
to equally probable ordinal patterns) vs the lag and the number of
longitudinal modes.
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FIG. 13. Results of simulations of the VCSEL model with parameters J = 3, γa = −0.1 ns−1, γp = 11.75 rad ns−1 (top row), and γp = 12
rad ns−1 (lower row). The modal intensities (left panels) are shifted vertically for clarity.

Here Gm = Fm(1 − ε
∑

n β̃mn|An|2), β̃mn and βmn are self-
and cross-coupling coefficients, β̃mm = βmm = 1, and β̃mn =
(4/3)βmn. σ is the strength of the four-wave-mixing term;
the restriction in the double sum is that 1 � k + p − m � N .
Time is in units of the cavity round-trip time, τp, and η is the
ratio between τp and the carrier lifetime, τN . J is the pump
normalized to the threshold value. The model in [31] also
includes the well-known α factor that accounts for symmetry
breaking leading to a modal switching sequence from the blue
to the red side of the optical spectrum. Here for simplicity we
take α = 0.

The model equations were simulated with the same param-
eters as in [31]: J = 1.5, η = 1000, τp = 0.01 ns, ε = 0.05,
βmn = 0.975 (∀ m, n, m �= n), and σ = 0.35. Results for four
modes are presented in Fig. 10. The variation of the ordinal
probabilities with the lag is qualitatively very similar to that
shown in the main text. Similar results are found with a higher
number of modes, as shown in Fig. 11. Moreover, the plot of
the entropy (H = −∑

pi log pi) computed from the ordinal
probabilities (known as permutation entropy [12]) as a function
of the lag and of the number of modes, shown in Fig. 12,
suggests that the length of the correlations is maximum for
a particular number of modes (for the parameters in Fig. 12,
with eight modes the entropy displays the longest oscillatory
behavior with the lag). A detailed characterization of this effect
is out of the scope of the present paper and is left for future
work.

2. VCSEL model

Here we simulate a well-known two-mode VCSEL model,
which represents the competition of two linearly polarized

modes. The model equations are [32]

dE±
dt

= k(1 + iα)(N ± n − 1)E± − (γa + iγp)E∓,

dN

dt
= γN [J − N − (N + n)|E+|2 − (N − n)|E−|2],

dn

dt
= −γsn − γN [(N + n)|E+|2 + (N − n)|E−|2].

Here E± are the slowly varying amplitudes of the left
and right circularly polarized components of the optical field
(E± = Ex ± iEy with Ex and Ey being the orthogonal linearly
polarized components), N is the total population difference
between conduction and valence bands, and n is the population
difference between the carrier densities with positive and
negative spin values. k is the field decay rate, γN is the decay
rate of the total carrier population, and γs is the decay rate
which accounts for the mixing of the populations with different
spins. γa and γp represent gain anisotropies and birefringence,
respectively. α is the linewidth enhancement factor and J is
the normalized injection current.

We simulated the model equations with typical parameters,
k = 300 ns−1, γN = 1 ns−1, γs = 50 ns−1, γa = −0.1 ns−1,
and α = 3, choosing J and γp such that both linear polariza-
tions are unstable. Results are presented in Fig. 13, where we
note that mode competition leads to an oscillatory dynamics
in the total intensity, |Ex |2 + |Ey |2, which, when analyzed
with ordinal patterns, has a similar variation of the ordinal
probabilities with the lag as that found in the main text. We
present deterministic simulations but we have verified that the
inclusion of spontaneous emission noise did not have any no-
ticeable effect in the variation of the probabilities with the lag.
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