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In the analysis of the correlation between intensity fluctuations (CIF) of light waves on scattering from a
medium, it is implicitly assumed that the incident field is monochromatic. However, under usual circumstances,
the field always has a certain frequency width. We examine the CIF of polychromatic electromagnetic light waves
on scattering. It is found, in general, that the frequency components of the CIF may change on scattering from a
medium whose dielectric susceptibility is a random function of position. The critical angle at which no frequency
shift arises is introduced and the corresponding analytic expression is derived. The result shows that the critical
angle is dominated by the physical properties of the medium and the source. Finally, we propose a scaling law for
the normalized CIF for the scattering of polychromatic electromagnetic light waves. Our theory can be regarded
as the vectorial extension of the scalar theory of Wolf et al. [E. Wolf, J. T. Foley, and F. Gori, J. Opt. Soc. Am. A
6, 1142 (1989)].
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I. INTRODUCTION

The correlation between intensity fluctuations (CIF), which
reveals the high-order coherence characteristics of the field, is
a topic of considerable importance. At first, the CIF was used
to measure the angular diameter of radio stars in astronomy
[1]. Subsequently, this method has been applied to various
areas, such as high-energy physics, atom physics, and nuclear
physics [2–4]. In particular, it has been used in the domain of
ghost imaging strongly depending on intensity fluctuations as
a tool for retrieving an unknown object’s transmittance pattern
[5,6]. The measurements of the CIF can be fulfilled through the
Hanbury-Brown-Twiss (HBT) experiment, which is one of the
celebrated experiments of modern physics that accommodates
equally classical and quantum interpretations [7].

Due to the important applications in remote sensing, climate
research, medical diagnosis, and so on, the weak scattering
theory has attracted substantial attention [8–19] (for a review
of this research, please see Ref. [20]). Recently, the CIF
of light waves on scattering from a medium has been a
popular topic. For instance, Xin et al. discussed the CIF of
scalar light waves scattered by a quasihomogeneous medium.
It is found that the CIF in the far zone is determined by
the spatial Fourier transforms of both the strength function
and the degree of spatial correlation of the scattering potential,
and the normalized CIF equals the square of the modulus of
the degree of spectral coherence of the scattered field [21].
Jacks et al. generalized from the plane wave to the CIF of
the arbitrarily correlated incident field scattered by a random
medium [22]. Li et al. presented the statistical properties of
the CIF of an electromagnetic plane wave on scattering from a
spatially quasihomogeneous, anisotropic medium. The effects
of the polarization properties of the special polarization source
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on the CIF of the scattered field have been discussed [23]. In
addition, determining the structure information of the scatterer
from the CIF of the scattered field was also discussed in
detail [24], and recently this method has been generalized from
second-order CIF to a third-order one [25]. In this paper, we
focus on the CIF of polychromatic electromagnetic light waves
on scattering. We obtain the generalized analytic expression
for the CIF of polychromatic electromagnetic light waves on
scattering. An example is presented to show how the frequency
components of the incident field, scattering directions, and
the physical properties of the scatterer affect the far-zone
CIF. Furthermore, we will put forward a so-called scaling
law for the normalized CIF of the scattering of polychromatic
electromagnetic light waves.

The whole paper is organized as follows: In Sec. II,
we derive the generalized analytic formula for the CIF of
polychromatic electromagnetic light waves on scattering. In
Sec. III, as an example, we present the changes of the CIF
of polychromatic electromagnetic light waves scattered by a
quasihomogeneous medium, and the concept of the critical
angle is introduced. In Sec. IV, we propose a scaling law for
the normalized CIF of the scattering of polychromatic electro-
magnetic light waves. Finally, we present a brief summary and
discuss the potential application of our results and the link to
the Wolf effect in the Sec. V.

II. EXPRESSION FOR THE CIF OF POLYCHROMATIC
ELECTROMAGNETIC LIGHT WAVES ON WEAK

SCATTERING

Consider that a polychromatic electromagnetic plane wave,
propagating in the direction of a unit vector s0 along the z
axis, is incident on a statistically stationary random scatterer
occupying a finite volume D (see Fig. 1). The property of the
incident field at a pair of points r

′
1 and r

′
2 within the domain

of the scatterer can be described by its cross-spectral density
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FIG. 1. Illustration of notations.

matrix, which is defined as [26]

W(i)(r′
1,r

′
2,s0; ω) ≡ [

W
(i)
ij (r′

1,r
′
2,s0

; ω)
]

= [〈Ui
∗(r′

1,ω)Uj (r′
2,ω)〉]

(i = x,y; j = x,y), (1)

where the asterisk represents the complex conjugate, the
angular brackets denote the ensemble average, Ux(r

′
,s0; ω0)

and Uy(r
′
,s0; ω0) are the Cartesian components of U (r

′
,s0; ω0)

with respect to two mutually orthogonal x and y directions,
respectively, which has the form [26]

Ui(r′,s0; ω) = Aiai(ω) exp(iks0 · r′), (2)

where Ai is a constant, representing the amplitude of the
electric field along the ith axis, ai(ω) is (generally complex)
frequency-dependent random variables, and k = ω/c is the
wave number with c being the speed of light in vacuum. For
the sake of simplicity, we assume that the x and y components
of the electric field in the source plane are uncorrelated, i.e.,
the nondiagonal elements in Eq. (1) are zero [26].

The second-order coherence and polarization properties of
the scattered field at two points rs1 and rs2 can be characterized
by a so-called 3 × 3 cross-spectral density matrix, which can
be expressed as [26]

W(s)(rs1,rs2; ω) ≡ [
W

(s)
ij (rs

1
,rs2; ω)

]
= [〈

U
(s)
i

∗(rs1,ω)U (s)
j (rs2,ω)

〉]
(i = x,y,z; j = x,y,z), (3)

where U
(s)
i (rs1,ω) is the Cartesian component of U(s)(rs1,ω)

along the ith axis. Assume that the scatterer is so weak that the
scattering can be analyzed within the accuracy of the first-order
Born approximation. The three-dimensional distribution of the
scattered field then takes the form [15]

U (s)
x (rs,ω) =

∫
D

F (r′,ω)G(rs,r′; ω)

× {(
1 − s2

x

)
Ux(r′,s0; ω)

− sxsyUy(r′,s0; ω)
}
d3r ′, (4a)

U (s)
y (rs,ω) =

∫
D

F (r′,ω)G(rs,r′; ω)

×{−sxsyUx(r′,s0; ω)

+(
1 − s2

y

)
Uy(r′,s0; ω)

}
d3r ′, (4b)

U (s)
z (rs,ω) =

∫
D

F (r′,ω)G(rs,r′; ω)

×{−sxszUx(r′,s0; ω)

−syszUy(r′,s0; ω)}d3r ′. (4c)

Here, sx,sy , and sz are the Cartesian components of the
unit vector s along the x, y, and z axis, respectively.
F (r′,ω) = k

2
η(r′,ω) is the scattering potential of the medium,

with η(r′,ω) being dielectric susceptibility, and G(rs,r′; ω)
is the outgoing free-space Green function, which can be
expressed as

G(rs,r′; ω) ∼ eikr

r
exp(−iks · r′). (5)

Now let us consider the CIF at two points, specified by the
position vectors rs1 and rs2, in the scattered field, which is
defined as

C(s)(rs1,rs2; ω) ≡ 〈�I (s)(rs1,ω)�I (s)(rs2,ω)〉, (6)

where �I (s)(rs,ω) represents the intensity fluctuation of the
scattered field at a point, which is given by

�I (s)(rs,ω) = I (s)(rs,ω) − 〈I (s)(rs,ω)〉. (7)

Here, I (s)(rs,ω) and 〈I (s)(rs,ω)〉 denote the instantaneous and
the averaged intensities of the scattered field, respectively, and
can be calculated from

I (s)(rs,ω) = U (s)
x

∗
(rs,ω)U (s)

x (rs,ω)

+ U (s)
y

∗
(rs,ω)U (s)

y (rs,ω)

+ U (s)
z

∗
(rs,ω)U (s)

z (rs,ω), (8)

〈I (s)(rs,ω)〉 = 〈
U (s)

x

∗
(rs,ω)U (s)

x (rs,ω)
〉

+ 〈
U (s)

y

∗
(rs,ω)U (s)

y (rs,ω)
〉

+ 〈
U (s)

z

∗
(rs,ω)U (s)

z (rs,ω)
〉

= TrW(s)(rs1,rs2; ω), (9)

with Tr denoting the trace.
If we assume that the fluctuations of the scattered field obey

the Gaussian statistics, as is often the case, then this allows the
calculation of the fourth-order correlation from the second-
order correlation [26]. Thus, the CIF of the scattered field can
be simplified as

C(s)(rs1,rs2; ω) =
∑
ij

∣∣W (s)
ij (rs1,rs2; ω)

∣∣2
. (10)

On substituting from Eqs. (2), (4), (5), (8), and (9) into
Eq. (10), after some tedious calculations, we obtain a compact
expression for the CIF of the scattered field, with a form of

C(s)(rs1,rs2; ω) = 1

r4

(ω

c

)8
�(s1,s2; ω)

× C̃2
η[−k(s1 − s0),k(s2 − s0); ω], (11)
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where

�(s1,s2; ω) = (
1 − s2

1x

)(
1 − s2

2x

)
A4

xS
2
x (ω)

+ 2s1xs1ys2xs2yA
2
xA

2
ySx(ω)Sy(ω)

+ (
1 − s2

1y

)(
1 − s2

2y

)
A4

yS
2
y (ω) (12)

is governed by the polarization and spectrum properties of the
incident field, with Si(ω) = 〈a∗

i (ω)ai(ω)〉 being the spectrum
of the incident field along the ith axis, and

C̃η[K1,K2; ω] =
∫

D

∫
D

Cη(r′
1,r

′
2; ω)

× exp[−i(K2 · r′
2 + K1 · r′

1)]d3r ′
1d

3r ′
2
(13)

is the six-dimensional spatial Fourier transform of the correla-
tion function, with

Cη(r′
1,r

′
2; ω) = 〈η∗(r′

1,ω)η(r′
2,ω)〉 (14)

representing the correlation function of the dielectric sus-
ceptibility of the scattering medium. K1 = − k(s1 − s0) and
K2 =k(s2 − s0) are analogous to the momentum transfer vector
of the quantum mechanical theory of potential scattering.

Equation (11) is a general formula by which the far-zone
CIF of polychromatic electromagnetic light waves on scatter-
ing from a random medium can be discussed. This formula
shows the dependence of the CIF of the scattered field on
the frequency of the incident field, i.e., the incident field in
different frequency ranges has different CIF on scattering from
a random medium. Besides, the CIF is close to the physical
properties of both the source �(s1,s2; ω) and the medium
C̃η[K1,K2; ω], and these two parts also contain the influence
of the scattering direction s on the CIF; hence, in general, the
far-zone CIF will be different between two different directions
of observation. On the other hand, we note that Eq. (11)
also shows a remarkable property: it is independent of the
component Uz of the incoming field. This is because we assume
that the incoming plane wave is along the z axis, i.e., the
scatterer is illuminated with the normal incidence plane wave.
Under this circumstance, there is no component Uz of the
incoming field. This choice for representation of the incoming
field in terms of Ux and Uy is the most efficient one as it
leads to the result that all physical quantities are expressed in
terms of only Ux and Uy and not Ux , Uy , and Uz. Finally, we
would also like to point out that when we do not consider the
frequency width of the incident field, i.e., the incident field is
monochromatic, Eq. (11) can reduce to be C(s)(rs1,rs2; ω) =
S2(ω)

r4 �(s1,s2; ω)C̃2
F [−k(s1 − s0),k(s2 − s0); ω], where �(s1,

s2; ω) = (1 − s2
1x)(1 − s2

2x)A4
x + 2s1xs1ys2xs2yA

2
xA

2
y + (1 −

s2
1y)(1 − s2

2y)A4
y represents the polarization properties of the

source and C̃F [−k(s1 − s0),k(s2 − s0); ω] is the Fourier trans-
form of the correlation function of scattering potential
CF (r′

1,r
′
2; ω). The formula clearly gives an insightful relation-

ship between the CIF and the polarization properties of the
source and the coherence properties of the scattering medium.
We may therefore also say that Eq. (11) can be regarded as a
generalized formula for the CIF of electromagnetic light waves
on scattering.

III. AN EXAMPLE: THE CIF OF THE FIELD SCATTERED
BY STATISTICALLY QUASIHOMOGENEOUS MEDIA

Next let us consider that the medium is statistically quasi-
homogeneous. A medium can be regarded as a quasihomoge-
neous medium when its correlation function of the dielectric
susceptibility can be characterized by a product that contains
a slow function Iη and a fast function μη at each frequency ω

[26], i.e.,

Cη(r′
1,r

′
2; ω) = Iη

(
r′

1 + r′
2

2
,ω

)
μη(r′

2 − r′
1,ω), (15)

where Iη and μη are the strength function and the normalized
correlation coefficient of the dielectric susceptibility of the
scattering medium, respectively. On substituting from Eq. (15)
first into Eq. (13), and making use of variable transforms
as rS = (r′

1 + r′
2)/2 and rD = r′

2 − r′
1, after manipulating the

Fourier transform, then substituting into Eq. (11), we can
obtain the CIF of polychromatic electromagnetic light waves
on scattering from a quasihomogeneous medium, which is
expressed by the form

C(s)(rs1,rs2; ω) = 1

r4

(ω

c

)8
�(s1,s2; ω)

× Ĩ 2
η (K1 + K2,ω)

× μ̃2
η

(
K2 − K1

2
,ω

)
. (16)

To better illustrate how the relative CIF behaves on scat-
tering from a quasihomogeneous medium, it will be useful to
introduce the normalized CIF, referring to the treatment about
the spectral changes on propagation [26], using the formula

C(s)
n (rs1,rs2; ω) = C(s)(rs1,rs2; ω)∫ ∞

0 C(s)(rs1,rs2; ω)dω
. (17)

On substituting from Eq. (16) into Eq. (17), we obtain the
following expression:

C(s)
n (rs1,rs2; ω)

= ω8�(s1,s2; ω)Ĩ 2
η (K1 + K2,ω)μ̃2

η

(K2−K1
2 ,ω

)
∫ ∞

0 ω8�(s1,s2; ω)Ĩ 2
η (K1 + K2,ω)μ̃2

η

(K2−K1
2 ,ω

)
dω

.

(18)

Assume now that Iη(r′
1,r

′
2; ω) and μη(r′

1,r
′
2; ω) have Gaussian

forms, viz.,

Iη(r′
1,r

′
2; ω) = C0 exp

[
− (r′

1 + r′
2)2

8σ 2
s

]
, (19a)

μη(r′
1,r

′
2; ω) = exp

[
− (r′

2 − r′
1)2

2σ 2
g

]
, (19b)

where C0 is a positive real constant, and σs and σg denote
the effective width and the effective correlation width of the
distribution function, respectively. For a quasihomogeneous
medium, it must meet σs 	 σg . Furthermore, assume that the

023837-3



YI DING AND DAOMU ZHAO PHYSICAL REVIEW A 97, 023837 (2018)

spectrum of the incident field along x and y have the same distribution of Gaussian function, with a form of

Sx(ω) = Sy(ω) = B0 exp

[
− (ω − ω0)2

2�2
0

]
, (20)

where ω0 denotes the central frequency, �0 stands for the linewidth of the spectrum, and B0 is a positive real constant.
On substituting from Eqs. (13), (15), (16), (19), and (20) into Eq. (18), with the help of a product theorem for Gaussian

functions [8], the exponent part of the numerator and denominator in Eq. (18) can then be expressed as

exp

{
(ω − ω0)2

�0
+

[
σ 2

s (2 − 2 cos θ )

c2
+ σ 2

g (2 − 2 cos θ)

4c2

]
ω2

}
= exp

{
(ω − ω′

0)2

�2
+

(
�2

0 − �2
)
ω2

0

�4
0

}
. (21)

Here, 1/�2 =1/�2
0 + σ 2

s (2 − 2 cos θ )/c2 + σ 2
g (2 − 2 cos θ)/4c2, ω′

0 = ω0�
2/�2

0 , and θ denotes the angle between incident
direction s0 and scattering direction s1. In the process of solving the scattering problem, in general, we choose s2 along the
incident direction. Thus, the normalized CIF of the scattered field can be obtained as

C(s)
n (rs1,rs2; ω) =

ω8 exp
[− (ω−ω′

0)
2

�2 + (�2
0−�2)ω2

0

�4
0

]
∫ ∞

0 ω8 exp
[− (ω−ω′

0)
2

�2 + (�2
0−�2)ω2

0

�4
0

]
dω

= ω8 exp
[− (ω−ω′

0)2

�2

]
�

√
π

(
ω′

0
8 + 14�2ω′

0
6 + 210�4ω′

0
4 + 1680�6ω′

0
2 + 420�8

) .

(22)

It should be pointed out that on the above integration calcula-
tions, we have assumed that �0 � ω0, which means that the
spectral width of the incident light is so small compared with
ω0. Thus, the low limit of the integration can be extended to
negative infinity, at a good approximation.

From Eq. (22), it can be seen that different from
the normalized CIF of the incident light, (

√
π�0)−1 exp

[−(ω − ω0)2/�2
0], which is independent of positions,

C(s)
n (rs1,rs2; ω) depends strongly on the scattering direction

and its distribution width is narrower (� < �0). Only when
the scattering direction s1 is also along the incident direction,
i.e., θ = 0, ω′

0 =ω0 can be established. Otherwise, due to
the physical properties of the medium, as being presented by
physical parameters σs and σg , the distribution center of the
Gaussian function in Eq. (22) moves towards lower frequency
with respect to the center of the Gaussian line of the normalized
CIF of the incident light (i.e., is redshifted). On the other
hand, the factor ω8 in Eq. (22) is an increasing function of the
frequency, and hence will produce a shift towards the higher
frequency (i.e., a blueshift). Consequently, the normalized CIF
of the scattered field will be either a redshift or blueshift with
respect to the normalized CIF of the incident field, depending
on the magnitudes of these two contributions.

The behaviors of the normalized CIF of polychromatic light
waves on scattering from different quasihomogeneous media
are plotted in Fig. 2. Figure 2(a) displays the behaviors of the
normalized CIF of the scattered field for different effective
width σs . It is indeed shown that the frequency components
of the CIF of the scattered field will produce shift, for poly-
chromatic light waves on scattering from a quasihomogeneous
medium. It is also shown that different effective width σs leads
to different CIF shifts at a certain scattering angle. Moreover,
the larger is the effective width σs , the more is the redshift.
Figure 2(b) depicts the behaviors of the normalized CIF of the
scattered field for different effective correlation width σg . It
is shown that the influence of the effective correlation width
σg on correlation shifts can be negligible. These results can be

viewed as the reciprocity theorem for the CIF of polychromatic
light waves scattered by quasihomogeneous media.

In the following, we discuss a special case in which
two contributions accounting for redshift or blueshift achieve
balance. That is to say, to find a special scattering angle at
which no frequency shift appears is important and we call this
angle the critical angle. To this end, we must first determine the
magnitude of the central frequency of the shifted line, which
can be derived by ∂C(s)

n (rs1,rs2; ω)/∂ω = 0. Obviously, only
one root of this equation is legitimate, which has the following
form:

ω(θ ) = ω′
0

2

⎡
⎣1 +

√
1 +

(
4�

ω′
0

)2
⎤
⎦

≈ ω0

(
�2

�2
0

+ 4�2
0

ω2
0

)
. (23)

It should be emphasized that on above derivations, only the
first two terms are taken into account in a Taylor expansion.

FIG. 2. Behaviors of the normalized CIF of polychromatic light
waves on scattering from different quasihomogeneous media. The
parameters for calculations are c = 3 × 108, ω0 = 3 × 1015 s−1, k0 =
ω0/c, �0 = 0.05ω0, θ = 0.4, (a) k0σg = 0.1, and (b) k0σs = 10.

023837-4



CORRELATION BETWEEN INTENSITY FLUCTUATIONS OF … PHYSICAL REVIEW A 97, 023837 (2018)

FIG. 3. (a) Illustrating the influence of the scattering angle on
the normalized CIF of the scattered field. (b) Normalized CIF of the
scattered field as a function of θ for several selected frequencies. The
parameters for calculations are k0σs = 10 and k0σg = 1. The other
parameters are the same as Fig. 2 and the corresponding critical angle
is θc = 0.2011.

Then the magnitude of the frequency shift can be derived from

�ω(θ ) ≡ ω(θ ) − ω0 = ω0

(
�2

�2
0

+ 4�2
0

ω2
0

)
− ω0. (24)

The critical angle naturally gives �ω(θ ) = 0, and thus the
critical angle can be obtained by solving the corresponding
equation as

θc = arccos

[
1 − 8c2(

4σ 2
s + σ 2

g

)(
ω0 − 4�2

0

)
]
. (25)

From Eq. (25), we can clearly see that the critical angle is
only dominated by two parts. One is the physical properties of
the medium; the other is the optical properties of the incident
light. For the given parameters of the medium and the source,
the critical angle θc can be determined. In the case of θ > θc,
�ω(θ ) < 0, it implies that redshift occurs, and when θ < θc,
�ω(θ ) > 0, blueshift is produced.

Figure 3(a) plots the normalized CIF as a function of ω

for different scattering angles. It can be seen that different
scattering angles can induce different correlation shift, namely,
for the larger scattering angle, the central frequency of the
normalized CIF moves towards a smaller value, reflecting
the obvious redshift. For the case of θ = 0, the central fre-
quency takes a larger value, i.e., blueshift appears, while the
distribution with the critical angle remains equal to the initial
central frequency ω0. The results are in accordance with the
phenomena we expected. To further investigate the effect of
the scattering angle, the behaviors of the normalized CIF for
several selected frequencies are displayed in Fig. 3(b). For the
two frequencies ω = ω0 + 2�0 and ω = ω0 − 2�0, they have
the same distribution of the CIF of the source. However, as
shown in Fig. 3(b), when θ < θc, the high-frequency scattered
field has stronger CIF compared with the low-frequency one,
and vice versa. Another pair of frequencies also represents
the same regulations. Hence, these results indicate that low-
frequency scattered fields have a stronger CIF with the increase
of scattering angle, i.e., we can say that there exist more
low-frequency scattered fields at a large scattering angle.

IV. SCALING LAW FOR THE CIF OF POLYCHROMATIC
ELECTROMAGNETIC LIGHT WAVES ON WEAK

SCATTERING

Based on the previous discussions, it is shown that the
CIF of polychromatic light on scattering is distinctly different
from that of monochromatic light. The results show the key
influence of the frequency on CIF. Meanwhile, the results also
demonstrate that the frequency components of the CIF indeed
change on scattering from a random medium. In particular,
the scattering angle is an important factor that induces the
CIF variances. In the following, we will derive a sufficient
condition under which the normalized CIF of the scattered field
is independent of the scattering angle, i.e., the normalized CIF
of between arbitrary two points in the whole scattering space
remains the same.

From Eqs. (11) and (17), we can see that for the normalized
CIF, the scattered field will be irrelevant to the scattering
direction if the correlation function of the medium and the
spectrum distribution of the incident field satisfy the following
relations, respectively:

C̃η(K1,K2; ω) = F (ω)H̃ (s1 − s0)H̃ (s2 − s0), (26a)

Sx(ω) = κSy(ω), (26b)

where κ is a frequency-independent constant, for in that case
Eq. (17) reduces to

C(s)
n (rs1,rs2; ω) = [Sx(ω)ω4F (ω)]2∫ ∞

0 [Sx(ω)ω4F (ω)]2
dω

, (27)

which is indeed independent of scattering direction s.
Now we will further discuss Eq. (26a), with the choice
s1 = s2 = s0, which reduces to

C̃η(0,ω) = F (ω)H̃ 2(0). (28)

Thus, on substituting from Eq. (28) into Eq. (26a), after some
arrangements, Eq. (26a) can be expressed as

C̃η(K1,K2; ω) = C̃η(0,ω)

H̃ 2(0)
H̃

(
−K1

k

)
H̃

(
K2

k

)
. (29)

An important consequence can be obtained if we take the
inverse Fourier transform of Eq. (29), namely,

Cη(r′
1,r

′
2; ω) = C̃η(0,ω)

(2π )6H̃
2
(0)

×
∫

D

∫
D

H̃

(
−K1

k

)
H̃

(
K2

k

)

× exp[i(K2 · r′
2 + K1 · r′

1)]d3K1d
3K2.

(30)

On changing the variables of integration from K1 to K
′
1/k, and

K2 to K
′
2/k, we obtain from Eq. (30) the expression

Cη(r′
1,r

′
2; ω) = k6C̃η(0,ω)

H̃ 2(0)
H (−kr′

1)H (kr′
2). (31)
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The degree of spatial coherence of the dielectric susceptibility
of the scatterer can be defined as

μη(r′
1,r

′
2; ω) = Cη(r′

1,r
′
2; ω)

Cη(0,ω)
. (32)

On substituting from Eq. (31) into Eq. (32), we arrive at

μη(r′
1,r

′
2; ω) = h(−kr′

1,kr′
2), (33)

with

h(−kr′
1,kr′

2) = H (−kr′
1)H (kr′

2)

H̃ 2(0)
. (34)

Thus, on combining Eq. (26b) with Eq. (33), we can rewrite
the sufficient condition in the following forms:

μη(r′
1,r

′
2; ω) = h(−kr′

1,kr′
2), (35a)

Sy(ω) = κSx(ω). (35b)

Equation (35a) can guarantee that the normalized CIF of the
two arbitrary points remain the same for scalar light waves on
scattering from random media. Equation (35b) requires that
the spectrum of the incident field has the same distribution
along two perpendicular directions. We can see that as long
as Eq. (35) is satisfied, for the scattering of polychromatic
electromagnetic light waves by random media, the normalized
CIF of the two arbitrary points in the whole scattering space
will remain the same. Hence, we refer to Eq. (35) as a scaling
law for the CIF of polychromatic electromagnetic light waves
on scattering.

V. SUMMARY AND DISCUSSION

In summary, the CIF of polychromatic electromagnetic light
waves on weak scattering has been examined in detail. It is
found that the frequency components of the CIF change on
scattering from random media, and the frequency shift is close
to the scattering angles and the physical properties of the
medium. An extreme case in which no redshift or blueshift
takes place has been investigated and the corresponding ana-
lytic expression for the critical angle has been derived. Finally,
we have proposed a so-called scaling law, under which the
normalized CIF of arbitrary two points in the whole scattering
space remain the same, for the normalized CIF of the scattering
of polychromatic electromagnetic light waves.

Our results have shown that the CIF of polychromatic
light waves on scattering is distinctly different from that of
monochromatic light, showing the significant influence of the
frequency on the CIF of the scattered field, and the results
may provide certain guidance for the application of correlation
between intensity fluctuations in ghost imaging in scattering
media. In addition, our results also contribute to determine
the structure information of a scattering medium in terms
of the critical angle. For instance, we can approximately mea-
sure the effective width of the correlation function of scattering
potential of a quasihomogeneous medium. As the previous
derivation in Eq. (25), the relationship between the structure
parameters of a quasihomogeneous medium and the critical an-
gle is expressed as 4σ 2

s + σ 2
g = 8c2/(1 − cos θc)(ω0 − 4�2

0).
Because the medium satisfies σs 	 σg , we have the following

approximation: σs =
√

2c2/(1 − cos θc)(ω0 − 4�2
0). We can

see that σs is determined provided that the critical angle and
the optical parameters of the source are known.

Finally, it is worthwhile to mention that the analysis of
our results also leads to the introduction of redshifts and
blueshifts. This phenomenon has already been discussed by
Wolf et al., in the case of the emitted spectrum of surface
sources, and is known as the “Wolf effect” [28,29] (for a review
of this research, please see Ref. [30]), and this effect has been
verified by experiment [31]. The problem of analogous effects
in scattering has been addressed in detail by Wolf [8] and
James [32]. The results show that the scattering spectral line
displays redshifts or blueshifts with respect to the incident one,
depending on the scattering angle and correlation properties of
the medium. For the CIF of polychromatic light scattered by a
random medium in our analysis, the central frequency of the
CIF of the scattered field also produce redshifts or blueshifts,
which also depends on the scattering angle and the physical
properties of the medium. We would like to point out that
although they have a similar physical mechanism leading to the
frequency shift, there is no certain relationship between their
frequency shifts (we can see this point from their expressions,
respectively, in Eq. (22) and Eq. (4.7) in [8]); for example,
when the spectral line of the scattered field is blueshift, the
frequency components of the CIF may not be blueshift, but
may display redshift. On the other hand, note that in our results,
the effect of the correlation length of the medium on the shift
of the frequency components of the CIF can be negligible;
this is due to the reciprocity relationship in the case of the
quasihomogeneous medium. If we consider the more general
random medium, the correlation length of the medium also
induces the shift of the frequency components of CIF.
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APPENDIX: DERIVATION OF EQS. (11) AND (25)

Now let us show how to obtain Eq. (11). Since Eq. (10)
contains the sum of nine terms, it is of great difficulty to
calculate them directly. With the aid of some skills, the solution
to Eq. (10) will be simplified. To conveniently illustrate the
processes of calculation, we assign

W1 = [
W (s)

xx (rs1,rs2; ω)
]2

+ [
W (s)

xy (rs1,rs2; ω)
]2

+ [
W (s)

xz (rs1,rs2; ω)
]2

, (A1)

W2 = [
W (s)

yx (rs1,rs2; ω)
]2

+ [
W (s)

yy (rs1,rs2; ω)
]2

+ [
W (s)

yz (rs1,rs2; ω)
]2

, (A2)
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W3 = [
W (s)

zx (rs1,rs2; ω)
]2

+ [
W (s)

zy (rs1,rs2; ω)
]2

+ [
W (s)

zz (rs1,rs2; ω)
]2

. (A3)

On substituting from Eqs. (2), (4), (5), (8), and (9) into Eq. (10),
we first calculate W1, and, making use of s2

1x + s2
1y + s2

1z =
1 and s2

2x + s2
2y + s2

2z = 1, the corresponding result can be
simplified as

W1 = 1

r4

(ω

c

)8{(
1 − s2

1x

)
2
(
1 − s2

2x

)
A4

xS
2
x (ω)

+ 2s1xs1ys2xs2y

(
1 − s2

1x

)
A2

xA
2
ySx(ω)Sy(ω)

+s2
1xs

2
1y

(
1 − s2

2y

)
A4

yS
2
y (ω)

}
× C̃2

η[−k(s1 − s0),k(s2 − s0); ω]. (A4)

Similarly, we can obtain the expressions for W2 and W3,
respectively, with forms of

W2 = 1

r4

(ω

c

)8{
s2

1xs
2
1y

(
1 − s2

2x

)
A4

xS
2
x (ω)

+ 2s1xs1ys2xs2y

(
1 − s2

1y

)
A2

xA
2
ySx(ω)Sy(ω)

+ (
1 − s2

1y

)2(
1 − s2

2y

)
A4

yS
2
y (ω)

}
× C̃2

η[−k(s1 − s0),k(s2 − s0); ω], (A5)

W3 = 1

r4

(ω

c

)8{
s2

1x

(
1 − s2

2x

)(
1 − s2

1x − s2
1y

)
A4

xS
2
x (ω)

− 2s1xs1ys2xs2y

(
1 − s2

1x − s2
1y

)
A2

xA
2
ySx(ω)Sy(ω)

+ s2
1y

(
1 − s2

1x − s2
1y

)(
1 − s2

2y

)
A4

yS
2
y (ω)

}
× C̃2

η[−k(s1 − s0),k(s2 − s0); ω]. (A6)

Thus, Eq. (11) can finally be obtained in a pretty compact form,
on summing W1 + W2 + W3,

C(s)(rs1,rs2; ω) = 1

r4

(ω

c

)8
�(s1,s2; ω)

× C̃2
η[−k(s1 − s0),k(s2 − s0); ω]. (A7)

In order to derive Eq. (25), we first need to determine the
magnitude of the central frequency of the shifted line, which
can be obtained by differentiating Eq. (22) with respect to ω,
and then assign the corresponding result equal to zero. After
some arrangements, we can arrive at

ω7 exp

[
− (ω − ω′

0)2

�2

][
8 − 2

�2
ω2 + 2

�2
ωω′

0

]
= 0. (A8)

From Eq. (A8), we can see that it equals zero, which is
legitimately established if and only if

8 − 2

�2
ω2 + 2

�2
ωω′

0 = 0. (A9)

On solving this equation, we can obtain

ω(θ ) = ω′
0

2

⎡
⎣1 ±

√
1 +

(
4�

ω′
0

)2
⎤
⎦. (A10)

Both of the roots may be frequencies at which C(s)
n (rs1,rs2; ω)

reach maximum. Only the one with the positive sign is
permissible due to our use of the complex analytic signal
representation of the field [27]. Hence, we arrive at

ω(θ ) = ω′
0

2

⎡
⎣1 +

√
1 +

(
4�

ω′
0

)2
⎤
⎦. (A11)

Assuming that �0 � ω0, Eq. (A11) can be approximated as

ω(θ ) = ω′
0

2

⎡
⎣1 +

√
1 +

(
4�

ω′
0

)2
⎤
⎦ ≈ ω0

(
�2

�2
0

+ 4�2
0

ω2
0

)
.

(A12)

From Eqs. (24) and (A12), we can finally obtain Eq. (25).
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