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Understanding radiative transfer in random media like micro- or nanoporous and particulate materials, allows
people to manipulate the scattering and absorption of radiation, as well as opens new possibilities in applications
such as imaging through turbid media, photovoltaics, and radiative cooling. A strong-backscattering phase
function, i.e., a negative scattering asymmetry parameter g, is of great interest, which can possibly lead to unusual
radiative transport phenomena, for instance, Anderson localization of light. Here we demonstrate that by utilizing
the structural correlations and second Kerker condition for a disordered medium composed of randomly distributed
silicon nanoparticles, a strongly negative scattering asymmetry factor (g ∼ −0.5) for multiple light scattering can
be realized in the near infrared. Based on the multipole expansion of Foldy-Lax equations and quasicrystalline
approximation (QCA), we have rigorously derived analytical expressions for the effective propagation constant
and scattering phase function for a random system containing spherical particles, by taking the effect of structural
correlations into account. We show that as the concentration of scattering particles rises, the backscattering is
also enhanced. Moreover, in this circumstance, the transport mean free path is largely reduced and even becomes
smaller than that predicted by independent scattering approximation. We further explore the dependent scattering
effects, including the modification of electric and magnetic dipole excitations and far-field interference effect,
both induced and influenced by the structural correlations, for volume fraction of particles up to fv ∼ 0.25. Our
results have profound implications in harnessing micro- or nanoscale radiative transfer through random media.
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I. INTRODUCTION

Rich interference phenomena in random or disordered
media have received growing attention in the last few years,
and give rise to a rapidly developing field called “disordered
photonics” [1,2]. The study of disordered photonics involves
the fundamental pursuit of Anderson localization of light in
various disordered micro- or nanostructures [3–6], random
lasers [7,8], amorphous photonic crystals [9,10], photovoltaics
[11–13], focusing [14], and imaging [15,16], etc. When light
propagates in disordered photonic media, it undergoes scatter-
ing in a very complicated way. Traditionally, the transport of
light intensity is depicted by the radiative transfer equation
(RTE) [17–23]. Parameters describing radiative transport,
particularly the scattering mean free path ls and the transport
mean free path ltr, are usually calculated under the independent
scattering approximation (ISA), i.e., in which the scatterers
scatter electromagnetic waves independently without any in-
terparticle interference taken into account [17–20,22]. ls and
ltr are related through the single particle scattering asymmetry
factor g, i.e., the mean cosine of the scattering angle of the
scattering phase function, as ltr = ls/(1 − g). Since g � 0 is
valid for most natural scatterers, it is common to conclude that
ltr � ls.

For diffusive light transport in three-dimensional random
media (the length scale along the propagation direction L �
ltr), the diffusion constant D is related to the transport mean free
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path via D = vEltr/3, where vE is the energy transport velocity
in random media [20]. Moreover, the Ioffe-Regel parameter
keltr, which decides whether the scattering strength is strong
enough to make Anderson localization occur, also depends
on ltr, where ke = 2π/λe is the wave vector and λe is the
renormalized wavelength in the random media [20]. Therefore,
it is critical to lower ltr to achieve strong light scattering and
thus mediate a transition to Anderson localization as well
as other unusual transport phenomena [20,22]. A possible
way is to artificially create negative asymmetry factor g to
make ltr < ls. Decades ago, it was already reported by Pinhero
et al. that magnetic particles with giant permeability μ � 1
can induce negative g in the visible range [24]. Even earlier,
in the 1980s Kerker et al. [25] already proposed critical
conditions in which perfect directional scattering for single
magnetodielectric particles can be realized. Specifically, by
properly tuning the amplitude and spectral position of electric
and magnetic dipoles, one can obtain a nearly-zero-forward
scattering (NZFS) pattern for these particles. This is called
the second Kerker condition, where the permittivity ε and
permeability μ of a very small particle should satisfy the
condition ε = (4 − μ)/(2μ + 1) with μ �= 1. This feature
arises from the destructive interference of electric and magnetic
dipoles in the forward direction. Note the original proposal of
the zero forward scattering condition of Kerker et al. violates
the optical theorem, and thus the term “nearly ZFS” is used
here, which indicates the forward scattering amplitude is not
rigorously zero [26].

Later, many researchers showed that actually some non-
magnetic particles with moderate permittivity can also exhibit
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the NZFS feature if one appropriately excites the electric
and magnetic dipoles in the particle. For instance, recent ad-
vances in all dielectric metasurfaces revealed that by carefully
modulating the sizes of moderate-refractive-index dielectric
nanoparticles, spectral overlapping of electric and magnetic
dipoles can be achieved, resulting in NZFS, e.g., for silicon
[27,28] or germanium [29] nanospheres. Actually when the
first-order Mie coefficients a1 (describing electric dipole re-
sponse) and b1 (describing magnetic dipole response) have
the same amplitude and are out of phase with each other, i.e.,
a1 = −b1, the second Kerker condition is perfectly satisfied
and the particle shows a NZFS scattering pattern. In particular,
Gómez-Medina et al. [28] found that for a single silicon particle
with radius a = 230 nm, a negative asymmetry factor as small
as g = −0.15 at λ = 1530 nm can be obtained. Note in these
cases high-order Mie multipolar modes in the particles are
negligible, which can be then termed “dual-dipolar particles”
[30–32].

Above discussions are specific for the single particle scat-
tering regime, only valid for random media containing very
dilutely distributed particles [18]. As the concentration of
scattering particles rises, ISA becomes unsuitable due to the
existence of interparticle correlations [33,34], which make
the scattered electromagnetic waves of different particles
interfere and preserve partial coherence [35]. In this case, the
scattering asymmetry factor g for the whole random media is
rather different from that of single scattering [33,34,36,37].
The influence of the structural correlations actually provides
an alternative way to control the asymmetry factor of light
transport in random media, as was done by Rojas-Ochoa et al.
[38], who used dense colloidal suspensions of polystyrene
with interparticle repulsive electrostatic forces to achieve
a very negative asymmetry factor around g ∼ −1. They
showed that it is the structural short-range-order induced
Bragg backscattering resonance that leads to this extremely
negative g.

In this study, by cooperatively utilizing the common hard-
sphere structural correlations and the second Kerker condi-
tion for dual-dipolar particles, we demonstrate that strong
backscattering (negative asymmetry factor g ∼ −0.5) can still
be achieved, not relying on local Bragg resonance. By means of
the multipole expansion method and quasicrystalline approx-
imation (QCA) for the Foldy-Lax equations (FLEs) treating
multiple scattering of electromagnetic waves, we rigorously
derive analytical expressions for the effective propagation
constant and scattering phase function for the random system
consisting of dual-dipolar particles. The obtained transport
mean free path ltr is shown to be substantially shorter than the
scattering mean free path ls. We also address the dependent
scattering mechanism and its interplay with the structural
correlations, or short-range order, which then allows a flexible
control over light-matter interaction in random media. The
negative g leads to an unusual multiple scattering regime,
implying a possible way for realizing three-dimensional An-
derson localization and other anomalous transport phenom-
ena. It is promising to utilize the negative asymmetry factor
to achieve extreme light-matter interaction, facilitating the
performance of novel photonic devices like random lasers,
disordered photonic bandgap media, and light trapping and
conversion devices, etc.

II. NEGATIVE ASYMMETRY FACTOR
FOR A SINGLE PARTICLE

The scattering of electromagnetic waves by single ho-
mogeneous or multilayered spherical particles with arbitrary
electric and magnetic properties is one of the earliest solved
problems in electromagnetic scattering, which was done by
Gustav Mie over 100 years ago [39]. Along with the rapid
development of nanofabrication and nanophotonics in the
last few years, the anomalous scattering properties of single
dielectric particles are theoretically and experimentally studied
by many authors very extensively [40–46], giving rise to
the booming of nanoscale light scattering study. The basic
idea behind Mie theory is to rigorously solve the boundary
value problem of Maxwell’s equations in spherical coordinates.
For spherical boundary conditions, the solution of Maxwell’s
equations can be formally expanded in a linear combination of
vector spherical harmonics (VSHs) or vector spherical wave
functions (VSWFs) [47,48]. The extinction and scattering
efficiencies of a single homogeneous sphere with a complex
refractive index of m̃ and radius a placed in vacuum illuminated
by a plane wave is formally given by [28,47,48]

Cext = 2π

k2

∞∑
n=1

(2n + 1)Re(an + bn), (1)

Csca = 2π

k2

∞∑
n=1

(2n + 1)(|an|2 + |bn|2), (2)

where

an = m̃2jn(m̃x)[xjn(x)]′ − jn(x)[m̃xjn(m̃x)]′

m̃2jn(m̃x)[xhn(x)]′ − hn(x)[m̃xjn(m̃x)]′
, (3)

bn = jn(m̃x)[xjn(x)]′ − jn(x)[m̃xjn(m̃x)]′

jn(m̃x)[xhn(x)]′ − hn(x)[m̃xjn(m̃x)]′
, (4)

and k = 2π/λ is the wave number of plane wave with wave-
length λ and x = ka is the corresponding size parameter. jn(z)
and hn(z) are spherical Bessel functions and Hankel functions
of the first kind of order n, with respect to the argument z [47].

The differential scattering cross section for unpolarized
incident light is given by

dσs

dθs
= π

k2
(|S1(θs)|2 + |S2(θs)|2), (5)

where

S1(θs) =
∞∑

n=1

2n + 1

n(n + 1)
[anπn(cos θs) + bnτn(cos θs)] (6)

and

S2(θs) =
∞∑

n=1

2n + 1

n(n + 1)
[anτn(cos θs) + bnπn(cos θs)] (7)

are elements of amplitude scattering matrix and θs is the polar
scattering angle with respect to the incident wave vector, in
which πn and τn are functions defined in Appendix C [47,48].
The normalized differential scattering cross section is also
called the scattering phase function used in RTE. Therefore,
the scattering asymmetry factor for the single scattering phase
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FIG. 1. Extinction efficiency for a single Si nanoparticle with
radius a = 230 nm, where the contributions of electric dipole (ED)
and magnetic dipole (MD) as well as the sum of them (ED+MD) are
also shown.

function, defined as the mean cosine of scattering angle
〈cos θs〉, is calculated through [47]

g = 1

σs

∫ π

0

dσs

dθs
cos θs sin θsdθs. (8)

Based on Mie theory, it is straightforward to find negative
values of g by tuning the material and geometry parameters,
as was done by Gómez-Medina et al. [28]. Particularly, for a
dual-dipolar nanoparticle [32], in which only the electric and
magnetic dipole modes are excited, the above series sums are
reduced to only n = 1 and simple analytical conditions can be
found. This is the case for silicon nanoparticles with radius
around a ∼ 200nm in the near infrared. For a a = 230 nm
silicon nanoparticle, the total extinction efficiency Qext =
Cext/(πa2) is shown in Fig. 1(a), along with the contribution
of electric dipole (ED), magnetic dipole (MD), and their sum
(MD+ED) according to Eq. (1). It is clearly seen that for
λ � 1300 nm, the ED and MD excitations are dominating.
In this circumstance, the second Kerker condition requires
[26,28]

|a1| = |b1| (9)

and

| arg a1 − arg b1| = π (10)

for dual-dipolar particles. A perfect NZFS radiation pattern
can be realized if these conditions are fulfilled, leading to the
asymmetry factor [28],

gmin = Re(a1b
∗
1)

|a1|2 + |b1|2 = −0.5, (11)

which is the minimum value of g for dual-dipolar particles.
For a silicon sphere with a = 230 nm shown in Fig. 1(a), only
a moderately negative g = −0.15 can be achieved at the equal
amplitude wavelength λ = 1530 nm because a1 and b1 are not
ideally out-of-phase. The spectrum of the asymmetry factor
for this single particle is shown in Fig. 1(b). This fact leads
us to consider whether it is possible to achieve a stronger
backscattering by utilizing inteference effects among multiple
particles in random media composed of these dual-dipolar
particles, especially the interference induced by particle struc-
tural correlations. In the next section, we will analytically
solve the multiple scattering problem of electromagnetic wave
propagation in such random medium to further examine this
idea.

III. NEGATIVE ASYMMETRY FACTOR FOR A RANDOM
MEDIUM COMPOSED OF DUAL-DIPOLAR PARTICLES

A. Effective propagation constant

When a large number of identical dual-dipolar particles
approaching the second Kerker condition (here we choose Si
nanoparticle with radius a = 230nm at λ = 1530 nm) are ran-
domly packed and constitute a disordered medium, it is of great
interest to investigate whether the dependent scattering effect
can lead to a more negative asymmetry factor for radiative
transfer than the single scattering case. It should be noted here
we call the “dependent scattering effect” as a generalization
for those interference effects that are not possible to explain
under ISA [49,50]. This is a broader definition than that of van
Tiggelen et al.’s [51], for instance, which classified the multiple
scattering trajectories visiting the same particle more than once
and resulting in a closed loop, or “recurrent scattering” [52],
as the dependent scattering mechanism.

In this section, we will present an analytical derivation
for the dependent scattering effect, starting from the first
principles of electromagnetic wave theory. Since the scatterers
are randomly distributed in the medium and have finite
sizes comparable with the wavelength, it is critical to take
the interparticle correlations into account in the dependent
scattering model [33,34,38]. This is because the existence
of one particle would create an exclusion volume into
which other particles are not allowed to penetrate, which
leads to definite phase differences among scattered waves
preserving over the ensemble average. These definite phase
differences produce constructive or destructive interferences
which in turn affect the transport properties of light, which
are called “partial coherence” by Lax [35,53]. Therefore,
to establish an analytically solvable model, a statistical
description of scatterer positions is needed. Typically, the
pair distribution function (PDF) g2(r1,r2) is used to describe
the statistical distribution between a pair of particles, more
specifically, the conditional probability density of finding
a particle centered at the position r1 when a fixed particle
is seated at r2. When assuming the random medium is
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statistically homogeneous and isotropic, the PDF only
depends on the distance between the pair of particles, i.e.,
g2(r1,r2) = g2(|r1 − r2|) [54,55]. There are already several
(approximate) analytical solutions of the PDF for some
specific random systems, e.g., Refs. [54,56]. However,
analytical expressions for high-order position correlations
involving three or more particles simultaneously are much
harder to obtain. In this circumstance, if QCA is introduced,
these correlations are treated as a hierarchy of PDFs,
e.g., g3(r1,r2,r3) = g2(r1,r2)g2(r2,r3), g4(r1,r2,r3,r4) =
g2(r1,r2)g2(r2,r3)g2(r3,r4), and so forth, where g3 and g4

indicate three-particle and four-particle distribution functions,
respectively [53,57–59]. In this one respect, QCA is actually
a perturbative approach only incorporating multiple scattering
diagrams with two-particle statistics, but it still takes infinite
scattering orders into account [60,61]. This approximation
sets up the basis of the present analysis.

QCA was initially proposed by Lax [53] for both quantum
and classical waves, and examined by exact numerical simu-
lations as well as experiments to be satisfactorily accurate for
the dependent scattering effect in moderately dense random
media [62–64]. It is also widely used in the prediction of
optical and radiative properties of disordered materials for
applications in remote sensing [65] as well as thermal radiation
transfer [66,67]. More generally, its validity for ultrasonic wave
propagation in acoustical random media is also frequently
verified numerically and experimentally [68]. However, there
is no rigorous treatment for light propagation, especially for
intensity transport, in a random system of dual-dipolar particles
in the spirit of QCA [19]. In the next, by applying the multipole
expansion method for the FLEs [35], QCA, and a series of
other well-defined approximations, we will rigorously derive
analytical expressions for the effective propagation constant
and scattering phase function in such a medium.

Before proceeding to our derivation, we stress some basic
assumptions about the random medium. The positions of
scatterers, for a specific initial configuration of scatterers,
are treated to be fixed if they move sufficiently slower than
the transport of electromagnetic waves [21,23]. The elec-
tromagnetic response after a long period of time or over a
sufficient large spatial range can be computed by taking the
average of all possible configurations of particle distributions,
or ensemble average [21,23]. The analytical definition of the
ensemble average is given in detail in Appendix A. The volume
fraction of the identical spherical particles is fv and n0 is
the number density given by n0 = 3fv/(4πa3), where a is
the sphere radius. The random medium is also supposed to
be statistically homogeneous and isotropic. We further restrict
our model in the linear optics regime. Under these assumptions,
the electromagnetic interaction of the incident light with the
random medium is then described by the well-known FLEs,
which can fully depict the many-particle multiple scattering
process. The FLEs for N particles read [35,55,61,69]

E(j )
exc(r) = Einc(r) +

N∑
i=1
i �=j

E(i)
sca(r), (12)

where Einc(r) is the incident electric field, E(j )
exc(r) is the electric

component of the so-called exciting field impinging on the

FIG. 2. A schematic of Foldy-Lax equations for multiple scat-
tering of electromagnetic waves in randomly distributed spherical
particles. The particles are numbered as i, j, l, etc. The dashed line
denotes g2(rj ,ri), the pair distribution function between the two
particles. The thick arrow indicates the propagation direction of
the incident wave, while the thin arrows stand for the propagation
directions of the partial scattered waves from particle i to j and from
l to j .

vicinity of particle j , and E(i)
sca(r) is the electric component of

partial scattered waves from particle i. We also show FLEs
schematically in Fig. 2.

To solve this equation, it is convenient to expand the electric
fields in VSWFs to utilize the spherical boundary condition of
individual particles, following the way usually done for a single
spherical particle. The expansion coefficients then naturally
correspond to multipoles excited by the particles. This is a
very mature scheme and has been widely used and extended by
many authors [19,58,69–71]. Using this technique, the exciting
field E(j )

exc(r) is expressed as

E(j )
exc(r) =

∑
mnp

c(j )
mnpN(1)

mnp(r − rj ), (13)

where N(1)
mnp(r − rj ) is the type-1 VSWF (or regular VSWF,

defined in Appendix B). The abbreviated summation
∑

mnp

generally stands for
∑∞

n=1

∑m=n
m=−n

∑2
p=1. Since here we only

consider electric and magnetic dipole modes, it is possible for
us to only take the first-order expansion into account, i.e., n =
1. This is valid when the particles are not too densely packed
that near-field coupling induces higher order multipoles. When
n = 1, the degree m of VSWFs can only be −1,0,1. The
subscript p = 1,2 denotes magnetic (TM) or electric (TE)
modes, respectively. Based on the expansion coefficients of the
exciting field, the scattering field from particle i propagating
to arbitrary position r can be obtained through its T -matrix
elements Tnp as [19,69]

E(i)
sca(r) =

∑
n=1,mp

c(i)
mnpTnpN(3)

m1p(r − ri), (14)

where N(3)
mnp(r − rj ) is the type-3 VSWF (or outgoing VSWF,

defined in Appendix B). For spherical particles T -matrix
elements are the same as Mie coefficients, namely, T12 = a1

and T11 = b1 for dual-dipolar particles. Inserting Eqs. (13) and
(14) into Eq. (12), we obtain

∑
mp

c
(j )
m1pN(1)

m1p(r − rj ) = Einc(r) +
N∑
i=1
i �=j

∑
mp

c
(i)
m1pT1p

× N(3)
m1p(r − ri). (15)
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To solve this equation, we need to translate the VSWFs
centered at ri to their counterparts centered at rj . Using
translation addition theorem for VSWFs (see Appendix B),
Eq. (15) becomes

∑
mp

c
(j )
m1pN(1)

m1p(r−rj )=Einc(r) +
N∑
i=1
i �=j

∑
mpμq

c
(i)
μ1qT1q

×A(3)
mpμq(rj −ri)N

(1)
m1p(r−rj ), (16)

where A(3)
mpμq(rj − ri) can translate the outgoing VSWFs

centered at ri to regular VSWFs centered at rj . We further
expand the incident waves into regular VSWFs centered at rj

with expansion coefficients a
(j )
mnp, use the orthogonal relation

of VSWFs with different orders and degrees, and obtain the
following equation:

c(j )
mp = a(j )

mp +
N∑
i=1
i �=j

∑
μq

c(i)
μqT1qA

(3)
mpμq(rj − ri). (17)

Here n = 1 in the subscript of c
(j )
mnp and a

(j )
mnp is omitted since

only dipole excitations are of concern. To obtain the statistical
averaged properties of electromagnetic wave propagation, we
take ensemble average of Eq. (17) with respect to a fixed
particle centered at rj as

〈
c(j )
mp

〉
j

= 〈
a(j )

mp

〉
j
+

〈 N∑
i=1
i �=j

∑
μq

c(i)
μqT1qA

(3)
mpμq(rj − ri)

〉
j

, (18)

where 〈·〉j denotes the ensemble average procedure with rj

fixed. Since for statistically homogeneous random media,
the ensemble average procedure restores the translational
symmetry. The statistically averaged electromagnetic field
in random media, or the coherent field, as proved by Lax
[53], is a plane wave. Here we only consider transverse
electromagnetic wave propagation and assume the random
medium only supports transverse coherent modes. We denote
the effective propagation wave vector of the coherent wave
by K. Furthermore, it is assumed that the effective exciting
field for particle j , which is equal to the total coherent field
minus the field scattered by the investigated scatterer j , is also
plane-wave-like possessing the same wave vector, but with a
different amplitude [53].〈

c(j )
mp

〉
j

≈ Cmp exp(iK · rj ), (19)

where Cmp is the expansion coefficient of effective exciting
wave amplitude at the origin, which has the same physi-
cal significance of Lax’s effective field factor [35,53]. The
expansion coefficient for different particles only differs by
a plane-wave-type phase shift, and Cmp only depends on
the overall property of the random media. According to the
principle of modal analysis (MA), for passive media (the
present case), the solution of propagation constant K = |K|
can be found in the upper complex plane to meet the poles
of Green’s function for coherent wave propagation [20,72]. In
other words, the effective propagation constant K corresponds
to the most probable mode with the maximal response and
minimal extinction in the random media, namely, the mode
with the largest spectral function [20]. To solve Eq. (18),

the expression for 〈c(i)
μqT1qA

(3)
μqmp(ri − rj )〉j should be given

first. Herein the QCA suggested by Lax [53] is introduced,
which expresses high-order correlations among three or more
particles using two-particle statistics and amounts to〈

c(i)
mp

〉
ij

≈ 〈
c(i)
mp

〉
i
≈ Cmp exp(iK · ri), (20)

where 〈·〉ij denotes the ensemble average procedure with rj

and ri fixed simultaneously. This equation suggests that the
fluctuation of the effective exciting field impinging on particle
i due to a deviation of particle j from its average position can
be neglected. This is strictly valid for a periodic or crystalline
medium, but to some extent is viable for a densely packed
medium possessing partial order, as suggested by Lax [53].
Inserting Eqs. (19) and (20) into Eq. (18) and using the
definition of PDF in Appendix A, we obtain

Cmp = 〈
a(j )

mp

〉
j

exp(−iK · rj ) +
∑
μq

CμqT1q

×
〈

N∑
i=1
i �=j

A(3)
mpμq(rj − ri) exp[iK(ri − rj )]

〉
j

= 〈
a(j )

mp

〉
j

exp(−iK · rj ) + n0

∑
μq

CμqT1q

×
∫

drA(3)
mpμq (−r) exp (iK · r)g2(r), (21)

where r = ri − rj . Here we use the fact that for the present sta-
tistically homogeneous medium with translational invariance,
g2(ri ,rj ) only depends on r = ri − rj . Furthermore, for the
considered isotropic medium, g2(r) = g2(r), where r = |r|.

For convenience, we express Cmp into a column vector C̃,
where the elements C̃α are numbered as α = 1,2,3,4,5,6, de-
noting different combinations of mp, i.e., α = 1,2,3,4,5,6 →
(m,p) = (−1,1),(0,1),(1,1),(−1,2),(0,2),(1,2). Similarly, we
use Ãβα(K) to denote the integral containing translation coeffi-
cient, which is a function of the unknown effective propagation
constant K, as

Ãmpμq(K) =
∫

drA(3)
mpμq (−r) exp (iK · r)g2(r) (22)

for α = (μ,q) and β = (m,p). And the diagonal elements
of the T matrix is given by T̃11 = T̃22 = T̃33 = T11 = b1 and
T̃44 = T̃55 = T̃66 = T12 = a1, in which other elements are all
zeros. The incident wave amplitudes are expressed in a column
vector ã with ãα = 〈aj

mp〉j exp(−iK · rj ). Therefore we have
the final solution as

C̃ = ã + n0Ã(K)T̃C̃. (23)

Thus C is solved by

C̃ = [I − n0Ã(K)T̃]−1ã. (24)

According to the definition of the most probable propagating
mode, for arbitrary incident wave ã,K should meet the pole of
[I − n0Ã(K)T̃]−1. This amounts to finding the K leads to the
determinant |I − n0Ã(K)T̃| to be zero in the upper complex
plane for passive media under consideration [20,72]. In the
next we will evaluate the matrix elements of Ã and solve the
effective propagation constant K .

023836-5



B. X. WANG AND C. Y. ZHAO PHYSICAL REVIEW A 97, 023836 (2018)

In spherical coordinates, the translation coefficients are
given in terms of the position vector r = (r,θ,φ) as [19,57,69]

A
(3)
m1μ1(r) = A

(3)
m2μ2(r) =

√
(1 − μ)!(1 + m)!

(1 + μ)!(1 − m)!
(−1)m

×
∑

n

a(μ,1| − m,1|n)a(1,1,n)hn(kr)

×Yμ−m
n (θ,φ), (25)

A
(3)
m1μ2(r) = A

(3)
m2μ1(r) =

√
(1 − μ)!(1 + m)!

(1 + μ)!(1 − m)!
(−1)m+1

×
∑

n

a(μ,1| − m,1|n,n − 1)b(1,1,n)hn(kr)

×Yμ−m
n (θ,φ), (26)

where Ym
n (θ,φ) are spherical harmonics, and coefficients

that contain m,μ,n including a(m,1| − μ,1|n), a(μ,1| −
m,1|n), a(1,1,n), b(1,1,n) are related to Wigner 3-j sym-
bols and listed in Appendix B. For dual-dipolar excita-
tions, n can be only chosen to be 0,1,2 to make these
coefficients nonzero [19]. Incorporating Eqs. (25) and (26)
into Eq. (22) and invoking the well-known plane wave
expansion [73],

exp (iK · r) =
∑
l,m

(2l + 1)iljl(Kr)Ym∗
l (θ,φ)Ym

l (θK,φK ),

(27)

we can obtain a typical integral in Eq. (22) as follows:

Im,μ
n (K) =

∫
dr(−1)nhn(kr)Yμ−m

n (θ,φ)
∑
n′,m′

(2n′ + 1)in
′

×jn′ (Kr)Ym′∗
n′ (θ,φ)Ym′

n′ (θK,φK )g2(r), (28)

which can be evaluated numerically for a known g2(r). In the
present paper, all the integrals, if not specified, are performed
over the entire real (for position vector) or reciprocal (for
reciprocal vector) spaces. Using the orthogonal relation of
spherical harmonics [73],∫

4π

Ym
n (θ,φ)Ym′∗

n′ (θ,φ)dΩ = 4π

2n + 1
δnn′δmm′ , (29)

where Ω is the solid angle, the above integral becomes

Im,μ
n (K) =

∫ ∞

0
4π (−i)nhn(kr)jn(Kr)Yμ−m

n (θK,φK )

× g2(r)r2dr. (30)

As a consequence, the matrix elements of Ã(K) are obtained
as

Ãm1μ1(K)= Ãm2μ2(K) =
√

(1 − μ)!(1 + m)!

(1 + μ)!(1 − m)!
(−1)m

×
∑

n

a(μ,1|−m,1|n)a(1,1,n)Im,μ
n (K), (31)

Ãm2μ1(K) = Ãm1μ2(K) =
√

(1 − μ)!(1 + m)!

(1 + μ)!(1 − m)!
(−1)m+1

×
∑

n

a(μ,1| − m,1|n,n − 1)b(1,1,n)Im,μ
n (K).

(32)

Without loss of generality, we assume that the propagation
direction of incident and coherent waves is the z axis as shown
in Fig. 2, which leads to [73]

Yμ−m
n (θK = 0,φK ) = δm−μ,0, (33)

which demands m = μ. In this circumstance, therefore, Ã
only depends on K , and the nonzero elements of Ã(K)
are only Ã11(K) = Ã44(K), Ã22(K) = Ã55(K), Ã33(K) =
Ã66(K), Ã14(K) = Ã41(K), Ã25(K) = Ã52(K), Ã36(K) =
Ã63(K). The condition |I − n0 ˜A(K)T̃| = 0 is also equivalent
to (I − n0 ˜A(K)T̃)C̃ = 0. After some manipulations, we obtain⎛

⎜⎝
(1 − n0Ã11(K)b1)C̃1 − n0Ã41(K)a1C̃4

(1 − n0Ã22(K)b1)C̃2 − n0Ã52(K)a1C̃5

(1 − n0Ã33(K)b1)C̃3 − n0Ã63(K)a1C̃6

⎞
⎟⎠ = 0, (34)

and ⎛
⎜⎝

(1 − n0Ã11(K)a1)C̃4 − n0Ã41(K)b1C̃1

(1 − n0Ã22(K)a1)C̃5 − n0Ã52(K)b1C̃2

(1 − n0Ã33(K)a1)C̃6 − n0Ã63(K)b1C̃3

⎞
⎟⎠ = 0. (35)

These equations are still a little bit complicated to solve.
However, we can simplify the solution by only considering
the plane-wave illumination. Without loss of generality, the
incident plane wave is assumed to be linearly polarized over
the y axis and propagate along the z axis with unity amplitude,
namely, Einc = ŷ exp(ikz), which therefore can be expanded
in regular VSWFs centered at rj as [55,69]

Einc(r) = exp(ik · rj )
∑
np

∑
m=±1

a0
mnpN(1)

mnp(r − rj ), (36)

where

a0
1n1 = −a0

−1n1 = 1
2 [4π (2n + 1)]1/2, (37)

a0
1n2 = a0

−1n2 = 1
2 [4π (2n + 1)]1/2, (38)

where the coefficients corresponding to m = 0 are all equal to
zero. Hence 〈a(j )

mnp〉 = a
(j )
mnp = exp(ik · rj )a0

mnp, where a0
mnp is

the expansion coefficient of the incident wave at the origin. Re-
garding Eqs. (37) and (38), for the linearly polarized coherent
wave, we also have C̃1 = −C̃3, C̃2 = C̃5 = 0, and C̃4 = C̃6.
Moreover, since a(1,1| − 1,1|n) = a(−1,1|1,1|n) (nonzero
for n = 0,2), we have Ã11(K) = Ã33(K), and a(1,1| −
1,1|n,n − 1) = −a(−1,1|1,1|n,n − 1) (nonzero only for n =
1) leads to Ã41(K) = −Ã63(K) (refer to Appendix B), we are
finally able to obtain the following equations containing only
two unknowns C̃3 and C̃6 as

(1 − n0Ã33(K)b1)C̃3 − n0Ã63(K)a1C̃6 = 0, (39)

(1 − n0Ã33(K)a1)C̃6 − n0Ã63(K)b1C̃3 = 0. (40)
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Therefore we get the final dispersion relation as

(1 − n0Ã33(K)b1)(1 − n0Ã33(K)a1) − n2
0Ã

2
63a1b1 = 0, (41)

where the effective propagation constant K can be solved in
the upper complex plane.

Since it is not possible to solve the effective exciting field
amplitudes Cmp with only Eqs. (39) and (40), in the next,
we will derive an extra equation for this purpose. Note C̃3

and C̃6 are not necessarily equal following from a plane
wave, because the electric and magnetic responses of the
particles might not be the same. To solve them, we consider
the relationship between the effective propagation constant
and the transmission coefficient of the coherent field. For the
coherent field, it propagates in the random medium in a ballistic
manner, the same as the case in a homogeneous medium.
The transmission coefficient, for the coherent field normally
illuminated onto a random medium slab with an effective
propagation constant K = Kẑ and thickness w, is calculated
as [53,74,75]

t = 1 + iw(K2 − k2)

2k
. (42)

On the other hand, the transmission coefficient for the random
medium slab can be calculated from the ensemble averaged,
far-field forward scattering amplitude f (K,K) [53], where the
first K indicates the wave vector of the incident field and the
second stands for that of the scattered field. To this end, we
first consider the total scattered field that is given by

〈Es(r)〉 =
〈

N∑
j=1

E(j )
s (r)

〉
= n0

∫
drj

∑
mp

〈
c

(j )
m1p

〉
T1p

×N(3)
m1p(r − rj ). (43)

Taking far-field approximation (r → ∞) for outgoing VSWFs
(see Appendix C), after some manipulations, we have

〈Es(r)〉 = n0 exp (ikr)

r

3i

2k
(a1C12 + b1C11). (44)

Therefore the forward scattering amplitude is obtained as

f (K,K) = 3in0

2k
(a1C12 + b1C11). (45)

And the transmission coefficient is related to forward scattering
amplitude f (K,K) through

t = 1 + 2πiwf (K,K)

k
. (46)

A comparison between Eqs. (42) and (46) leads to the following
relation:

K2 − k2 = 6πin0

k
(a1C12 + b1C11). (47)

Combining Eqs. (39), (41), and (47), the effective exciting field
amplitudes C12 and C11 can be solved.

By this stage, we have established the theory for electro-
magnetic field propagation in a random medium consisting of
dual-dipolar particles, where the formulas of the dispersion
relation and effective exciting field amplitudes are derived
under Lax’s QCA. This theory provides an analytical tool for
examining the interplay between the dipolar modes of a single
scatterer and the structural correlations.

B. Scattering phase function

After calculating the effective propagation constant for the
coherent wave, to derive the scattering phase function defined
for incoherent waves [60], it is necessary to compute the
scattering intensity in this random medium. We first consider
the coherent field that is the ensemble averaged total field:

Ecoh(r) = 〈E(r)〉 = 〈Einc(r) + Es(r)〉, (48)

where E(r) = Einc(r) + Es(r) is the total field. The coherent
intensity is then defined as Icoh(r) = Ecoh(r)E∗

coh(r), where the
superscript ∗ denotes the complex conjugate, and the ensemble
averaged total intensity is given by

I (r) = 〈E(r)E∗(r)〉 = 〈[Einc(r) + Es(r)]

×[E∗
inc(r) + E∗

s (r)]〉. (49)

Therefore the incoherent intensity, defined as the difference
between total intensity and coherent intensity, is calculated
through

Iich(r) = I (r) − Icoh(r) = 〈Es(r)E∗
s (r)〉 − 〈Es(r)〉〈E∗

s (r)〉,
(50)

which describes the light intensity generated by random fluctu-
ations of the medium, also known as the diffuse intensity [75].
To proceed, we write down the ensemble averaged intensity of
the scattered wave in the above equation as

〈Es(r)E∗
s (r)〉

= n0

∑
mpm′p′

∫
drj N(3)

m1p(r − rj )N(3)∗
m1p(r − rj )

×T1pT ∗
1p′

〈
c(j )
mpc

(j )∗
m′p′

〉
j
+ n2

0

∑
mpm′p′

∫∫
drj drig2(rj − ri)

×T1pT ∗
1p′

〈
c(j )
mpc

(i)∗
m′p′

〉
ij

N(3)
m1p(r − rj )N(3)∗

m1p(r − ri). (51)

In the meanwhile, the coherent scattered intensity is given by

〈Es(r)〉〈E∗
s (r)〉 = n2

0

∑
mpm′p′

∫∫
drj driT1pT ∗

1p′

×〈
c(j )
mp

〉
j

〈
c

(i)∗
m′p′

〉
i
N(3)

m1p(r − rj )N(3)∗
m1p(r − ri).

(52)

The unknowns in Eq. (51) are 〈c(j )
mpc

(j )∗
m′p′ 〉j and 〈c(j )

mpc
(i)∗
m′p′ 〉ij ,

in which the former is the intensity of the exciting field with
respect to a particular particle, and the latter stands for the
correlation between the exciting fields impinging on different
particles. The incoherent intensity is therefore given by

Iich(r) = n0

∑
mpm′p′

∫∫
drj dri[n0g2(rj − ri) + δ(rj − ri)]

×T1pT ∗
1p′N(3)

m1p(r − rj )N(3)∗
m1p(r − ri)

〈
c(j )
mpc

(i)∗
m′p′

〉
ij

−n2
0

∑
mpm′p′

∫∫
drj driT1pT ∗

1p′
〈
c(j )
mp

〉
j

〈
c

(i)∗
m′p′

〉
i

×N(3)
m1p(r − rj )N(3)∗

m1p(r − ri), (53)
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where the Dirac delta function δ(rj − ri) takes the case when
rj and ri stand for the same particle. In the spirit of QCA
we make an assumption for the correlation 〈c(j )

mpc
(i)∗
m′p′ 〉ij , which

is similar to Lax’s method using the so-called effective field
factor [35]:〈

c(j )
mpc

(i)∗
m′p′

〉
ij

≈ CmpC∗
m′p′ 〈E(rj )E∗(ri)〉. (54)

Inserting Eqs. (20) and (54) into Eq. (53), we obtain

Iich(r) = n0

∑
mpm′p′

∫∫
drj dri[n0h2(rj − ri) + δ(rj − ri)]

×T1pT ∗
1p′CmpC∗

m′p′N(3)
m1p(r − rj )

× N(3)∗
m1p(r − ri)〈E(rj )E∗(ri)〉

+n2
0

∑
mpm′p′

∫∫
drj driT1pT ∗

1p′CmpC∗
m′p′

× N(3)
m1p(r − rj ) · N(3)∗

m1p(r − ri)

× (〈E(rj )E∗(ri)〉 − 〈E(rj )〉〈E∗(ri)〉), (55)

where h2(r) = g2(r) − 1 is the pair correlation function. The
first term in the right-hand side (RHS) of Eq. (55) gives the
incoherent intensity produced by the total intensity (specifi-
cally, the total field correlation 〈E(rj )E∗(ri)〉, which can be
understood as a generalization of intensity [20,76]), while the
second term denotes the incoherent intensity generated only by
incoherent intensity. Since the incoherent intensity, originated
from random fluctuations of total intensity, is usually much
smaller than total intensity [20,75], it is then possible for us
to neglect this term in the RHS of Eq. (55). This assumption
gives rise to

Iich(r) ≈ n0

∑
mpm′p′

∫∫
drj dri[n0h2(rj − ri) + δ(rj − ri)]

×T1pT ∗
1p′CmpC∗

m′p′N(3)
m1p(r − rj )

× N(3)∗
m1p(r − ri)〈E(rj )E∗(ri)〉. (56)

If we only consider first-order scattering, i.e., 〈E(rj )E∗(ri)〉 ≈
〈E(rj )〉〈E∗(ri)〉, the above equation becomes the well-known
distorted Born approximation (DBA) for calculating radiative
transfer in the remote sensing community [19,60,77,78]. How-
ever, our present equation reproduces all orders of multiple
scattering if the total intensity I (r) is repeatedly iterated. Equa-
tion (56) is actually in the form of the Bethe-Salpeter equation
for wave propagation in random media [17–20,79–81]. The
irreducible vertex governing the multiple scattering process is
given by mpm′p′ = T1pT ∗

1p′CmpC∗
m′p′ [n0h2(rj − ri) + δ(rj −

ri)], which corresponds to a modified ladder approximation
accounting for particle correlations [82,83].

To derive the scattering phase function, the integral in
Eq. (56) is needed to be carried out. For doing so, we express the
field correlation function in its Fourier transform component
in reciprocal (or momentum) space,

〈E(rj )E∗(ri)〉 =
∫

dp1dp2〈E(p1)E∗(p2)〉
× exp (ip1 · rj − ip2 · ri), (57)

where p1 and p2 are both reciprocal vectors, corresponding to
rj and ri , respectively. Substituting Eq. (57) into Eq. (56), we
have

Iich(r) = n0

∑
mpm′p′

∫∫∫∫
drj dridp1dp2[n0h2(rj − ri)

+δ(rj − ri)]T1pT ∗
1p′CmpC∗

m′p′

×
∫∫

N(3)
m1p(p3)N(3)∗

m1p(p4)

×〈E(p1)E∗(p2)〉 exp (ip1 · rj − ip2 · ri)

× exp (ip3 · (r − rj ))

× exp (−ip4 · (r − ri))dp3dp4. (58)

Here we also use the Fourier transform of VSWFs,
N(3)

m1p(p3) and N(3)∗
m1p(p4), with a similar definition to

Eq. (57), where p3 and p4 are also reciprocal vec-
tors, corresponding to r − rj and r − ri , respectively. To
carry out the above integral, we further change the vari-
ables as R = (rj + ri)/2, s = rj − ri , p = (p1 + p2)/2, p′ =
(p3 + p4)/2, q = (p1 − p2) = (p3 − p4), and finally obtain

Iich(r) = n0

∑
mpm′p′

∫∫∫∫
dpdp′dqds[n0h2(s) + δ(s)]

×T1pT ∗
1p′CmpC∗

m′p′N(3)
m1p(p′ + q/2)N(3)∗

m1p(p′ − q/2)

× exp[i(p − p′) · s] exp(iq · r)〈E(p + q/2)

× E∗(p − q/2)〉. (59)

Integrating over s and using the Fourier representation of pair
correlation function h2(s) as

H (p′ − p) = 1

(2π )3

∫
dsh2(s) exp [−i(p′ − p) · s]. (60)

Therefore we are able to obtain

Iich(r) = n0

∑
mpm′p′

∫∫∫
dpdp′dq[n0(2π )3H (p′ − p) + 1]

×T1pT ∗
1p′CmpC∗

m′p′N(3)
m1p(p′ + q/2)N(3)∗

m1p(p′ − q/2)

×〈E(p + q/2)E∗(p − q/2)〉 exp(iq · r). (61)

Furthermore, we take on-shell approximation for total
intensity, i.e., 〈E(p + q/2)E∗(p − q/2)〉 is concentrated in a
momentum shell at p = K , where K is the effective propaga-
tion constant calculated before [17,76]. This approximation is
valid when scatterers are in the far field of each other and
each scattering event occurs in the far field of each other.
This condition also requires q → 0, meaning no off-shell wave
components enter into the total intensity. In this way, 〈E(p +
q/2)E∗(p − q/2)〉 ≈ 〈E(p)E∗(p)〉δ(p − p̂K). In the present
study, the mean normalized distance between each two scatter-
ers can be estimated to be kd = 2πa 3

√
4π/(3fv)/λ = 2.42 for

the largest density case of fv = 0.25. Therefore we can assume
that the far-field and on-shell approximations are applicable.
In this circumstance, we carry out the integral involving q as∫∫∫

dqdr1dr2N(3)
m1p(r1)N(3)∗

m1p(r2)〈E(p + q/2)E∗(p − q/2)〉

× exp(iq · r) exp(−i(p′ + q/2)r1) exp(i(p′ − q/2)r2)
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≈
∫

dsN(3)
m1p(r + s/2)N(3)∗

m1p(r − s/2) exp(−ip′ · s)

×〈E(p̂K)E∗(p̂K)〉, (62)

where the definition of Fourier transform for VSWFs is used.
Substituting Eq. (62) into Eq. (61), we have

Iich(r) = n0

∑
mpm′p′

∫∫∫
dp̂dp′ds[n0(2π )3H (p′ − p) + 1]

×T1pT ∗
1p′CmpC∗

m′p′N(3)
m1p(r + s/2)N(3)∗

m1p(r − s/2)

× exp(−ip′ · s)〈E(p̂K)E∗(p̂K)〉. (63)

By this stage, the physical significance of Eq. (63) is obvious. It
describes that incoherent intensity arises from the process that
total intensity propagating along p̂ is scattered into the direction
p̂′, and the total incoherent intensity should be integrated
over all possible incident and scattering directions. This is
the process depicted by conventional RTE [21]. Therefore, the
quantity in the integral is indeed the different scattering cross
section of an individual scattering event, which is given by

dσ ′
s

dΩs
= n0

∑
mpm′p′

∫
ds[n0(2π )3H (p′ − p) + 1]

×T1pT ∗
1p′CmpC∗

m′p′N(3)
m1p(r + s/2)N(3)∗

m1p(r − s/2)

× exp(−ip′ · s), (64)

where Ωs indicates the scattering solid angle defined as the
angle between incident direction p and scattering direction p′.
Since we have assumed far-field scattering, the above equation
can be calculated by utilizing the asymptotic property for
VSWFs in the far field, which is listed in Appendix C. The
integral over s results in a requirement that the scattering
momentum p′ should be equal to kr̂, which is consistent with
the far-field behavior of VSWFs, implying that only the mode
with momentum p′ = k can propagate into the far field. The
momentum mismatch between p = K and p′ = k is actually
compensated by the term involving the Fourier transform of the
pair correlation function H (p′ − p). After some manipulations
we obtain

dσ ′
s

dθs
= 9n0

4k2
[1 + n0(2π )3H (p′ − p)]

× [|a1C21πn(cos θs) + b1C11τn(cos θs)|2
+ |b1C11πn(cos θs) + a1C21τn(cos θs)|2], (65)

where θs is the polar scattering angle, and the dependency on
azimuth angle is integrated out. The functions τn(cos θs) and
πn(cos θs) are defined in Appendix C.

By now the only undetermined object is the Fourier
transform of the pair correlation function H (p′ − p),
where the absolute value of argument is |p′ − p| =√

K2 + k2 − 2Kk cos θs . To this end, here we regard that
all silicon particles are randomly distributed and the only
restriction is that they do not overlap or penetrate each other.
In this assumption, the Percus-Yevick approximation for the
PDF of hard spheres is used, since this model is capable of
reproducing the position relations between pairs of spherical
particles analytically with high accurateness [55]. It is given
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FIG. 3. QCA-calculated phase function P (θs) as a function of
scattering angle θs for the random medium containing Si nanopar-
ticles with radius a = 230 nm with different volume fractions fv at
wavelength λ = 1530 nm. The interacting potential between particles
is the hard-sphere type calculated through the Percus-Yevick model
[54].

by Refs. [54,55] as

H (q) = F (q)

1 − n0(2π )3F (q)
, (66)

where

F (q) = 24fv

[
α + β + δ

u2
cos u − α + 2β + 4δ

u3
sin u

− 2
β + 6δ

u4
cos u + 2β

u4
+ 24

δ

u5
sin u

+ 24δ

u6
(cos u − 1)

]
, (67)

with q = |q|, u = 2qa, α = (1 + 2fv)2/(1 − fv)4, β = −6fv

(1 + fv/2)2/(1 − fv)4, δ = fv(1 + 2fv)2/[2(1 − fv)2].
The obtained phase functions under QCA for different

volume fractions are provided in Fig. 3. Here the upper limit
of volume fraction is chosen to be fv = 0.25 since a higher
volume fraction of particles would lead to the breakdown of
QCA, because particle correlations involving three or more
particles are more complicated than what QCA predicts.
Specifically, the phase function is computed through normal-
izing the differential scattering cross section as [21]

P (θs) =
dσ ′

s
dθs

1
2

∫ π

0
dσ ′

s
dθs

sin θsdθs

. (68)

Figure 3 demonstrates that by increasing the particle concen-
tration, the forward scattering is reduced and backscattering
is enhanced, and the effect of fv is more pronounced on
backscattering than forward scattering. Therefore, we have
achieved much stronger backscattering phase functions than
that in the single scattering case. This is one of the main results
of the present paper.

To understand the underlying mechanism on this
enhancement for backscattering, it is worth giving a brief
exploration on the dependent scattering effects, including the
modification of electric and magnetic dipole excitations and
the far-field interference effect, both induced and influenced
by the structural correlations.
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FIG. 4. Structure factor S as a function of scattering angle θs

for the random medium containing Si nanoparticles with radius
a = 230 nm with different volume fractions fv at wavelength λ =
1530 nm. The interacting potential between particles is the hard-
sphere type calculated through the Percus-Yevick model [54].

In fact, a close scrutiny of Eq. (65) provides the clear
physical significance of the differential scattering cross section.
The structural correlations among particles, i.e., g2(r), enter
into Eq. (64) and affect the dependent scattering mecha-
nism in two ways. The first is contained in the fluctuational
component of the structure factor defined as S(q) = 1 +
n0(2π )3H (p′ − p) where q = p′ − p. This quantity is widely
used by many authors as the first-order dependent-scattering
correction to dσs/dθs of single particle scattering, for instance,
Refs. [33,34,38,49,84], which describes the far-field interfer-
ence between first-order scattered waves of different particles,
also named the interference approximation (ITA) by some
authors [85]. The only difference in S(q) between QCA and
ITA is that the former takes the propagation constant of the
effective excitation field K impinging on the particles into
account, rather than the bare value of k. In Fig. 4, we give
S(q) for different volume fractions as a function of scattering
angle θs , in which q =

√
K2 + k2 − 2Kk cos θs is implicitly

used. Results show that the effect of S(θs) is that it reduces
forward incoherent scattering intensity more significantly than
backscattering intensity. The backward and forward scattering
contrast grows with the increase of the volume fraction, or the
degree of structural correlations.

The second role of the structural correlations is that they
affect the effective exciting field amplitudes for electric and
magnetic dipoles C12 and C11 according to Eq. (20), which
are both equal to 1 under ISA as well as ITA. In Fig. 5,
we have calculated the absolute values of C11 and C12 to
demonstrate how structural correlations induce a dependent
scattering effect on the dipole excitation under different volume
fractions. It is found that the absolute values of C12 and C11 are
substantially larger than 1, which indicates that the dependent
scattering mechanism gives rise to an enhancement in mode
amplitudes for dual-dipolar particles compared to the free-
space plane-wave illumination. Both C12 and C11 grow with
volume fraction until fv � 0.23, where they start to decrease.
This suggests that the dependent scattering mechanism initially
enhances the electromagnetic excitation of particles at moder-
ate concentrations and when the volume fraction continues to
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fv
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FIG. 5. Variation of effective exciting field amplitudes C12 (for
electric dipole) and C11 (for magnetic dipole) with particle volume
fraction fv .

rise a reduction occurs due to the “screening effects,” in which
the individual particle “witnesses” its surrounding medium
as a high-index-of-refraction effective medium, rather than
the bare background medium (vacuum in the present case),
leading to a reduction in index contrast and thus scattering
strength [20]. This is actually a renormalization of wave
propagation in random media, which has also been considered
by many authors but with rather different approaches, for
instance, Refs. [20,26,86–88]. Moreover, the amplitude of C11

is significantly larger than C12, implying that in the current
case, dependent scattering enhances magnetic dipole excitation
more efficiently.

According to Eq. (64), knowing that π1(1) = τ1(1) =
π1(−1) = −τ1(−1) = 1, the differential scattering cross sec-
tion in forward and backward scattering directions can be
estimated as

dσ ′
s

dθs
|θs=0o ∼ |a1C12 + b1C11|2, (69)

dσ ′
s

dθs
|θs=180o ∼ |a1C12 − b1C11|2, (70)

if the prefactor containing S(q) is not taken into account. Thus
it is straightforward to obtain [28]

gQCA = 1

2

dσ ′
s

dθs
|θs=0o − dσ ′

s
dθs

|θs=180o

dσ ′
s

dθs
|θs=0o + dσ ′

s
dθs

|θs=180o

∼ Re(a1C12b
∗
1C

∗
11)

|a1C12|2 + |b1C11|2 .

(71)

We represent the quantity in the right-hand side of Eq. (71)
as gC, denoting solely the contribution from the correlation
induced dependent-scattering effect on the exciting field.
The results of the asymmetry factor from full QCA, gQCA,
along with gC are compared in Fig. 6, in which this partial
contribution on the negative asymmetry factor is observed
to be substantial, more negative than that of single particles.
Consequently we have unequivocally demonstrated the second
role of the structural correlations, i.e., modification of the
exciting field for the dipolar modes, which also leads to an
enhancement in backscattering. This role, actually, is rarely
noticed or explicitly demonstrated by previous studies.
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FIG. 6. QCA-calculated asymmetry factor gQCA for a random
medium containing Si nanoparticle with radius a = 230 nm with
different volume fractions fv at wavelength λ = 1530 nm, compared
with the partial asymmetry factor gC that only considers the effect
of the modification of the exciting field induced by the structural
correlations.

Finally, we calculate the transport mean free path under
QCA with comparison with that under ISA as a function of
volume fraction. To show the linear dependence of scattering
strength predicted by ISA, the inverse of transport mean free
path 1/ltr is used in Fig. 7. In the studied range of fv , the inverse
of the transport mean free path under QCA is surprisingly
higher than that of ISA, implying a much lower ltr and then
lower light conductance [17,20]. The highest value of 1/ltr,QCA

appears at fv ∼ 0.23, leading to the Ioffe-Regel parameter
Kltr,QCA ∼ 1, which indicates that strong localization behavior
may occur. This result is surprising because in conventional
densely packed particle systems, the structural correlations
strongly reduce the scattering strength, leading to a giant
increase of the transport mean free path compared to the
value predicted by ISA [33]. It is interesting to examine the
possibility of localization in more detail, which will be
the subject of our future work.
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0
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FIG. 7. The inverse of transport mean free path 1/ltr for a random
medium containing Si nanoparticle with radius a = 230 nm with
different volume fractions fv calculated by QCA, where the operating
wavelength is λ = 1530 nm, and the result of ISA is also plotted for
comparison.

IV. CONCLUSIONS

In this paper we have accomplished the design and theo-
retical analysis of a random medium with a strongly negative
scattering asymmetry factor for multiple light scattering in the
near infrared. Based on a multipole expansion of the FLEs and
QCA, we have rigorously derived analytical expressions for
the effective propagation constant for a random system con-
taining dual-dipolar particles. Moreover, in terms of intensity
transport, we derive a Bethe-Salpeter-type equation for this
system. By applying far-field and on-shell approximations as
well as Fourier transform technique, we have finally obtained
the scattering phase function, which is one of the main con-
tributions of the present paper. Although the present formulas
are deduced only for dual-dipolar particles, our theory can be
naturally extended to take high-order multipoles into account.

Following from our theoretical contribution, by utilizing
structural correlations among particles and the second Kerker
condition, we show that for a random medium composed
of randomly distributed silicon nanoparticles, the asymmetry
factor can reach nearly g ∼ −0.5. The structural correlations
are of the hard-sphere type and we find that as concentration
of particles rises, the backscattering is also enhanced. This
leads to a strong reduction in the transport mean free path,
even lower than the value calculated from ISA, resulting in
a potential for strong localization to occur. We further reveal
that the strongly backscattering phase function is a result of
the dependent scattering effects, including the modification
of electric and magnetic dipole excitations and the far-field
interference effect, which are both induced and influenced by
the structural correlations.

To sum up, in the theoretical aspect, the present study
establishes a basis for analyzing light propagation, including
field and intensity, in disordered media with multipole Mie
modes. In the application aspect, it paves a way to manipulate
light scattering and spawns possibilities such as imaging,
photovoltaics, and radiative cooling through random media.
For instance, a strong backscattering feature is promising for
radiative cooling coatings [89,90], for which it is necessary to
efficiently reflect incident solar power concentrating on visible
and near infrared.
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APPENDIX A: DEFINITION OF ENSEMBLE AVERAGE

Generally, an ensemble average of a physical quantity
should be carried out with respect to all possible states of the
system [21,35,55]. In the present random medium consisting
of N identical, homogeneous, and isotropic nanoparticles,
the only varying states of particles are their positions, i.e.,
rj , where j = 1,2,...,N . Therefore, the ensemble average
over the whole random medium for a physical quantity
Q(r1,r2,...,rj ,...,rN ), which is a function of particle positions,
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is calculated as [35,55]

〈Q〉 =
∫

Q(r1,r2,...,rj ,...,rN )dr1dr2...drj ...drN

·p(r1,r2,...,rj ,...,rN ), (A1)

where p(r1,r2,...,rj ,...,rN ) is the joint probability density
function of the particle distribution r1,r2,...,rj ,...,rN . If we
fix some particle rj , the ensemble average over other N − 1
particles is given by

〈Q〉j =
∫

Q(r1,r2,...,ri ,...,rj ,...,rN )dr1dr2...dri ...drN

·p(r1,r2,...,ri ,...,rj ,...,rN ), (A2)

where i �= j . Similarly, if we fix two particles ri and rj , the
ensemble average is expressed as

〈Q〉ij =
∫

Q(r1,r2,...,ri ,...,rj ,...,rl ,...rN )dr1dr2...drl ...drN

·p(r1,r2,...,ri ,...,rj ,...,rl ,...rN ), (A3)

where i �= j, l �= j , and l �= i. The relation between 〈Q〉ij and
〈Q〉j can be derived as

〈Q〉j =
∫

〈Q〉ijp(ri |rj )dri , (A4)

where p(ri |rj ) is the conditional probability density function
of ri for a fixed rj . The pair distribution function is related to
p(ri |rj ) as [55]

p(ri |rj ) = g2(ri |rj )

V

N

N − 1
, (A5)

whereV is the volume occupied by the ensemble of particles. In
the thermodynamic limit, N → ∞, p(ri |rj ) ≈ g2(ri |rj )/V .

APPENDIX B: VSWFs AND TRANSLATION
ADDITION THEOREM

The regular VSWFs N(1)
mnp(r) for p = 2 (TE mode) and p =

1 (TM mode) are defined as [47,48,69,75,91]

N(1)
mn2(r) =

√
(2n + 1)(n − m)!

4πn(n + 1)(n + m)!
∇ × (

rψ (1)
mn(r)

)
, (B1)

N(1)
mn1(r) = 1

k
∇ × N(1)

mn2(r), (B2)

where k = ω/c is the wave number in free space and ω is the
angular frequency of the electromagnetic wave. ψ (1)

mn(r) is the
regular (type-1) scalar wave function defined as

ψ (1)
mn(r) = jn(kr)Ym

n (θ,φ), (B3)

where jn(kr) is the spherical Bessel function and Ym
n (θ,φ) is

spherical harmonics defined as

Ym
n (θ,φ) = P m

n (cos θ ) exp(imφ), (B4)

where we use the convention of quantum mechanics, and
P m

n (cos θ ) are associated Legendre polynomials.
The outgoing (type-3) VSWFs have can be similarly defined

by replacing the above spherical Bessel functions with Hankel
functions of the first kind hn(kr).

The translation addition theorem of VSWFs, which trans-
forms the VSWFs centered in ri into those centered in rj , is
given by

N(3)
μνq(r − ri) =

∑
μνq

A(3)
mnpμνq(ri − rj )N(1)

mnp(r − rj ), (B5)

which is valid for |ri − rj | > |r − rj |, and therefore should be
used in the vicinity of rj . The coefficient A(3)

μqmp is generally
given by [55]

A
(3)
mn1μν1(r) = A

(3)
mn2μν2(r) = γμν

γmn

(−1)m ·
∑

l

a(μ,ν| − m,n|l)a(ν,n,l)hl(kr)Yμ−m

l (θ,φ), (B6)

A
(3)
mn1μν2(r) = A

(3)
mn2μν1(r) = γμν

γmn

(−1)m+1
∑

l

a(μ,ν| − m,n|l,l − 1)b(ν,n,l)hl(kr)Yμ−m

l (θ,φ), (B7)

where γmn is defined as

γmn =
√

(2n + 1)(n − m)!

4πn(n + 1)(n + m)!
. (B8)

The coefficients a(μ,ν| − m,n|l) and a(μ,ν| − m,n|l,l − 1) are given by

a(μ,ν|−m,n|l) = (−1)μ−m(2l + 1)

(
ν n l

μ −m μ − m

)
·
(

ν n l

0 0 0

)[ (ν + μ)!(n − m)!(l − μ + m)!

(ν − μ)!(n + m)!(l + μ − m)!

]1/2
, (B9)

a(μ,ν|−m,n|l,l − 1) = (−1)μ−m(2l + 1)

(
ν n l

μ −m μ − m

)
·
(

ν n l − 1
0 0 0

)[ (ν + μ)!(n − m)!(l − μ + m)!

(ν − μ)!(n + m)!(l + μ − m)!

]1/2
,

(B10)

in which the variables in the form (
j1 j2 j3

m1 m2 m3
) are Wigner−3j symbols. They can be found in Refs. [55,73] and not shown

in detail here. Other coefficients a(ν,n,l) and b(ν,n,l) are given as [55]

a(ν,n,l) = in+l−ν

2n(n + 1)
[2n(n + 1)(2n + 1) + (n + 1)(ν + n − l)(ν + l − n + 1) − n(ν + n + l + 2)(n + l − ν + 1)], (B11)
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b(ν,n,l) = − (2n + 1)in+l−ν

2n(n + 1)
[(ν + n + l + 1)(n + l − ν) · (ν + l − n)(ν + n − l + 1)]1/2. (B12)

APPENDIX C: FAR-FIELD APPROXIMATION FOR OUTGOING VSWFs

For outgoing (type-3) VSWFs N(3)
mnp(r − rj ) centered at rj , their far-field forms (when r � rj ) are given by [47,48,69]

N(3)
mn2(r − rj ) ≈ i−n

√
(2n + 1)(n − m)!

4πn(n + 1)(n + m)!

exp(kr)

kr
· exp(−ks · rj )Bmn(θ,φ), (C1)

N(3)
mn1(r − rj ) ≈ i−n

√
(2n + 1)(n − m)!

4πn(n + 1)(n + m)!

exp(kr)

kr
· exp(−ks · rj )Cmn(θ,φ), (C2)

where Bmn(θ,φ) and Cmn(θ,φ) are vector spherical harmonics. In the present calculation for spheres, only m = ±1 are needed.
In this condition,

B1n(θ,φ) = −[θ̂τn(cos θ ) + φ̂πn(cos θ )] exp(iφ), (C3)

B−1n(θ,φ) = 1

n(n + 1)
[θ̂τn(cos θ ) − φ̂πn(cos θ )] exp(−iφ), (C4)

C1n(θ,φ) = −[θ̂ iπn(cos θ ) − φ̂τn(cos θ )] exp(iφ), (C5)

C−1n(θ,φ) = − 1

n(n + 1)
[θ̂ iπn(cos θ ) + φ̂τn(cos θ )] exp(−iφ), (C6)

where τn and πn are functions defined as [47]

τn(cos θ ) = −dP 1
n (cos θ )

dθ
, (C7)

πn(cos θ ) = −P 1
n (cos θ )

sin θ
. (C8)

[1] D. S. Wiersma, Nat. Photonics 7, 188 (2013).
[2] S. Rotter and S. Gigan, Rev. Mod. Phys. 89, 015005 (2017).
[3] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature

(London) 390, 671 (1997).
[4] M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, Phys. Rev.

Lett. 96, 063904 (2006).
[5] M. Segev, Y. Silberberg, and D. N. Christodoulides, Nat. Pho-

tonics 7, 197 (2013).
[6] T. Sperling, L. Schertel, M. Ackermann, G. J. Aubry, C. M.

Aegerter, and G. Maret, New J. Phys. 18, 013039 (2016).
[7] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R.

P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999).
[8] D. S. Wiersma, Nat. Phys. 4, 359 (2008).
[9] M. Florescu, S. Torquato, and P. J. Steinhardt, Proc. Natl. Acad.

Sci. USA 106, 20658 (2009).
[10] L. S. Froufe-Pérez, M. Engel, P. F. Damasceno, N. Muller, J.

Haberko, S. C. Glotzer, and F. Scheffold, Phys. Rev. Lett. 117,
053902 (2016).

[11] K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, Nat. Mater.
11, 1017 (2012).

[12] X. Fang, M. Lou, H. Bao, and C. Y. Zhao, J. Quant. Spectrosc.
Radiat. Transfer 158, 145 (2015).

[13] S. F. Liew, S. M. Popoff, S. W. Sheehan, A. Goetschy, C. A.
Schmuttenmaer, A. D. Stone, and H. Cao, ACS Photonics 3,
449 (2016).

[14] I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics
4, 320 (2010).

[15] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat.
Photonics 6, 283 (2012).

[16] C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone,
Nat. Phys. 13, 497 (2017).

[17] A. Lagendijk and B. A. Van Tiggelen, Phys. Rep. 270, 143
(1996).

[18] M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod.
Phys. 71, 313 (1999).

[19] L. Tsang and J. A. Kong, Scattering of Electromagnetic
Waves: Advanced Topics (John Wiley & Sons, New York,
2004).

[20] P. Sheng, Introduction to Wave Scattering, Localization and
Mesoscopic Phenomena (Springer Science & Business Media,
New York, 2006).

[21] M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scat-
tering of Light by Particles: Radiative Transfer and Coherent
Backscattering (Cambridge University Press, Cambridge, 2006).

[22] E. Akkermans and G. Montambaux, Mesoscopic Physics of Elec-
trons and Photons (Cambridge University Press, Cambridge,
2007).

[23] M. I. Mishchenko, Electromagnetic Scattering by Particles and
Particle Groups: An Introduction (Cambridge University Press,
Cambridge, 2014).

023836-13

https://doi.org/10.1038/nphoton.2013.29
https://doi.org/10.1038/nphoton.2013.29
https://doi.org/10.1038/nphoton.2013.29
https://doi.org/10.1038/nphoton.2013.29
https://doi.org/10.1103/RevModPhys.89.015005
https://doi.org/10.1103/RevModPhys.89.015005
https://doi.org/10.1103/RevModPhys.89.015005
https://doi.org/10.1103/RevModPhys.89.015005
https://doi.org/10.1038/37757
https://doi.org/10.1038/37757
https://doi.org/10.1038/37757
https://doi.org/10.1038/37757
https://doi.org/10.1103/PhysRevLett.96.063904
https://doi.org/10.1103/PhysRevLett.96.063904
https://doi.org/10.1103/PhysRevLett.96.063904
https://doi.org/10.1103/PhysRevLett.96.063904
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1088/1367-2630/18/1/013039
https://doi.org/10.1088/1367-2630/18/1/013039
https://doi.org/10.1088/1367-2630/18/1/013039
https://doi.org/10.1088/1367-2630/18/1/013039
https://doi.org/10.1103/PhysRevLett.82.2278
https://doi.org/10.1103/PhysRevLett.82.2278
https://doi.org/10.1103/PhysRevLett.82.2278
https://doi.org/10.1103/PhysRevLett.82.2278
https://doi.org/10.1038/nphys971
https://doi.org/10.1038/nphys971
https://doi.org/10.1038/nphys971
https://doi.org/10.1038/nphys971
https://doi.org/10.1073/pnas.0907744106
https://doi.org/10.1073/pnas.0907744106
https://doi.org/10.1073/pnas.0907744106
https://doi.org/10.1073/pnas.0907744106
https://doi.org/10.1103/PhysRevLett.117.053902
https://doi.org/10.1103/PhysRevLett.117.053902
https://doi.org/10.1103/PhysRevLett.117.053902
https://doi.org/10.1103/PhysRevLett.117.053902
https://doi.org/10.1038/nmat3442
https://doi.org/10.1038/nmat3442
https://doi.org/10.1038/nmat3442
https://doi.org/10.1038/nmat3442
https://doi.org/10.1016/j.jqsrt.2015.01.002
https://doi.org/10.1016/j.jqsrt.2015.01.002
https://doi.org/10.1016/j.jqsrt.2015.01.002
https://doi.org/10.1016/j.jqsrt.2015.01.002
https://doi.org/10.1021/acsphotonics.5b00642
https://doi.org/10.1021/acsphotonics.5b00642
https://doi.org/10.1021/acsphotonics.5b00642
https://doi.org/10.1021/acsphotonics.5b00642
https://doi.org/10.1038/nphoton.2010.3
https://doi.org/10.1038/nphoton.2010.3
https://doi.org/10.1038/nphoton.2010.3
https://doi.org/10.1038/nphoton.2010.3
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1038/nphys4036
https://doi.org/10.1038/nphys4036
https://doi.org/10.1038/nphys4036
https://doi.org/10.1038/nphys4036
https://doi.org/10.1016/0370-1573(95)00065-8
https://doi.org/10.1016/0370-1573(95)00065-8
https://doi.org/10.1016/0370-1573(95)00065-8
https://doi.org/10.1016/0370-1573(95)00065-8
https://doi.org/10.1103/RevModPhys.71.313
https://doi.org/10.1103/RevModPhys.71.313
https://doi.org/10.1103/RevModPhys.71.313
https://doi.org/10.1103/RevModPhys.71.313


B. X. WANG AND C. Y. ZHAO PHYSICAL REVIEW A 97, 023836 (2018)

[24] F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, Phys. Rev.
Lett. 84, 1435 (2000).

[25] M. Kerker, D.-S. Wang, and C. L. Giles, J. Opt. Soc. Am. 73,
765 (1983).

[26] R. R. Naraghi, S. Sukhov, and A. Dogariu, Opt. Lett. 40, 585
(2015).

[27] J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Al-
bella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F.
González, M. Nieto-Vesperinas, J. J. Saenz, and F. Moreno, Nat.
Commun. 3, 1171 (2012).

[28] R. Gómez-Medina, L. S. Froufe-Pérez, M. Yépez, F. Scheffold,
M. Nieto-Vesperinas, and J. J. Sáenz, Phys. Rev. A 85, 035802
(2012).

[29] R. Gómez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F.
González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz,
J. Nanophotonics 5, 053512 (2011).

[30] X. Zambrana-Puyalto, I. Fernandez-Corbaton, M. L. Juan, X.
Vidal, and G. Molina-Terriza, Opt. Lett. 38, 1857 (2013).

[31] X. Zambrana-Puyalto, X. Vidal, M. L. Juan, and G. Molina-
Terriza, Opt. Express 21, 17520 (2013).

[32] M. K. Schmidt, J. Aizpurua, X. Zambrana-puyalto, X. Vidal, G.
Molina-terriza, and J. J. Sáenz, Phys. Rev. Lett. 114, 113902
(2015).

[33] S. Fraden and G. Maret, Phys. Rev. Lett. 65, 512 (1990).
[34] M. I. Mishchenko, J. Quant. Spectrosc. Radiat. Transfer 52, 95

(1994).
[35] M. Lax, Rev. Mod. Phys. 23, 287 (1951).
[36] M. Mishchenko and A. Macke, J. Quant. Spectrosc. Radiat.

Transfer 57, 767 (1997).
[37] M. I. Mishchenko, Kinemat. Phys. Celest. Bodies 26, 95

(2010).
[38] L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P.

Schurtenberger, and F. Scheffold, Phys. Rev. Lett. 93, 073903
(2004).

[39] G. Mie, Ann. Phys. 330, 377 (1908).
[40] M. I. Tribelsky and B. S. Lyk’yanchuk, Phys. Rev. Lett. 97,

263902 (2006).
[41] M. I. Tribelsky, Europhys. Lett. 94, 14004 (2011).
[42] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and

B. Luk’yanchuk, Sci. Rep. 2, 00492 (2012).
[43] Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and

B. S. Luk’Yanchuk, Nat. Commun. 4, 1527 (2013).
[44] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S.

Kivshar, and B. S. Luk’Yanchuk, Science 354, aag2472 (2016).
[45] B. Luk’yanchuk, R. Paniagua-Domínguez, A. I. Kuznetsov,

A. E. Miroshnichenko, and Y. S. Kivshar, Phys. Rev. A 95,
063820 (2017).

[46] V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk,
and A. I. Kuznetsov, Appl. Phys. Lett. 110, 091108 (2017).

[47] C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles (John Wiley & Sons, New York, 2008).

[48] L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromag-
netic Waves, Theories and Applications, Vol. 1 (John Wiley &
Sons, New York, 2000).

[49] Y. Yamada, J. D. Cartigny, and C. L. Tien, J. Heat Transfer 108,
614 (1986).

[50] B. Aernouts, R. V. Beers, R. Watté, and J. Lammertyn, Opt.
Express 22, 6086 (2014).

[51] B. A. van Tiggelen, A. Lagendijk, and A. Tip, J. Phys.: Condens.
Matter 2, 7653 (1990).

[52] A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen,
A. Derode, and J. H. Page, Phys. Rev. Lett. 112, 043903
(2014).

[53] M. Lax, Phys. Rev. 85, 621 (1952).
[54] M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).
[55] L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of

Electromagnetic Waves: Numerical Simulations (John Wiley &
Sons, New York, 2004).

[56] R. J. Baxter, J. Chem. Phys. 49, 2770 (1968).
[57] V. Bringi, V. Varadan, and V. Varadan, Radio Sci. 17, 946

(1982).
[58] L. Tsang and J. A. Kong, J. Appl. Phys. 53, 7162 (1982).
[59] V. P. Tishkovets, E. V. Petrova, and M. I. Mishchenko, J. Quant.

Spectrosc. Radiat. Transfer 112, 2095 (2011).
[60] Y. Ma, V. V. Varadan, and V. K. Varadan, Appl. Opt. 27, 2469

(1988).
[61] V. V. Varadan, Y. Ma, and V. K. Varadan, J. Opt. Soc. Am. A 2,

2195 (1985).
[62] R. West, D. Gibbs, L. Tsang, and A. K. Fung, J. Opt. Soc. Am.

A 11, 1854 (1994).
[63] A. Nashashibi and K. Sarabandi, IEEE Trans. Antennas Propag.

47, 1454 (1999).
[64] P. R. Siqueira, K. Sarabandi, and S. Member, IEEE Trans.

Antennas Propag. 48, 317 (2000).
[65] D. Liang, X. Xu, L. Tsang, K. M. Andreadis, and E. G. Josberger,

IEEE Transactions on Geoscience and Remote Sensing 46, 3663
(2008).

[66] R. Prasher, J. Appl. Phys. 102, 074316 (2007).
[67] B. X. Wang and C. Y. Zhao, Int. J. Heat Mass Transf. 89, 920

(2015).
[68] F. V. Meulen, G. Feuillard, O. B. Matar, F. Levas-

sort, and M. Lethiecq, J. Acoust. Soc. Am. 110, 2301
(2001).

[69] D. W. Mackowski and M. I. Mishchenko, J. Opt. Soc. Am. A 13,
2266 (1996).

[70] W. Lamb, D. M. Wood, and N. W. Ashcroft, Phys. Rev. B 21,
2248 (1980).

[71] Y.-l. Xu and B. S. Gustafson, J. Quant. Spectrosc. Radiat.
Transfer 70, 395 (2001).

[72] S. Campione, M. B. Sinclair, and F. Capolino, Photonics
and Nanostructures—Fundamentals and Applications 11, 423
(2013).

[73] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions: With Formulas, Graphs, and Mathematical Tables,
Vol. 55 (Courier Corporation, North Chelmsford, 1964).

[74] M. Born and E. Wolf, Principles of Optics: Electromagnetic
Theory of Propagation, Interference and Diffraction of Light
(Elsevier, Amsterdam, 2013).

[75] D. Mackowski and M. Mishchenko, J. Quant. Spectrosc. Radiat.
Transfer 123, 103 (2013).

[76] K. Vynck, R. Pierrat, and R. Carminati, Phys. Rev. A 94, 033851
(2016).

[77] V. Twersky, J. Acoust. Soc. Am. 29, 209 (1957).
[78] L. Tsang and T. C. Chang, Radio Sci. 35, 731 (2000).
[79] Y. N. Barabanenkov, L. Zurk, and M. Y. Barabanenkov,

J. Electromagn. Waves Appl. 9, 1393 (1995).
[80] O. Leseur, R. Pierrat, and R. Carminati, Optica 3, 763

(2016).
[81] N. Cherroret, D. Delande, and B. A. van Tiggelen, Phys. Rev. A

94, 012702 (2016).

023836-14

https://doi.org/10.1103/PhysRevLett.84.1435
https://doi.org/10.1103/PhysRevLett.84.1435
https://doi.org/10.1103/PhysRevLett.84.1435
https://doi.org/10.1103/PhysRevLett.84.1435
https://doi.org/10.1364/JOSA.73.000765
https://doi.org/10.1364/JOSA.73.000765
https://doi.org/10.1364/JOSA.73.000765
https://doi.org/10.1364/JOSA.73.000765
https://doi.org/10.1364/OL.40.000585
https://doi.org/10.1364/OL.40.000585
https://doi.org/10.1364/OL.40.000585
https://doi.org/10.1364/OL.40.000585
https://doi.org/10.1038/ncomms2167
https://doi.org/10.1038/ncomms2167
https://doi.org/10.1038/ncomms2167
https://doi.org/10.1038/ncomms2167
https://doi.org/10.1103/PhysRevA.85.035802
https://doi.org/10.1103/PhysRevA.85.035802
https://doi.org/10.1103/PhysRevA.85.035802
https://doi.org/10.1103/PhysRevA.85.035802
https://doi.org/10.1117/1.3603941
https://doi.org/10.1117/1.3603941
https://doi.org/10.1117/1.3603941
https://doi.org/10.1117/1.3603941
https://doi.org/10.1364/OL.38.001857
https://doi.org/10.1364/OL.38.001857
https://doi.org/10.1364/OL.38.001857
https://doi.org/10.1364/OL.38.001857
https://doi.org/10.1364/OE.21.017520
https://doi.org/10.1364/OE.21.017520
https://doi.org/10.1364/OE.21.017520
https://doi.org/10.1364/OE.21.017520
https://doi.org/10.1103/PhysRevLett.114.113902
https://doi.org/10.1103/PhysRevLett.114.113902
https://doi.org/10.1103/PhysRevLett.114.113902
https://doi.org/10.1103/PhysRevLett.114.113902
https://doi.org/10.1103/PhysRevLett.65.512
https://doi.org/10.1103/PhysRevLett.65.512
https://doi.org/10.1103/PhysRevLett.65.512
https://doi.org/10.1103/PhysRevLett.65.512
https://doi.org/10.1016/0022-4073(94)90142-2
https://doi.org/10.1016/0022-4073(94)90142-2
https://doi.org/10.1016/0022-4073(94)90142-2
https://doi.org/10.1016/0022-4073(94)90142-2
https://doi.org/10.1103/RevModPhys.23.287
https://doi.org/10.1103/RevModPhys.23.287
https://doi.org/10.1103/RevModPhys.23.287
https://doi.org/10.1103/RevModPhys.23.287
https://doi.org/10.1016/S0022-4073(97)00012-5
https://doi.org/10.1016/S0022-4073(97)00012-5
https://doi.org/10.1016/S0022-4073(97)00012-5
https://doi.org/10.1016/S0022-4073(97)00012-5
https://doi.org/10.3103/S0884591310030013
https://doi.org/10.3103/S0884591310030013
https://doi.org/10.3103/S0884591310030013
https://doi.org/10.3103/S0884591310030013
https://doi.org/10.1103/PhysRevLett.93.073903
https://doi.org/10.1103/PhysRevLett.93.073903
https://doi.org/10.1103/PhysRevLett.93.073903
https://doi.org/10.1103/PhysRevLett.93.073903
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1103/PhysRevLett.97.263902
https://doi.org/10.1103/PhysRevLett.97.263902
https://doi.org/10.1103/PhysRevLett.97.263902
https://doi.org/10.1103/PhysRevLett.97.263902
https://doi.org/10.1209/0295-5075/94/14004
https://doi.org/10.1209/0295-5075/94/14004
https://doi.org/10.1209/0295-5075/94/14004
https://doi.org/10.1209/0295-5075/94/14004
https://doi.org/10.1038/srep00492
https://doi.org/10.1038/srep00492
https://doi.org/10.1038/srep00492
https://doi.org/10.1038/srep00492
https://doi.org/10.1038/ncomms2538
https://doi.org/10.1038/ncomms2538
https://doi.org/10.1038/ncomms2538
https://doi.org/10.1038/ncomms2538
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1103/PhysRevA.95.063820
https://doi.org/10.1103/PhysRevA.95.063820
https://doi.org/10.1103/PhysRevA.95.063820
https://doi.org/10.1103/PhysRevA.95.063820
https://doi.org/10.1063/1.4977570
https://doi.org/10.1063/1.4977570
https://doi.org/10.1063/1.4977570
https://doi.org/10.1063/1.4977570
https://doi.org/10.1115/1.3246980
https://doi.org/10.1115/1.3246980
https://doi.org/10.1115/1.3246980
https://doi.org/10.1115/1.3246980
https://doi.org/10.1364/OE.22.006086
https://doi.org/10.1364/OE.22.006086
https://doi.org/10.1364/OE.22.006086
https://doi.org/10.1364/OE.22.006086
https://doi.org/10.1088/0953-8984/2/37/010
https://doi.org/10.1088/0953-8984/2/37/010
https://doi.org/10.1088/0953-8984/2/37/010
https://doi.org/10.1088/0953-8984/2/37/010
https://doi.org/10.1103/PhysRevLett.112.043903
https://doi.org/10.1103/PhysRevLett.112.043903
https://doi.org/10.1103/PhysRevLett.112.043903
https://doi.org/10.1103/PhysRevLett.112.043903
https://doi.org/10.1103/PhysRev.85.621
https://doi.org/10.1103/PhysRev.85.621
https://doi.org/10.1103/PhysRev.85.621
https://doi.org/10.1103/PhysRev.85.621
https://doi.org/10.1103/PhysRevLett.10.321
https://doi.org/10.1103/PhysRevLett.10.321
https://doi.org/10.1103/PhysRevLett.10.321
https://doi.org/10.1103/PhysRevLett.10.321
https://doi.org/10.1063/1.1670482
https://doi.org/10.1063/1.1670482
https://doi.org/10.1063/1.1670482
https://doi.org/10.1063/1.1670482
https://doi.org/10.1029/RS017i005p00946
https://doi.org/10.1029/RS017i005p00946
https://doi.org/10.1029/RS017i005p00946
https://doi.org/10.1029/RS017i005p00946
https://doi.org/10.1063/1.331611
https://doi.org/10.1063/1.331611
https://doi.org/10.1063/1.331611
https://doi.org/10.1063/1.331611
https://doi.org/10.1016/j.jqsrt.2011.04.010
https://doi.org/10.1016/j.jqsrt.2011.04.010
https://doi.org/10.1016/j.jqsrt.2011.04.010
https://doi.org/10.1016/j.jqsrt.2011.04.010
https://doi.org/10.1364/AO.27.002469
https://doi.org/10.1364/AO.27.002469
https://doi.org/10.1364/AO.27.002469
https://doi.org/10.1364/AO.27.002469
https://doi.org/10.1364/JOSAA.2.002195
https://doi.org/10.1364/JOSAA.2.002195
https://doi.org/10.1364/JOSAA.2.002195
https://doi.org/10.1364/JOSAA.2.002195
https://doi.org/10.1364/JOSAA.11.001854
https://doi.org/10.1364/JOSAA.11.001854
https://doi.org/10.1364/JOSAA.11.001854
https://doi.org/10.1364/JOSAA.11.001854
https://doi.org/10.1109/8.793326
https://doi.org/10.1109/8.793326
https://doi.org/10.1109/8.793326
https://doi.org/10.1109/8.793326
https://doi.org/10.1109/8.833082
https://doi.org/10.1109/8.833082
https://doi.org/10.1109/8.833082
https://doi.org/10.1109/8.833082
https://doi.org/10.1109/TGRS.2008.922143
https://doi.org/10.1109/TGRS.2008.922143
https://doi.org/10.1109/TGRS.2008.922143
https://doi.org/10.1109/TGRS.2008.922143
https://doi.org/10.1063/1.2794703
https://doi.org/10.1063/1.2794703
https://doi.org/10.1063/1.2794703
https://doi.org/10.1063/1.2794703
https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.017
https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.017
https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.017
https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.017
https://doi.org/10.1121/1.1404435
https://doi.org/10.1121/1.1404435
https://doi.org/10.1121/1.1404435
https://doi.org/10.1121/1.1404435
https://doi.org/10.1364/JOSAA.13.002266
https://doi.org/10.1364/JOSAA.13.002266
https://doi.org/10.1364/JOSAA.13.002266
https://doi.org/10.1364/JOSAA.13.002266
https://doi.org/10.1103/PhysRevB.21.2248
https://doi.org/10.1103/PhysRevB.21.2248
https://doi.org/10.1103/PhysRevB.21.2248
https://doi.org/10.1103/PhysRevB.21.2248
https://doi.org/10.1016/S0022-4073(01)00019-X
https://doi.org/10.1016/S0022-4073(01)00019-X
https://doi.org/10.1016/S0022-4073(01)00019-X
https://doi.org/10.1016/S0022-4073(01)00019-X
https://doi.org/10.1016/j.photonics.2013.07.013
https://doi.org/10.1016/j.photonics.2013.07.013
https://doi.org/10.1016/j.photonics.2013.07.013
https://doi.org/10.1016/j.photonics.2013.07.013
https://doi.org/10.1016/j.jqsrt.2013.02.008
https://doi.org/10.1016/j.jqsrt.2013.02.008
https://doi.org/10.1016/j.jqsrt.2013.02.008
https://doi.org/10.1016/j.jqsrt.2013.02.008
https://doi.org/10.1103/PhysRevA.94.033851
https://doi.org/10.1103/PhysRevA.94.033851
https://doi.org/10.1103/PhysRevA.94.033851
https://doi.org/10.1103/PhysRevA.94.033851
https://doi.org/10.1121/1.1908834
https://doi.org/10.1121/1.1908834
https://doi.org/10.1121/1.1908834
https://doi.org/10.1121/1.1908834
https://doi.org/10.1029/1999RS002270
https://doi.org/10.1029/1999RS002270
https://doi.org/10.1029/1999RS002270
https://doi.org/10.1029/1999RS002270
https://doi.org/10.1163/156939395X00127
https://doi.org/10.1163/156939395X00127
https://doi.org/10.1163/156939395X00127
https://doi.org/10.1163/156939395X00127
https://doi.org/10.1364/OPTICA.3.000763
https://doi.org/10.1364/OPTICA.3.000763
https://doi.org/10.1364/OPTICA.3.000763
https://doi.org/10.1364/OPTICA.3.000763
https://doi.org/10.1103/PhysRevA.94.012702
https://doi.org/10.1103/PhysRevA.94.012702
https://doi.org/10.1103/PhysRevA.94.012702
https://doi.org/10.1103/PhysRevA.94.012702


ACHIEVING A STRONGLY NEGATIVE SCATTERING … PHYSICAL REVIEW A 97, 023836 (2018)

[82] L. Tsang and A. Ishimaru, J. Electromagn. Waves Appl. 1, 59
(1987).

[83] Y. Barabanenkov and M. Kalinin, Phys. Lett. A 163, 214 (1992).
[84] G. M. Conley, M. Burresi, F. Pratesi, K. Vynck, and D. S.

Wiersma, Phys. Rev. Lett. 112, 143901 (2014).
[85] V. P. Dick and A. P. Ivanov, J. Opt. Soc. Am. A 16, 1034

(1999).
[86] K. Busch and C. M. Soukoulis, Phys. Rev. Lett. 75, 3442 (1995).
[87] K. Busch and C. M. Soukoulis, Phys. Rev. B 54, 893 (1996).

[88] S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X.
Lu, L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, and H.
Cao, Opt. Express 19, 8208 (2011).

[89] H. Bao, C. Yan, B. X. Wang, X. Fang, C. Y. Zhao, and X. L.
Ruan, Sol. Energy Mater. Sol. Cells 168, 78 (2017).

[90] Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang,
and X. Yin, Science 355, 1062 (2017).

[91] H. C. Hulst, Light Scattering by Small Particles (Courier Cor-
poration, North Chelmsford, 1957).

023836-15

https://doi.org/10.1163/156939387X00090
https://doi.org/10.1163/156939387X00090
https://doi.org/10.1163/156939387X00090
https://doi.org/10.1163/156939387X00090
https://doi.org/10.1016/0375-9601(92)90411-E
https://doi.org/10.1016/0375-9601(92)90411-E
https://doi.org/10.1016/0375-9601(92)90411-E
https://doi.org/10.1016/0375-9601(92)90411-E
https://doi.org/10.1103/PhysRevLett.112.143901
https://doi.org/10.1103/PhysRevLett.112.143901
https://doi.org/10.1103/PhysRevLett.112.143901
https://doi.org/10.1103/PhysRevLett.112.143901
https://doi.org/10.1364/JOSAA.16.001034
https://doi.org/10.1364/JOSAA.16.001034
https://doi.org/10.1364/JOSAA.16.001034
https://doi.org/10.1364/JOSAA.16.001034
https://doi.org/10.1103/PhysRevLett.75.3442
https://doi.org/10.1103/PhysRevLett.75.3442
https://doi.org/10.1103/PhysRevLett.75.3442
https://doi.org/10.1103/PhysRevLett.75.3442
https://doi.org/10.1103/PhysRevB.54.893
https://doi.org/10.1103/PhysRevB.54.893
https://doi.org/10.1103/PhysRevB.54.893
https://doi.org/10.1103/PhysRevB.54.893
https://doi.org/10.1364/OE.19.008208
https://doi.org/10.1364/OE.19.008208
https://doi.org/10.1364/OE.19.008208
https://doi.org/10.1364/OE.19.008208
https://doi.org/10.1016/j.solmat.2017.04.020
https://doi.org/10.1016/j.solmat.2017.04.020
https://doi.org/10.1016/j.solmat.2017.04.020
https://doi.org/10.1016/j.solmat.2017.04.020
https://doi.org/10.1126/science.aai7899
https://doi.org/10.1126/science.aai7899
https://doi.org/10.1126/science.aai7899
https://doi.org/10.1126/science.aai7899



