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Squeezed-state evolution and entanglement in lossy coupled-resonator optical waveguides
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We investigate theoretically the temporal evolution of a squeezed state in lossy coupled-cavity systems. We
present a general formalism based upon the tight-binding approximation and apply this to a two-cavity system as
well as to a coupled-resonator optical waveguide in a photonic crystal. We derive analytical expressions for the
number of photons and the quadrature noise in each cavity as a function of time when the initial excited state is a
squeezed state in one of the cavities. We also analytically evaluate the time-dependent cross correlation between
the photons in different cavities to evaluate the degree of quantum entanglement. We demonstrate that loss in such
coupled-cavity systems cannot be treated using simple exponential factors. Finally, we also derive approximate
analytic expressions for the maximum photon number, maximum squeezing, and maximum entanglement for
cavities far from the initially excited cavity in a lossless coupled-resonator optical waveguide.

DOI: 10.1103/PhysRevA.97.023840

I. INTRODUCTION

Nonclassical states of light possess properties that can only
be described by quantum theory. One potential attribute of
these states is quantum entanglement, which has potential
applications in quantum teleportation, quantum computation,
and quantum information [1,2]. Both discrete variables (DVs)
and continuous variables (CVs) can be used to create quantum
entanglement between two distant quantum systems. However,
implementation of DV entanglement currently suffers from
difficulties in single-photon generation and detection and from
loss in integrated on-chip systems. In contrast, CV entangle-
ment as an alternative to its DV counterpart can be efficiently
created and used for implementation of CV quantum protocols
[3–7] and has the advantage that the entanglement is generally
more robust to loss than systems composed of photon pairs.

Generally, nonuniformly distributed quadrature fluctuations
of squeezed light can provide CV entanglement [8,9]. The
inseparability criterion, which is based on the total variance
of a pair of canonical conjugates variables, can be used to
study the degree of quantum correlation in CV systems [10,11].
Although the CV entangled light has been achieved using bulk
setups [6,8,12–14], the migration from bulk optics to integrated
photonics seems inevitable since, as the size and complexity
of these systems increase, the limitations of working with
bulk optics, such as stability, precision, and physical size,
become significant. Due to recent developments in integrated
photonics technology, it is possible to resolve scalability and
stability concerns associated with bulk optics by generating
CV entanglement on a chip [15]. However, the effects of
environmental loss, which destroys the nonclassical properties
of light and consequently affects the entanglement [16], are
inevitable and need to be understood and managed.

Parametric down conversion (PDC), in which a pump pho-
ton is annihilated to produce a signal and an idler photon, is one
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of the processes that can be used to generate correlated photons
[17–19]. It has been shown that photon pairs can be generated
via PDC in integrated on-chip systems using nonlinear mate-
rials with high susceptibility, such as AlGaAs [20]. Thanks to
the maturity achieved in fabrication technology and the ability
to integrate them with other photonic elements, propagation in
nonlinear waveguides is now a very promising way in which
to generate entangled photon states via PDC [21,22]. The
pumping can be done either from one end of the waveguide
or from the top. However, the latter configuration is more
interesting for two key reasons. First, by focusing the pump
light from above on a single-resonant cavity, one can achieve
a high intensity of pump light in the nonlinear material, which
increases the generation rate. Second, it enables the generation
of entangled photons at two distant locations, which is desired
in many quantum communications applications. Such a source
of counterpropagating twin photons has been experimentally
demonstrated in an AlGaAs ridge waveguide [21,22]. This
same configuration of top pumping of a nonlinear waveguide
is also very promising for creating entangled squeezed states.
It is this system that we examine in this paper. The particular
system that we will consider is the coupled-resonator optical
waveguide (CROW).

CROWs, which were first studied by Yariv et al. [23], can
be described as a waveguide consisting of weakly-coupled
optical cavities along one dimension. The tight-binding method
[24,25], which uses localized single-cavity modes as a basis,
can be applied as a mathematical framework to model the
evolution of light in such a coupled structure. One nice feature
of CROWs is that by adjusting the nature of the cavities
and the separation between the cavities, one can adjust the
dispersion and even the loss to some degree to optimize the
system for a particular application [23]. This characteristic is
the main advantage of using CROWs compared to conventional
optical waveguides, in which the guiding properties are mostly
determined by total internal reflection and material disper-
sion. An intrinsic property of CROWs, however, is scattering
loss; this must therefore be included in any treatment of
these systems. As we shall show, the effects of loss on the
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FIG. 1. Schematic picture of (a) two coupled cavities, (b) a
CROW structure, and (c) the particular CROW structure with period
D formed from defects in a slab photonic crystal with a square lattice
of period d .

quantum correlations in these systems are nontrivial and cannot
generally be treated using a simple exponential factor.

In our previous work, we studied the generation of a
squeezed vacuum state (SVS) in the presence of loss and
showed how the loss affects the generation of squeezed light
[26]. Now we are interested in the evolution and propagation
of squeezing and entanglement in lossy systems. In this work,
we develop a general formalism to study the squeezing and
the entanglement in lossy coupled-cavity structures and apply
it to a CROW structure. The CROW is interesting because it
has been shown to have potential in generating CV entangled
states between two spatially separated sites [27] and can also
be integrated with other photonic components, such as side
cavities [28,29], forming an integrated photonic circuit, for
use in photonic quantum information processing.

In this paper, we show that the time evolution of the
quadrature variances and the number of photons in each cavity
can be explained and parametrized using a tight-binding ap-
proach. This method allows us to calculate the CV correlation
variance between the photons in different cavities. The full
analytic study of the squeezed state evolution in a lossy
coupled-cavity system can provide us with insight into the
influence of coupling and loss on the photon statistics and the
nonclassical properties of the photons inside each cavity. We
present the analytic expressions for a general initial state, but
only explicitly present detailed results for an initial state which
is a squeezed vacuum state in one of the cavities.

The paper is organized as follows. In Sec. II, we present the
tight-binding formalism that is used to obtain the quasimodes
[30] of the coupled-cavity system. We then derive the time-
dependent equations for the number of photons, the quadrature
noise, and the CV correlation variance in a lossy coupled-cavity
system with a general initial state. In Sec. III, as a test system,
we study the state evolution in a lossy two-coupled-cavity
system [see Fig. 1(a)], where the initial state is a squeezed
state in one of the cavities. In Sec. IV, we apply our approach
to examine the same quantities for the state in the more
technologically interesting CROW structure [see Figs. 1(b) and
1(c)], where the initial state is also a squeezed state in one of
the cavities. Finally, in Sec. V, we present our conclusions.

II. GENERAL FORMALISM

In this section, we first present the general form of tight-
binding theory and derive the general expressions for some
important quantities such as the time evolution of photon
number, variances of quadrature operators, and correlation
variance in lossy coupled-cavity systems.

Although in this paper we mainly focus on SVS as the initial
state of the cth cavity, in this section we consider a more general
case and present analytic results for a general initial state.

Using the tight-binding formalism [25,31], we can deter-
mine the fields and complex frequencies for the leaky modes
of a coupled-cavity system. This formalism allows us to
determine the mode fields and frequencies of a lossy coupled-
cavity structure using only one finite-difference time-domain
(FDTD) calculation.

The modes of a system can be obtained by solving the
corresponding homogeneous Helmholtz equation for the elec-
tric field. However, here, due to the leakage in the system,
we employ quasimodes (QMs) which are electromagnetic
resonances of an open (leaky) dielectric structure and are
characterized by complex frequencies, ω̃m. We denote the
complex mode field of these QMs by Ñm(r).

Following Fussel and Dignam [25], we begin by expanding
the coupled-cavity QMs, Ñm(r), in terms of single-cavity QMs,
M̃q(r), as

Ñm(r) =
∑

q

vmqM̃q(r), (1)

whereq labels the mode associated with a given cavity,m labels
a given coupled-cavity mode, and vmq are the expansion coef-
ficients. The quasimodes are the solutions to the homogeneous
Helmholtz equation for the electric field in the coupled-cavity
and single-cavity structures:

∇ × ∇ × Ñm(r) − ω̃2
m

c2
ε(r)Ñm(r) = 0, (2)

∇ × ∇ × M̃q(r) − �̃2
q

c2
εq(r)M̃q(r) = 0, (3)

where ω̃m ≡ ωm − iγm is the complex frequency for the mth
QM of the coupled-cavity structure and �̃q ≡ �q − i�q is
the complex frequency of the qth cavity. Also, ε(r) and εq(r)
are the dielectric material profiles of the full coupled-cavity
structure and the structure that only contains the qth cavity,
respectively. The single-cavity modes and frequencies are
calculated using FDTD.

Substituting Eq. (1) into Eq. (2) and then using Eq. (3) leads
to the generalized eigenvalue equation,

Ã�̃ṽ = �̃(Ã + B̃)ṽ, (4)

where �̃ ≡ Diag{ω̃2
m}, �̃ ≡ Diag{�̃2

q}, and ṽ ≡ {ṽmq}, and Ã
and B̃ are, respectively, the overlap and coupling coefficients
between the pth and qth cavities, with elements defined as

Ãqp =
∫

d3rεq(r)M̃∗
q(r) · M̃p(r), (5)

B̃qp =
∫

d3rδεq(r)M̃∗
q(r) · M̃p(r), (6)

where δεq(r) ≡ ε(r) − εq(r).
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Using the expansion coefficients vmq , the annihilation op-
erator bm, for the mth mode of the coupled-cavity system, can
be written in terms of the qth individual single-mode cavity
operators aq as

bm =
∑

q

ṽ∗
mqaq. (7)

Although we will be interested in the nature of the states
in individual cavities, the evolution is most simply calculated
using the full coupled-cavity annihilation operators. This evo-
lution is found by solving the adjoint master equation for this
open, lossy system [32]. We have previously shown that for any
product of normally-ordered operators, the time dependence of
the individual annihilation operators is given by

bm(t) = bme−iω̃mt , (8)

where bm = bm(0) is the corresponding operator in the
Schrödinger representation [33] and the time evolution of the
creation operator is simply the Hermitian conjugate of Eq. (8).

Using Eqs. (7) and (8), one can generally write the time-
dependent localized field operator in a coupled-cavity system
in terms of expansion coefficients and the operators at t = 0
as

ap(t) =
∑
mq

ṽ∗
mqaqe

−iω̃mt ṽmp. (9)

Using Eq. (9) and its complex conjugate, the time-dependent
average photon number in the pth cavity can be written as

〈a†
p(t)ap(t)〉 =

∑
mqm′q ′

〈a†
qaq ′ 〉 ṽ∗

mpṽmq ṽ
∗
m′q ′ ṽm′pe−i(ω̃m′−ω̃∗

m)t .

(10)

Following the same procedure for the quadrature operators,
Xp = ap + a

†
p and Yp = i(ap − a

†
p), the time-dependent vari-

ances of X quadrature operator in general form can be shown
to be

〈(	Xp)2〉 = 1 +
∑

mqm′q ′
(2 〈a†

qaq ′ 〉 ṽ∗
mpṽmq ṽ

∗
m′q ′ ṽm′pe−i(ω̃m′ −ω̃∗

m)t

+ 〈aqaq ′ 〉 ṽ∗
mqṽmpṽ∗

m′q ′ ṽm′pe−i(ω̃m′ +ω̃m)t

+ 〈a†
qa

†
q ′ 〉 ṽ∗

mpṽmq ṽ
∗
m′pṽm′q ′ei(ω̃∗

m′ +ω̃∗
m)t ). (11)

To obtain the general form of 〈(	Yp)2〉, one just needs to
change the sign of the last two terms in Eq. (11), containing
〈aqaq ′ 〉 and 〈a†

qa
†
q ′ 〉.

We now study the degree of entanglement between the
photons in cavities p and p′ in a coupled-cavity structure using
correlation variance, which is defined as [10,11]

	2
p,p′ = 〈[	(Xp − Xp′ )]2〉 + 〈[	(Yp + Yp′)]2〉 . (12)

Employing Eq. (9) and its complex conjugate in Eq. (12), the
general form of the time-dependent correlation variance can
be written as

	2
p,p′ = 4 + 4

∑
mqm′q ′

[〈a†
qaq ′ 〉 (ṽ∗

mpṽmq ṽ
∗
m′q ′ ṽm′p

+ ṽ∗
mp′ ṽmq ṽ

∗
m′q ′ ṽm′p′ )e−i(ω̃m′−ω̃∗

m)t ]

− 4
∑

mqm′q ′
〈aqaq ′ 〉 ṽ∗

mqṽmpṽ∗
m′q ′ ṽm′p′e−i(ω̃m′ +ω̃m)t

− 4
∑

mqm′q ′
〈a†

qa
†
q ′ 〉 ṽ∗

mpṽmq ṽ
∗
m′p′ ṽm′q ′ei(ω̃∗

m′ +ω̃∗
m)t . (13)

Equations (10), (11), and (13) give the results for general initial
conditions. In the rest of this paper, we assume that at time
t = 0, the cth cavity is in an excited state of light and the rest
of the cavities are in the vacuum state; thus, in what follows,
the only nonvanishing terms in Eqs. (10), (11), and (13) are
those in which q = q ′ = c. Before proceeding, we first briefly
review some of the quantum properties of different initial states
in a single cavity. In Table I, we summarize some properties of
three different initial states: the SVS, squeezed thermal state
(STS), and coherent state. In Table I, η̃ is the coherent state
parameter, and nth is the thermal photon number for the STS.
For the SVS and STS, the squeezing parameter is generally
complex and we write it in the form ξ̃ = ueiφ , where u and φ

are the squeezing amplitude and phase, respectively.
The formalism introduced here is used in the following

sections to study the temporal evolution of a SVS, first in a
simple two-coupled-cavity system and then in a CROW struc-
ture. Before moving to the next section, it is worth mentioning
that although there are several different methods that can be
used to model coupled optical systems [16,34], our method,
unlike many of the other methods, provides analytic solutions
that are independent of the number of coupled cavities and
so can be easily used to treat photons in CROW systems. In
addition, unlike previous approaches used to treat nonclassical
states of light in similar structures [16,35], our method includes
an exact treatment of intrinsic scattering in systems in which
there are losses that are mode dependent.

III. TWO LOSSY COUPLED CAVITIES

We first consider a system consisting of only two identi-
cal lossy coupled cavities, shown in Fig. 1(a). This system
supports two QMs, ω̃+ and ω̃−, representing the symmetric
and antisymmetric QMs, respectively. It has been shown that
in the nearest-neighbor tight-binding (NNTB) approximation,
the complex frequencies of the QMs of a two-coupled-cavity
system can be written in terms of coupling parameters [36,37]
as

ω̃± � �̃0(1 ± β̃1/2), (14)

TABLE I. The operator expectation values for the SVS, STS,
and coherent state for the cth cavity at t = 0. Here, u and φ are the
squeezing amplitude and phase, respectively, for the SVS and STS, η̃
is the coherent state parameter, and nth is the thermal photon number
for the STS.

Coherent
SVS STS state

〈a†
cac〉 sinh2(u) nth cosh(2u) + sinh2(u) |η̃|2

〈acac〉 −eiφ cosh(u) sinh(u) −(nth + 1
2 )eiφ sinh(2u) η̃2

〈a†
ca

†
c〉 −e−iφ cosh(u) sinh(u) −(nth + 1

2 )e−iφ sinh(2u) η̃∗2
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where β̃1 ≡ B̃LR . The general quantum states of such a system
can be expanded in terms of the two individual cavity states as

M̃±(r) = 1√
2

[ÑL(r) ± ÑR(r)], (15)

where ÑL(r) and ÑR(r) are the modes of the left and right cav-
ities, respectively. Using Eq. (7) with v+L = v+R = 1/

√
2 and

v−L = −v−R = 1/
√

2, one can also write the coupled-cavity
operators as symmetric and antisymmetric superpositions of
the localized site operators as

b+ = 1√
2

(aL + aR) (16)

and

b− = 1√
2

(aL − aR), (17)

where aL and aR are the annihilation operators acting on the
left and right cavities, respectively.

To examine the propagation and time evolution of non-
classical light in lossy coupled-cavity structures, we begin
by studying the evolution of squeezed light in our lossy
two-cavity system. Using Eqs. (10), (11), and (13), we study
the time evolution of the quadrature variances and photon
statistic of states in both cavities to investigate whether the
light transferred to the second cavity maintains its nonclassical
properties and to determine the correlations between light in
the different cavities.

In all the following equations, the specific state of the cth
cavity at t = 0 is general. Table I can be used to obtain results
for specific initial states. However, all plotted results in this
section will be for the initial state where the cth cavity is the left
cavity, which is in a SVS with u = 1.2 and φ = 0. We set ω̃± =
ω± − iγ± and, for simplicity, we assume that γ+ = γ− = γ

and define ω+ = ω and ω+ − ω− = 	. We choose 	 = ω/20
and γ = 0.02	. The parameters are chosen to demonstrate
some of the key features, which are the beating back and forth
between the two cavities, the free oscillations, and the loss in
the system.

Using Eq. (10), the time-dependent average number of
photons in the cavities can then be written as

〈a†
R(t)aR(t)〉 = 1

4 〈a†
LaL〉 (ei(ω̃∗

+−ω̃+)t − ei(ω̃∗
+−ω̃−)t

− ei(ω̃∗
−−ω̃+)t + ei(ω̃∗

−−ω̃−)t ), (18)

〈a†
L(t)aL(t)〉 = 1

4 〈a†
LaL〉 (ei(ω̃∗

+−ω̃+)t + ei(ω̃∗
+−ω̃−)t

+ ei(ω̃∗
−−ω̃+)t + ei(ω̃∗

−−ω̃−)t ), (19)

which can be simplified as

〈a†
R(t)aR(t)〉 = 1

2 〈a†
LaL〉 e−2γ t [1 − cos(	t)] (20)

and

〈a†
L(t)aL(t)〉 = 1

2 〈a†
LaL〉 e−2γ t [1 + cos(	t)]. (21)

As expected, for lossy systems, the number of photons in both
cavities decays to zero at long times due to the exponential
decay coefficient in Eqs. (20) and (21).

Following the same procedure as before and using Eq. (11),
the variances of quadrature operators can be shown to be

〈	X2〉(L,R) = 1 + e−2γ t [1 ± cos(	t)]
( 〈a†

LaL〉
± 1

2 〈aLaL〉 e−i(2ω−	)t

± 1
2 〈a†

La
†
L〉 ei(2ω−	)t

)
(22)

and

〈	Y 2〉(L,R) = 1 + e−2γ t [1 ± cos(	t)]
( 〈a†

LaL〉
∓ 1

2 〈aLaL〉 e−i(2ω−	)t

∓ 1
2 〈a†

La
†
L〉 ei(2ω−	)t

)
, (23)

where the upper (lower) signs belong to the left (right) cavity.
In Fig. 2(a), we plot the mean photon number in each cavity as it
evolves in time for a SVS. As can be seen, the photons, which
are all initially in the left cavity, periodically move in time
between the two cavities. It is also evident that the mean photon
number gradually decreases due to the scattering loss. The
time-dependent quadrature noise in X is shown in Figs. 2(b)
and 2(c) for the left and right cavity, respectively. The dashed
lines indicate the classical limit, below which the quadrature
noise is squeezed. As expected, the quadrature noise in the left
cavity is initially less than this limit (〈	X(t = 0)〉L = 0.3)
since it is a SVS. On the other hand, the right cavity at
t = 0 is vacuum and consequently has the minimum classical
quadrature noise, 	XR = 1. As the coupled system evolves in
time, we can see that the 	XR falls below the classical limit
and reaches 0.4 at 	t = π , which confirms that the squeezed
state has been transferred to the right cavity due to the coupling
between the two cavities. In the absence of loss, this squeezing
would be identical to the squeezing in the left cavity at t = 0.

Before moving to the CROW structure, we evaluate the
entanglement between the light in these two cavities. It has
been shown that 	2

L,R < 4 can be considered as the insepara-
bility criterion for entanglement [10,11,15,38]. Using Eq. (13)
and considering the same initial condition as before, the time-
dependent correlation variance is found to be

	2
L,R = 4 + e−2γ t [4 〈a†

LaL〉
− 〈aLaL〉 ei	t (e−i(2ω+	)t − e−i(2ω−	)t )

− 〈a†
La

†
L〉 e−i	t (e+i(2ω+	)t − e+i(2ω−	)t )]. (24)

Using Eq. (24) for a lossless system and considering the
initial excited state in the left cavity to be a SVS with
large squeezing amplitude (u 
 1), it can be shown that
the minimum achievable value of 	2

L,R is 2, which is well
below the inseparability limit. In Fig. 2(d), we plot the CV
correlation variance as a function of time. As can be seen,
the correlation variance exceeds the inseparability criterion
reaching local minima close to the times 	t = (2l + 1)π/2,
where l is an integer. As expected, the loss affects the degree
of inseparability as the system evolves in time. For instance,
due to loss, although the correlation variance at 	t = 7π/2 is
still below the inseparability limit, it experiences about a 22%
increase compared to the time 	t = π/2 where 	2

L,R ≈ 2.3.
Before moving to the next section, we note that in this two-

cavity system, because in the numerical results that we plotted,
we have made a simplifying assumption that the loss in the
two modes is identical the decay takes the form of a simple
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FIG. 2. Calculated results for the two-coupled-cavity system.
(a) Time evolution of the mean photon number in the left (solid line)
and right (dashed line) cavities. The time evolution of the quadrature
noise in X in (b) the left and (c) the right cavities. The dashed line
at 〈	X〉(L,R) = 1 shows the classical limit for the quadrature noises.
(d) The CV correlation variance as a function of time. The dashed
line in (d) shows the inseparability limit below which the light is
considered to be entangled.

exponential. However, if we had not made that assumption,
the loss behavior would become more complicated; we will see
such effects in the next section where we study the evolution
in a CROW structure.

IV. COUPLED-RESONATOR OPTICAL WAVEGUIDES

Although the simple two-coupled-cavity system is a useful
test bench for understanding the evolution of different states
of light in lossy coupled systems, to be more practical, we

examine a CROW structure, in which the light can propagate
over a longer distance. Such a system, consisting of 2N + 1
weakly-coupled, lossy optical cavities along one dimension
with a periodicity D, is schematically shown in Fig. 1(b).
As discussed in Sec. II, this system can be studied using the
tight-binding method which assumes weak coupling between
different cavities and uses a localized single-mode cavity as a
basis.

Assuming that all the cavities are identical and support
the same mode with complex frequency, �̃p = �̃0, and using
the fact that Ãpq = Ãp−q and B̃pq = B̃p−q in Eq. (4), then
applying periodic boundary condition and Bloch’s theorem,
the tight-binding dispersion can be written as

ω̃(k) = �̃0

√√√√√√√√
1 + 2

N∑
p=1

cos(kpD)α̃p

1 + 2
N∑

p=1
cos(kpD)(α̃p + β̃p)

, (25)

where α̃p ≡ Ã0p and β̃p ≡ B̃0p. Using the NNTB approxima-
tion, where only β̃1 �= 0 in Eq. (25), we obtain

ω̃(k) ≈ �̃0[1 − β̃1 cos(kD)], (26)

where we used the Taylor expansion of the square-root func-
tion. It can be seen from Eq. (26) that the modes of the CROW
experience different loss rates, which can differ by an order of
magnitude [39,40]. Again from NNTB, we obtain

vkp = eikpD

√
N

. (27)

We take the cth cavity to be initially in a squeezed vacuum
state, while all other cavities are in the vacuum state. Such a
state could be achieved, for example, by strongly pumping
the cth cavity in the presence of spontaneous parametric
down-conversion [41,42], as long as the pump duration is much
shorter than the time required for transfer to the neighboring
cavities.

Employing Eqs. (10) and (27), the time-dependent average
photon number in the pth cavity can be written as

〈a†
p(t)ap(t)〉 = 1

N2

∑
kqk′q ′

〈a†
qaq ′ 〉 (e−ik(p−q)Deik′(p−q ′)D

× e−i�̃0[1−β̃∗
1 cos (kD)]t e−i�̃0[1−β̃1 cos (k′D)]t ).

(28)

For our initial conditions, the only nonvanishing expectation
value in Eq. (28) is 〈a†

cac〉 = sinh2(u). Converting the sums to
integrals and using the following equations:

∫ π

0
cos[z̃ cos(x)] cos(nx)dx = π cos

(nπ

2

)
Jn(z̃), (29a)

∫ π

0
sin[z̃ cos(x)] cos(nx)dx = π sin

(nπ

2

)
Jn(z̃), (29b)

where n is an integer and Jn(z̃) is the Bessel function of the
first kind of order n [43], one finds that the time-dependent
average photon number in the pth cavity is

〈a†
p(t)ap(t)〉 = 〈a†

cac〉 e−2γ t |Jδp(ζ̃1t)|2, (30)

023840-5



HOSSEIN SEIFOORY AND MARC M. DIGNAM PHYSICAL REVIEW A 97, 023840 (2018)

0.0 0.2 0.4 0.6 0.8 1.0

kD/π

0.302

0.304

0.306

0.308

ω
d
/2

π
c Ω0

2

6

10

14

18

Q
(1

03
)

Q0

FIG. 3. Frequency (left axis) and quality factor (right axis) as a
function of the Bloch vector for the CROW structure. The dashed
black and red lines represent the resonant frequency and the quality
factor for the individual cavity, respectively.

where ζ̃1 ≡ �̃0β̃1, γ = −Im(�̃0), and δp ≡ p − c. To scale
the time, we define τ = 1/Reζ̃1, which is the minimum time
for a pulse to travel one period. In all of the plots in this section,
it is assumed that the cth cavity is the one in the middle of the
CROW structure (c = 0) and it contains a SVS with u = 0.88
and φ = 0, while the rest are initially in the vacuum state.

The physical parameters of the CROW considered in this
paper are from Ref. [25]. The CROW consists of a dielectric
slab of refractive index n = 3.4 having a square array of
cylindrical air void of radius a = 0.4d, height h = 0.8d,
and lattice vectors a1 = dx̂ and a2 = dŷ, where d is the
period. The cavities are point defects formed by periodically
removing air voids in a line with D = 2d [see Fig. 1(c)]. The
complex frequency �̃0 and the complex coupling parameter
β̃1 of the structure are (0.305 − i7.71 × 10−5)4πc/D and
9.87 × 10−3 − i1.97 × 10−4, respectively.

In Fig. 3, we plot the mode frequency and quality factor
as a function of the Block vector for our CROW structure. As
can be seen, the group velocity and quality factor of the modes
differ greatly across the first Brillouin zone. In particular, the
group velocity (slope of the frequency plot) is zero at the zone
center and at the zone edges. In addition, the quality factor of
the modes at the zone center is 8.3 times larger than for the
modes at the zone edges. This wide variation in the loss of the
different modes has a significant effect on the loss dynamics
in the system, as we shall see.

In Fig. 4, we plot the number of photons in the pth cavity for
p = 0,2,4,6 as a function of time for both lossy (solid green
line) and lossless (dashed gray line) systems. As can be seen,
the number of photons in each cavity decreases as the system
evolves in time. However, in addition to the cavity leakage into
the environment, coupling between the cavities also affects the
number of photons in each cavity. In the other words, even in
the lossless system (dashed gray line), we still see in Fig. 4 that
due to the multiple photon hopping back and forth between the
cavities, the maximum number of photons in the pth cavity gets
smaller as p gets larger. The propagation of light between the
coupled cavities is evident in Figs. 4(b)–4(d). As can be seen,
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FIG. 4. Average photon number in the (a) central, (b) second, (c)
fourth, and (d) sixth cavities as a function of time for the CROW
structure. The dashed gray lines show the cases in which the effects
of loss are ignored. Note the different scaling in (a).

as the cavity index increases from p = 2 to p = 6, a longer
time is needed for the photons to travel from the cth cavity to
the pth. If we consider a lossless system, then what one needs
to calculate the time at which the photon number in each cavity
reaches the maximum value is to find the first maximum of the
Bessel function. From Ref. [44], it can be shown that for the
cavities far from the cth cavity (large p), the first maximum
occurs at the time

tp

τ
≈ p + c0p

1/3, (31)

where c0 ≈ 0.8. Using Eqs. (26) and (30), the effective
propagation velocity (defined as the distance to the cavity
divided by the time required to reach the cavity) is then given
approximately by

vp = pD

tp
≈ vmax(1 − c0p

−2/3), (32)

where vmax = D/τ is the maximum group velocity, which is
about 0.04 of the speed of light in vacuum for this CROW
structure.

Summing the average number of photons in each cavity and
applying Neumann’s addition theorem [43], the total number
of photons in the system at time t is given by

Ntot =
∑

p

〈a†
p(t)ap(t)〉 = 〈a†

cac〉 e−2γ t I0(2Im(ζ̃1t)), (33)

where I0 is the zeroth-order modified Bessel function of the
first kind. Ignoring the losses in the system, it can be shown that
the total number of photons in the system is simply sinh2(u)
for all t , which is exactly the number of photons in the cth
cavity at time t = 0. Also, note that although I0(2Im(ζ̃1t))
monotonically increases with time, the total number of photons
still decreases as the system evolves in time due to the dominant
exponential factor e−2γ t in Eq. (33). Using a series expansion
of the Bessel function, it can be shown that for the time range
considered in this paper, the total number of photons in the
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FIG. 5. Quadrature noise in X in the (a) central, (b) second, (c)
fourth, and (d) sixth cavities as a function of time for the CROW. The
deviation from a lossless system, shown with light gray, is evident in
each case. Note the different scaling in (a) and note that there are fast
oscillations that are not observable on this time scale.

system is accurately given by

Ntot ≈ 〈a†
cac〉 e−2γ t {1 + [Im(ζ̃1t)]

2}, (34)

where the γ is the decay constant associated with an individual
cavity and the term involving Im(ζ̃1t) is the correction term
which arises due to the averaging of the losses over all the
possible Bloch states. As mentioned earlier and as can be seen
in Fig. 3, different Bloch states experience different losses,
which explicitly indicates that assuming the same loss factor
for every mode is not valid for CROW structures such as this.
Thus, an important conclusion of our results is that due to
the strong variation in loss for different Bloch modes, one
should not expect exponential decay in the photon number
in a CROW for a general initial state. We examine this effect
more carefully shortly, but first turn to an examination of the
quadrature variances and correlations.

Following a procedure similar to that used to arrive at
Eq. (30), one can derive the following expressions for the
variances of the quadrature operators in the CROW structure:

〈(	Xp)2〉 = 1 + 2 〈a†
cac〉 e−2γ t |Jδp(ζ̃1t)|2

+〈acac〉 eiδpπJ 2
δp(ζ̃1t)e

−2i�̃0t

+〈a†
ca

†
c〉 e−iδpπJ 2

δp(ζ̃ ∗
1 t)e2i�̃∗

0 t (35)

and

〈(	Yp)2〉 = 1 + 2 〈a†
cac〉 e−2γ t |Jδp(ζ̃1t)|2

−〈acac〉 eiδpπJ 2
δp(ζ̃1t)e

−2i�̃0t

−〈a†
ca

†
c〉 e−iδpπJ 2

δp(ζ̃ ∗
1 t)e2i�̃∗

0 t . (36)

The time-dependent quadrature noise in X for lossy and
lossless systems is shown in orange and gray, respectively, in
Fig. 5 for different cavities in the CROW structure. As can be
seen in Fig. 5(a), due to the nature of SVSs, the quadrature noise
in X is initially less than the classical limit (dashed line), as
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FIG. 6. Maximum number of photons (left axis) and minimum
quadrature noise in X (right axis) in the first 11 cavities of the CROW.
The inset shows the minimum correlation variance between different
symmetrically displaced pairs of cavities. The dashed lines show the
same quantities when the system is lossless.

expected. The coupling between the cavities and the scattering
loss in the system degrades the squeezing in the cavities as the
system evolves in time.

The maximum number of photons and the maximum
squeezing in each cavity are shown in Fig. 6. As expected,
both the maximum number of photons and squeezing in the X

quadrature decrease as we move away from the central cavity.
This is most evident when comparing the corresponding
quantities for the tenth and the central cavities. The quadrature
noise in X and the maximum photon number in the tenth
cavity are 2.4 and 0.05 times the corresponding values at the
zeroth cavity, respectively. This figure also shows the effects
of loss on the maximum number of photons and maximum
squeezing by comparing the lossy (solid line) and lossless
(dashed line) results. As can be seen, in the absence of loss, the
maximum number of photons is higher, as expected, and the
quadrature noise in X is more squeezed, which is in agreement
with our previous results on squeezed state generation in a
single lossy cavity [26].

We now examine the effects of loss in more detail by
returning to the results for photon number. Using Eq. (28), one
can calculate the ratio Rp of the maximum photon number in
the pth cavity in a lossy system to that in an idealized lossless
system as a function of p. In Fig. 7(a), we plot the difference
	Rp between the exact Rp and what one would obtain using
only the single-cavity exponential loss, i.e., assuming that β̃1

is real (dashed blue line). In the same figure, we also plot the
difference between the exact Rp and an exponential fit to the
loss (black line). As can be seen, both approximate results
agree quite well with our results, with the maximum deviation
being only about 0.01 for the selected range of p. This good
agreement arises because the peaks in the photon number in
each cavity are dominated by the Bloch modes for the photons
with the maximum group velocity, which according to Fig. 3
are the modes close to k = π/2D with the corresponding qual-
ity factor close to Q0. Now, to show that an exponential is not
a good fit for all quantities, in Fig. 7(b), we plot the difference
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FIG. 7. Calculated results for the photon numbers in the CROW
structure. (a) The deviation of the maximum photon number ratio
from the pure exponential term in Eq. (28) (dashed blue line) and
from an exponential fit (black line), e−at , where a = 1.5 × 10−4 as a
function of p. (b) The deviation of the total photon number from the
exact result of Eq. (33) for (1) Eq. (34) (solid black line), (2) a pure
exponential factor in Eq. (33) (dotted red line), and (3) an exponential
fit (dashed blue line) with fitting parameter a = 3.8 × 10−4.

	Ntot between the results from Eq. (33) and (1) Eq. (34) (solid
black line), (2) the pure exponential term in Eq. (33) (dotted
red line), and (3) an exponential fit (dashed blue line). As
can be seen, a purely exponential fit does not agree well with
our results. This is due to the fact that our initial condition
results in a state that has equal weight in all of the Bloch
modes and therefore includes modes that have a wide range of
group velocities and quality factors. This shows that one cannot
necessarily assume a simple exponential decay when treating
CROW structures or any other coupled-cavity structures if the
coupled modes have significantly different quality factors. The
degree of deviation from pure exponential decay will depend
on the structure and the initial state of the system.

We now study the inseparability criteria for the squeezed
light inside the CROW structure. Using Eqs. (13), the time-
dependent correlation variance can be written as

	2
p,p′ = 4 + 4 〈a†

cac〉 e−2γ t [|Jδp(ζ̃1t)|2 + |Jδp′ (ζ̃1t)|2]

− 4 〈acac〉 e−2i�̃0t ei(δp+δp′)π/2Jδp(ζ̃1t)Jδp′(ζ̃1t)

− 4 〈a†
ca

†
c〉 e2i�̃∗

0 t e−i(δp+δp′)π/2Jδp(ζ̃ ∗
1 t)Jδp′ (ζ̃ ∗

1 t),

(37)

where the sum of the last three terms needs to be negative for
the inseparability criteria for the CVs to be fulfilled.

In Fig. 8, we plot the time-dependent correlation variances
for different sets of lossy and lossless cavities in blue and
gray, respectively. The dashed lines show the inseparability
criteria below which the light is considered to be entangled.
Here we only focus on cases where the two cavities considered
are located the same distance from the central cavity, as this
will yield the maximum entanglement; however, using Eq. (37)
one can explore the entanglement between any two cavities
of the CROW. As can be seen, the maximum entanglement
between each pair of cavities occurs when the peak in the
photon number arrives at those cavities. Indeed, as time passes
and the system evolves in time, the photons either scatter
to the environment or move along the CROW, leading to a
reduction in the number of photons in the considered cavity
and consequently a decrease in the degree of entanglement. In
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FIG. 8. Correlation variance between different pairs of cavities in
the CROW as a function of time. The results for a lossless system are
shown in light gray.

order to compare the entanglement between different sets of
cavities, in the inset to Fig. 6 we plot the minimum correlation
variance as a function of cavity index, p. The dashed lines show
the results when the effects of loss are ignored. As expected,
the difference between the lossy and the ideal systems is more
evident as we get away from the central cavity.

Finally, in order provide better insight into how the maxi-
mum number of photons, the minimum quadrature noise in X,
and the minimum correlation variance vary with cavity number
in a lossless CROW system for the cavities far from the central
cavity (largep) when the c = 0 cavity is initially in the SVS, we
use asymptotic expansion expressions for the Bessel functions
[44] in Eqs. (30), (35), and (37) to obtain

〈a†
pap〉

max
≈ c2

1 sinh2(u)

p2/3
, (38)

〈(	Xp)2〉max ≈ 1 − c2
1(1 − e−2u)

p2/3
, (39)

and

(
	2

p,−p

)
max ≈ 4

[
1 − c2

1(1 − e−2u)

p2/3

]
, (40)

where c1 = 21/3Ai(−21/3c0) ≈ 0.67, where Ai is the Airy
function. It can be seen that for all three quantities, the
dependence on p is p2/3.

V. CONCLUSION

In this work, we have examined the time evolution of
squeezed states in coupled-cavity systems. We have applied
the tight-binding method to evaluate the fields and complex
frequencies for the leaky modes of lossy coupled-cavity sys-
tem.

We have presented the analytic time-dependent expressions
for the photon number, quadrature noise, and correlation
variance in the simple two-coupled-cavity system and in a lossy
CROW structure in terms of Bessel functions.
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We have examined how the nonclassical properties of light
in one cavity will be transferred to the other cavities in
lossy coupled-cavity systems and have shown how loss affects
properties such as photon number, quadrature squeezing, and
entanglement. Moreover, we have studied the maximum values
of these three quantities in both a lossy and a lossless system
and have derived approximate analytic expressions for the p

dependence of the maximum values of these three quantities
in the absence of loss.

Our analytic results enabled the investigation of the ef-
fects of loss for any CROW structure that can be modeled
using the nearest-neighbor tight-binding approximation. The
importance of loss depends on the initial conditions as well
as the single-cavity loss, the group velocity, and the loss
dispersion of the particular CROW being studied. We have
found that for the CROW structure considered in this work,
the effects of loss are significant and should not be ne-
glected. In particular, we have shown that when the Bloch
modes have very different quality factors, the effects of loss
cannot generally be treated by using a simple exponential
loss factor.

Although we have focused on the squeezed states in this
work, one can study the same quantities of the other states of
light such as squeezed thermal states and coherent states by
simply replacing the corresponding quantities in the expres-
sions provided in this paper.

Finally, it should be mentioned that here, rather than
employing a continuous-wave pump to generate nonclassical
light in the central cavity, we have focused on the time
evolution of an initially generated squeezed state in the system.
The full process of generation and evolution of the squeezed
state in a coupled-cavity system and evaluating the dynamics
of continuous-variable entanglement in such a system under
continuous-wave pumping will be explored in future work.
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