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Subdiffraction incoherent optical imaging via spatial-mode demultiplexing: Semiclassical treatment
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I present a semiclassical analysis of a spatial-mode demultiplexing (SPADE) measurement scheme for far-field
incoherent optical imaging under the effects of diffraction and photon shot noise. Building on previous results
that assume two point sources or the Gaussian point-spread function, I generalize SPADE for a larger class of
point-spread functions and evaluate its errors in estimating the moments of an arbitrary subdiffraction object.
Compared with the limits to direct imaging set by the Cramér-Rao bounds, the results show that SPADE can offer
far superior accuracy in estimating second- and higher-order moments.
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I. INTRODUCTION

Recent theoretical and experimental studies have shown
that far-field optical methods can substantially improve sub-
diffraction incoherent imaging [1–20]. While most of the prior
works focus on two point sources, Ref. [8] proposes a spatial-
mode demultiplexing (SPADE) measurement technique that
can enhance the estimation of moments for arbitrary subd-
iffraction objects. Although the predicted enhancements are
promising for applications in both astronomy and fluorescence
microscopy, such as size and shape estimation for stellar
objects or fluorophore clusters, researchers in those fields may
find it difficult to comprehend the quantum formalism used
in Ref. [8]. One of the main goals of this work is therefore
to introduce a more accessible semiclassical formalism that
can reproduce the results there, assuming only a background
knowledge of statistical optics on the level of Goodman [21,22]
and parameter estimation on the level of Van Trees [23]. The
formalism incorporates diffraction, photon shot noise, and—
most importantly—coherent optical processing, which enables
the enhancements proposed in Refs. [1–20]. This treatment
thus sheds light on the physical origin of the enhancements,
clarifying that no exotic quantum phenomenon is needed to
explain or implement them.

As Ref. [8] assumes the Gaussian point-spread function
(PSF) exclusively, another goal of this work is to generalize
the results for a larger class of PSFs via the theory of
orthogonal polynomials [15,24], affirming that enhancements
remain possible in those cases. To set a benchmark for the
proposed method, I derive limits to moment estimation via
direct imaging in the form of Cramér-Rao bounds (CRBs)
[23,25–29], which are original results in their own right and
may be of independent interest to image-processing research
[30–39]. On a more technical level, this work also investigates
the estimation bias introduced by an approximation made in
Ref. [8] and assures that it is harmless.

This paper is organized as follows. Section II introduces
the background formalism of statistical optics, measurement
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noise, and CRBs. Section III presents the bounds for mo-
ment estimation via direct imaging of a subdiffraction object.
Section IV introduces the theory of SPADE for a general
class of PSFs and evaluates its biases and errors for moment
estimation, showing that giant accuracy enhancements are
possible for the second and higher-order moments. Section V
revisits the case of Gaussian PSF studied in Ref. [8] and
also proposes exactly unbiased estimators in the case of two
dimensions. Section VI presents a Monte Carlo analysis to
confirm the theory. Section VII concludes the paper, pointing
out open questions and future directions. Appendixes A–H deal
with mathematical issues that arise in the main text.

II. FORMALISM

A. Statistical optics

Consider an object emitting spatially incoherent light, a
diffraction-limited imaging system, as depicted in Fig. 1,
and the paraxial theory of quasimonochromatic scalar waves
[21,22]. On the image plane, the mutual coherence function,
also called the mutual intensity, can be expressed as [21,22]

�(x,x ′|θ ) =
∫

dXψ(x − X)ψ∗(x ′ − X)F (X|θ ), (2.1)

where x,x ′ ∈ RD are D-dimensional position vectors on the
image plane, X is the object-plane position vector normalized
with respect to the magnification factor, F (X|θ ) is the object
intensity function, θ = (θ0,θ1, . . . ) is a vector of unknown pa-
rameters to be estimated, and ψ(x) is the field PSF. To simplify
the notations, I adopt the multi-index notation described in
Appendix A and Ref. [24], such that D can be kept arbitrary,
though D = 1 or 2 is typical in spectroscopy and imaging. Note
that three-dimensional imaging requires a different formalism
in the paraxial theory and is beyond the scope of this paper.
The mean intensity on the image plane is

f (x|θ ) ≡ �(x,x|θ ) =
∫

dX|ψ(x − X)|2F (X|θ ), (2.2)

which is a basic result in statistical optics [21,22].
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FIG. 1. A far-field optical imaging system with additional optical
processing after the image plane. See the main text for the definitions
of the expressions.

For convenience, I normalize the position vectors with
respect to the width of the PSF, such that the PSF width is equal
to 1 in this unit. The PSF is assumed to obey the normalization∫

dx|ψ(x)|2 = 1, (2.3)

such that

θ0 ≡
∫

dX F (X|θ ) =
∫

dx f (x|θ ) (2.4)

is the mean optical power reaching the image plane.
Instead of intensity measurement on the image plane,

consider the use of further linear optics to process the field
followed by photon counting in each output channel, as
depicted in Fig. 1. The mean power in each output channel
can be expressed as

pj (θ ) =
∫

dx

∫
dx ′φ∗

j (x)φj (x ′)�(x,x ′|θ ) (2.5)

=
∫

dX

∣∣∣∣
∫

dx φ∗
j (x)ψ(x − X)

∣∣∣∣
2

F (X|θ ), (2.6)

where φ∗
j (x) is a propagator that couples the image-plane field

from position x to the j th output. If the optics after the image
plane is passive, power conservation implies that∑

j

pj (θ ) � θ0. (2.7)

This can be satisfied if the set {φj (x)} is orthonormal, viz.,∫
dx φj (x)φ∗

k (x) = δjk, (2.8)

by virtue of Bessel’s inequality [40]. If {φj (x)} is also complete
in the Hilbert space of image-plane fields, it becomes an
orthonormal basis, and Parseval’s identity leads to equality for
Eq. (2.7) [40]. Physically, Eq. (2.5) implies that each output
can be regarded as a projection of the image-plane field in a
spatial mode. For example, direct imaging, which measures
the spatial intensity on the image plane, can be modeled by
taking φj (x) =

√
dx(j )δ(x(j ) − x), where x(j ) is the position

of each pixel with infinitesimal area dx(j ), such that pj (θ ) =
f (x(j )|θ )dx(j ). A generalization of the measurement model
to deal with mode-dependent losses and nonorthogonal mode
projections is possible via the concept of positive operator-
valued measures [3] but not needed here.

In superresolution research, it is known that image pro-
cessing can achieve arbitrary resolution if f (x|θ ) is measured
exactly and benign assumptions about the object are made
[30,31,36]. The caveat is that the techniques are severely
limited by noise, so the use of proper statistics is paramount
in superresolution studies. For weak incoherent sources, such
as astronomical optical sources and microscopic fluorophores,
bunching or antibunching is negligible, and it is standard to
assume a Poisson model for the photon counts n = (n1,n2, . . . )
at the output channels [3,22,25,26,28,32,41]. The Poisson
distribution is

P (n|θ ) =
∏
j

exp[−τpj (θ )]
[τpj (θ )]nj

nj !
, (2.9)

where

τ ≡ ηT

h̄ω
, (2.10)

η ∈ [0,1] is the detection efficiency, T is the integration time,
and h̄ω is the photon energy. The most important statistics here
are the mean

E(nj ) = τpj (θ ), (2.11)

where E denotes the expectation with respect to P , and the
covariance matrix

Vjk(n) ≡ E(njnk) − E(nj )E(nk) = E(nj )δjk, (2.12)

which is signal-dependent. If {φj } is an orthonormal basis, the
mean photon number detected by the measurement is

N ≡
∑

j

E(nj ) = τθ0. (2.13)

Conditioned on a total photon number
∑

j nj , n obeys multino-
mial statistics, and the reconstruction of F via direct imaging
becomes the density deconvolution problem in nonparametric
statistics; see, for example, Ref. [39] and references therein.

The quantum formalism can arrive at the same Poisson
model by assuming that the source is thermal, the mean photon
number per spatiotemporal mode is much smaller than 1, and
the photon count for each channel is integrated in time over
many modes [1,8]. That said, an advantage of the semiclassical
model besides simplicity is that it applies to any incoherent
source that produces Poisson noise at the output, such as
incoherent laser sources [22] and electron microscopy [41],
without the need to satisfy all the assumptions of the quantum
model.

B. Cramér-Rao bounds (CRBs)

To deal with the signal-dependent nature of Poisson noise,
many existing approaches to computational superresolution
[30,31,34–36] are inadequate. A more suitable tool to derive
fundamental limits is the CRB, which is now standard in
astronomy [25–27] and fluorescence microscopy [28,29]. For
any estimator θ̌ (n) that satisfies the unbiased condition

E(θ̌ ) = θ, (2.14)

the mean-square error matrix is equal to its covariance, viz.,

MSEμν(θ̌ ,θ ) ≡ E(θ̌μ − θμ)(θ̌ν − θν) = Vμν(θ̌), (2.15)
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and the CRB is [23,25–29]

MSEμμ(θ̌ ,θ ) � CRBμμ(θ ), (2.16)

where

CRB(θ ) ≡ J−1(θ ) (2.17)

is the inverse of the Fisher information matrix defined as

Jμν(θ ) ≡
∑

n

P (n|θ )
∂ ln P (n|θ )

∂θμ

∂ ln P (n|θ )

∂θν

. (2.18)

In the limit of infinite trials, the maximum-likelihood estimator
is asymptotically unbiased with a covariance reaching the CRB
[23], so the bound is also useful as a measure of the achievable
error in the asymptotic limit.

For the Poisson model, the Fisher information is

Jμν(θ ) = τ
∑

j

1

pj (θ )

∂pj (θ )

∂θμ

∂pj (θ )

∂θν

. (2.19)

For example, the information for direct imaging with infinites-
imal pixel size is

Jμν(θ ) = τ

∫
dx

1

f (x|θ )

∂f (x|θ )

∂θμ

∂f (x|θ )

∂θν

. (2.20)

The data-processing inequality [42] ensures that increasing the
pixel size, or any processing of the image-plane intensity in
general, cannot increase the amount of information. A simple
extension of Eq. (2.19) for strong thermal sources with super-
Poisson statistics can be found in Appendix C of Ref. [16].

An intuitive way of understanding Eq. (2.19) is to regard it as
a signal-to-noise ratio: each derivative ∂pj/∂θμ measures the
sensitivity of an output to a parameter, while the denominator
pj is proportional to the Poisson variance and indicates the
noise level. The form of Eq. (2.19) hence suggests that any
parameter-insensitive background in pj should be minimized.
The nonlinear dependence of the Fisher information on pj

complicates the analysis, but also hints that coherent optical
processing may lead to nontrivial effects.

The Bayesian CRB (BCRB) can be used to set more general
limits for any biased or unbiased estimator [6,23,43–45].
Define the Bayesian mean-square error as

BMSE(θ̌) ≡
∫

dθ �(θ )MSE(θ̌ ,θ ), (2.21)

where �(θ ) is a prior probability density. For a prior that
vanishes on the boundary of its domain, the BCRB is

BMSEμμ(θ̌) � BCRBμμ, (2.22)

BCRB ≡ (J̃ + K)−1, (2.23)

where

J̃ ≡
∫

dθ �(θ )J (θ ) (2.24)

is the Fisher information averaged over the prior and

Kμν ≡
∫

dθ
1

�(θ )

∂�(θ )

∂θμ

∂�(θ )

∂θν

(2.25)

is the prior information. Other Bayesian bounds for more
general priors can be found in Ref. [45]. The BCRB also

applies to the worst-case error supθ MSEμμ(θ̌ ,θ ) for minimax
estimation [6,44], since

sup
θ

MSEμμ(θ̌ ,θ ) � BMSEμμ(θ̌) (2.26)

for any �(θ ), and the prior can be chosen to tighten the bound
[6,44].

The BCRB is close to the CRB if J (θ ) is constant in the
domain of the prior, such that J̃ = J , and the prior information
K is negligible relative to J̃ , such that

BCRB = (J̃ + K)−1 ≈ J̃−1 = J−1. (2.27)

A counterexample is the problem of two-point resolution
[6], where J vanishes at a point in the parameter space and
the BCRB becomes very sensitive to the choice of prior, as
mentioned later in Sec. III B.

III. LIMITS TO DIRECT IMAGING

A. Error bounds

Define the object moments

θμ ≡
∫

dX XμF (X|θ ), μ ∈ ND
0 , (3.1)

as the parameters of interest. Note that the moments are
unnormalized, unlike the definition in Ref. [8]. Under general
conditions, the set of moments uniquely determine F [24], so
there is little loss of generality with this parametrization. I will
focus on moment estimation hereafter and not the pointwise
reconstruction of F , however, for two reasons: the moments
are more directly related to many useful parameters in practice,
such as the brightness, location, size, and shape of an object
[27,46], while the reconstruction of F without further prior
information is ill-posed and a forlorn task in practice when
noise is present [30,31,34,35,39], even with the techniques
introduced in this work.

Expanding |ψ(x − X)|2 in a Taylor series, the mean image
given by Eq. (2.2) can be expressed in terms of θ as

f (x|θ ) =
∑

μ

θμ

μ!
(−∂)μ|ψ(x)|2. (3.2)

The Fisher information given by Eq. (2.20) becomes

Jμν(θ ) = τ

∫
dx

[(−∂)μ|ψ(x)|2][(−∂)ν |ψ(x)|2]

μ!ν!f (x|θ )
. (3.3)

Appendix B shows that this can be inverted analytically to give

CRBμν(θ ) = θ2
0

N

∑
ξ,ζ

(C−1)μξMξζ (θ )(C−1)νζ , (3.4)

where N is the mean photon number given by Eq. (2.13),

Mμν(θ ) ≡ 1

θ0

∫
dx f (x|θ )xμ+ν (3.5)
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is the normalized image moment matrix, theC matrix is defined
as

Cμν ≡ 1

ν!

∫
dx|ψ(x)|2∂νxμ (3.6)

=
⎧⎨
⎩

0 if any νj > μj ,(
μ

ν

)
�μ−ν otherwise,

(3.7)

and

�μ ≡
∫

dx|ψ(x)|2xμ (3.8)

is a moment of the PSF. The lower-triangular property of C

indicated by Eq. (3.7) means that C−1 is also lower-triangular
and the low-order elements of the CRB can be computed from
a finite number of low-order elements of M and C.

To proceed, I focus on the subdiffraction regime, which I
define as the scenario in which the object support width � is
much smaller than the PSF width. To be specific, the width is
defined by

F (X|θ ) = 0 if max
j

|Xj | >
�

2
, (3.9)

and the subdiffraction regime is defined by the condition

� � 1 (3.10)

in the dimensionless unit assumed here. This can be regarded as
the extreme opposite to the sparse regime commonly assumed
in compressed sensing [33–37] and can be ensured by prior
information in practice. For example, a spot that resembles
the PSF in a prior image indicates a subdiffraction object and
can be studied further via the framework here; such spots are of
course commonly found in both astronomical and microscopic
imaging. In fluorescence microscopy, the subdiffraction sup-
port can even be enforced via stimulated-emission depletion
(STED) [47], and the theory here can help STED microscopy
gain more information about each spot beyond θ0.

In the subdiffraction regime, the moments observe a mag-
nitude hierarchy with respect to the order |μ|, as

|θμ| �
∫

dX|Xμ|F (X|θ ) � θ0

(
�

2

)|μ|
, (3.11)

and I can combine Eqs. (3.2), (3.5), and (3.8) to obtain

Mμν(θ ) = 1

θ0

μ+ν∑
ξ=0

θξ

(
μ + ν

ξ

)
�μ+ν−ξ (3.12)

= �μ+ν + O(�). (3.13)

In other words, the image is so blurred that it resembles the PSF
to the zeroth order, and the image moments approach those of
the PSF. The CRB hence becomes

CRBμν = θ2
0

N

⎡
⎣∑

ξ,ζ

(C−1)μξ�ξ+ζ (C−1)νζ + O(�)

⎤
⎦. (3.14)

This is the central result of Sec. III. An unbiased estimator that
can approach this bound is described in Appendix C.

To set a more general limit for any biased or unbiased
estimator, consider the BCRB described in Sec. II B. Since the

FIG. 2. A flowchart that summarizes the relationships among the
various quantities defined for direct imaging in Sec. III.

Fisher information given by the inverse of Eq. (3.14) depends
only on θ0 and not the other parameters to the leading order,
the average information J̃ defined by Eq. (2.24) is relatively
insensitive to the choice of prior in the subdiffraction regime.
For any reasonable prior that gives a finite prior information K ,
a long enough integration time can then make J̃ much larger
than K in Eq. (2.23), leading to BCRB ≈ CRB, if θ0 is replaced
by a suitable prior value. The two bounds hence give similar
results here in the asymptotic limit. Figure 2 summarizes the
relationships among the various quantities defined for direct
imaging in this section.

B. Special cases

The low-order elements of Eqs. (3.3) and (3.4) can be used
to reproduce a few well-known results. For example, the CRB
with respect to θ0 can be derived from Eq. (3.4) and is given
by

CRB00 = θ2
0

N
, (3.15)

which is equal to the textbook result. Another example is
point-source localization [26,28], for which known results can
be retrieved from Eq. (3.3) by defining the location parameters
as θμ/θ0 for |μ| = |ν| = 1. To see this, assume D = 1 for
simplicity, and the information with respect to X = θ1/θ0 in
the � → 0, f (x|θ ) → θ0|ψ(x)|2 limit becomes

J (X) =
(

∂θ1

∂X

)2

J11 → N

∫
dx

[∂|ψ(x)|2]2

|ψ(x)|2 , (3.16)

which is exact for one point source [26,28].
Considering |μ| = |ν| = 2, Eq. (3.3) can also reproduce the

results in Refs. [41,48–50] regarding sub-Rayleigh two-point
separation estimation. To see this, assume D = 1 again and that
the centroid of the two point sources is at the origin. The second
moment is then related to the separation d by θ2 = θ0d

2/4. The
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information with respect to d becomes

J (d) =
(

∂θ2

∂d

)2

J22 → Nd2

16

∫
dx

[∂2|ψ(x)|2]2

|ψ(x)|2 . (3.17)

This can be compared with a direct calculation of the informa-
tion by considering the mean image

f (x|d) = θ0

2
[|ψ(x − d/2)|2 + |ψ(x + d/2)|2], (3.18)

and approximating it for sub-Rayleigh d � 1 as [16,41,49]

f (x|d) ≈ θ0

[
|ψ(x)|2 + d2

8
∂2|ψ(x)|2

]
. (3.19)

The information is then

J (d) = τ

∫
dx

1

f

(
∂f

∂d

)2

≈ Nd2

16

∫
dx

[∂2|ψ(x)|2]2

|ψ(x)|2 ,

(3.20)

which coincides with Eq. (3.17). The vanishing J (d) and
divergent CRB(d) = 1/J (d) for d � 1 were first reported in
Refs. [41,48–50] and called Rayleigh’s curse in Ref. [1]. The
BCRB becomes very sensitive to the choice of prior and
produces a markedly different result from the CRB when
applied to the worst-case error [6]. This issue depends on
the parametrization [44] and does not arise for the moment
parameters, however.

In the absence of a specific parametric model or equality
parameter constraints [51], the full information matrix should
be considered, and the CRB given by Eq. (3.4), which results
from inverting the full information matrix, is a tighter limit [45]
for general objects. Appendix D presents a limit of Eq. (3.4)
when diffraction can be ignored, while Eq. (3.14) should be
used in the subdiffraction regime.

This section has established fundamental limits to direct
imaging in the subdiffraction and shot-noise-limited regime.
The next sections show that coherent optical processing can
beat them.

IV. SPATIAL-MODE DEMULTIPLEXING (SPADE)

A. Point-spread-function-adapted basis

References [1–20] have shown that SPADE, a technique of
linear optics and photon counting with respect to a judiciously
chosen basis of spatial modes, can substantially improve
subdiffraction imaging. To generalize the use of the TEM basis
in Ref. [8], I consider the point-spread-function-adapted (PAD)
basis proposed by Rehacek et al. for the two-point problem [15]
and apply it to more general objects. Denote the PAD basis by{

φq(x); q ∈ ND
0

}
, (4.1)

where the spatial modes are more conveniently defined in the
spatial-frequency domain. Defining

�q(k) ≡ 1

(2π )d/2

∫
dk φq(x) exp(−ikx), (4.2)

�(k) ≡ 1

(2π )d/2

∫
dk ψ(x) exp(−ikx), (4.3)

�q(k) can be expressed as

�q(k) = (−i)|q|gq(k)�(k), (4.4)

gq(k) ≡
∑

r

Gqrk
r , (4.5)

where {gq(k); q ∈ ND
0 } is a set of real orthogonal polynomials

with |�(k)|2 as the weight function [24], G is an invertible
matrix that satisfies the lower-triangular property

Gqr = 0 if r > q, (4.6)

and the indices follow a total and degree-respecting order that
obeys

r � q ⇒ |r| � |q|. (4.7)

See Appendix B for more details about orthogonal polynomi-
als. The polynomials are assumed to satisfy the orthonormal
condition∫

dk �∗
q(k)�r (k) =

∫
dk|�(k)|2gq(k)gr (k) = δqr , (4.8)

which also ensures that {φq} is orthonormal. The completeness
of {φq} can be proved along the lines of Ref. [24] but is not
essential here. As φ0(x) = ψ(x) and each higher-order mode
in real space is a sum of ψ(x) derivatives given by

φq(x) = (−i)|q|gq(−i∂)ψ(x), (4.9)

the PAD basis can be regarded as a generalization of the binary
SPADE concept in Ref. [1] and the derivative-mode concept
in Ref. [14].

In terms of the PAD basis, I can define a mutual coherence
matrix as

�qq ′ (θ ) ≡
∫

dX hq(X)h∗
q ′ (X)F (X|θ ), (4.10)

hq(X) ≡
∫

dx φ∗
q (x)ψ(x − X). (4.11)

In particular, SPADE in terms of the PAD basis gives a set of
output channels with powers

pq(θ ) =
∫

dX|hq(X)|2F (X|θ ) = �qq(θ ), (4.12)

and the Poisson photon counts {nq ; q ∈ ND
0 } have expected

values

E(nq) = τ0pq(θ ), τ0 ≡ η0T

h̄ω
, (4.13)

where η0 is the efficiency of the PAD-basis measurement. An
unbiased estimator of �qq is

�̌qq = nq

τ0
, (4.14)

and its variance is

V(�̌qq) = �qq

τ0
. (4.15)

In the context of the Gaussian PSF, Refs. [8,13] found
that pq(θ ) is sensitive only to some of the object moments.
To estimate the other moments, Ref. [8] further proposes
measurements that access the off-diagonal elements of �. To
measure an off-diagonal �qq ′ , take two spatial modes with
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indices q and q ′ from the PAD basis and interfere them, such
that the outputs correspond to projections into the spatial modes

ϕ+
qq ′ (x) = 1√

2
[φq(x) + φq ′(x)], (4.16)

ϕ−
qq ′ (x) = 1√

2
[φq(x) − φq ′(x)], (4.17)

which I call interferometric-PAD (iPAD) modes. The powers
at the two outputs are

p+
qq ′ = �qq + �q ′q ′

2
+ Re �qq ′ , (4.18)

p−
qq ′ = �qq + �q ′q ′

2
− Re �qq ′ . (4.19)

The photon counts, denoted by n+
qq ′ and n−

qq ′ , have expected
values

E(n+
qq ′ ) = τsp

+
qq ′ , E(n−

qq ′ ) = τsp
−
qq ′ , τs ≡ ηsT

h̄ω
,

(4.20)

where ηs denotes the efficiency of the measurement that
includes these two projections. Assume further that |�(k)|2
is centrosymmetric, as defined by

|�(k)|2 = |�(−k)|2, (4.21)

such that G, hq(X), and �qq ′ are all real, as shown in Appendix
E and assumed hereafter. An unbiased estimator of �qq ′ is then

�̌qq ′ = n+
qq ′ − n−

qq ′

2τs

, (4.22)

with

V(�̌qq ′ ) = �qq + �q ′q ′

4τs

. (4.23)

The estimators �̌qq ′ given by Eqs. (4.14) and (4.22) will be
used in Sec. IV B to construct moment estimators.

Since the iPAD modes are not orthogonal to the PAD modes,
they cannot belong to the same orthonormal basis. This means
that, if projections into both PAD and iPAD modes are desired,
multiple measurements in different bases are needed and must
be performed on different photons. This can be done either
sequentially in time via configurable interferometers or on
different beamsplitted parts of the light. If each measurement
has an efficiency ηs , energy conservation mandates that∑

s

ηs � 1. (4.24)

B. Moment estimation

To relate � to the object moments, use Eqs. (4.2)–(4.4) to
rewrite the propagator hq(X) in Eq. (4.11) as

hq(X) = i|q|
∫

dk|�(k)|2gq(k) exp(−ikX) (4.25)

= i|q|
∫

dk|�(k)|2gq(k)
∑

r

(−ik)rXr

r!
(4.26)

=
∑

r

HqrX
r, (4.27)

where

Hqr ≡ i|q|

r!

∫
dk|�(k)|2gq(k)(−ik)r (4.28)

= i|q|(−i)|r|

r!
(G−1)rq , (4.29)

(H−1)qr = q!i|q|(−i)|r|Grq, (4.30)

as shown in Appendix E. Since G−1 and G are lower-triangular,
H and H−1 are upper-triangular, satisfying

Hqr = 0, (H−1)qr = 0 if r < q. (4.31)

Substituting Eq. (4.27) into Eq. (4.10), �qq ′ can be related to
the moments by

�qq ′ =
∑
r,r ′

HqrHq ′r ′θr+r ′ , (4.32)

which shows that each �qq ′ is sensitive to a combination of
moments with orders at least as high as |q + q ′|. Given the
magnitudes of θ according to Eq. (3.11), the magnitude of
�qq ′ can be expressed as

�qq ′ = θ0O(�|q+q ′ |), (4.33)

and the variances of the estimators given by Eqs. (4.15) and
(4.23) become

V(�̌qq ′ ) = θ2
0

Ns

O(�2 min(|q|,|q ′|)), (4.34)

Ns ≡ τsθ0 = ηsT θ0

h̄ω
. (4.35)

Equations (4.33) and (4.34) will be used to evaluate the errors
of moment estimation.

Instead of computing the CRB and relying on asymptotic
arguments, here I construct explicit moment estimators and
evaluate their errors directly to demonstrate the achievable
performance of SPADE. To begin, consider the inverse of
Eq. (4.32) given by

θq+q ′ =
∑
r,r ′

(H−1)qr (H−1)q ′r ′�rr ′ , (4.36)

which implies that an unbiased estimator of θq+q ′ can be con-
structed from unbiased estimators of �pp′ given by Eqs. (4.14)
and (4.22), viz.,

θ̌q+q ′ =
∑
r,r ′

(H−1)qr (H−1)q ′r ′ �̌rr ′ . (4.37)

This estimator may not be realizable, however, as it may not
be possible to group the needed projections into a reasonable
number of bases. A fortuitous exception occurs for the Gaus-
sian PSF, as elaborated later in Sec. V C.

To find a simpler estimator, I focus on the class of separable
PSFs given by

|�(k)|2 =
∏
j

|�(j )(kj )|2, (4.38)

where each |�(j )(kj )|2 is a one-dimensional function. Defining

g(j )
qj

(kj ) =
∑
rj

G(j )
qj rj

k
rj

j (4.39)
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as the orthogonal polynomials with respect to each |�(j )(kj )|2,
the natural orthogonal polynomials in the multivariate case are
their products, viz.,

gq(k) =
∏
j

g(j )
qj

(kj ). (4.40)

As each G
(j )
qj rj

is lower-triangular, I obtain the condition

Gqr =
∏
j

G(j )
qj rj

= 0 if any rj > qj . (4.41)

It follows from Eqs. (4.29) and (4.30) that H and H−1 are also
separable and given by

Hqr =
∏
j

iqj (−i)rj

rj !
[(G(j ))−1]rj qj

, (4.42)

(
H−1

)
qr

=
∏
j

qj !iqj (−i)rj G(j )
rj qj

. (4.43)

Using the property

(H−1)qr = 0 if any qj > rj , (4.44)

I can rewrite the sums in Eq. (4.36) as

∑
r

=
∞∑

r1=q1

· · ·
∞∑

rD=qD

(4.45)

and obtain

θq+q ′ = (H−1)qq(H−1)q ′q ′�qq ′

+
∑

|r+r ′|>|q+q ′ |
(H−1)qr (H−1)q ′r ′�rr ′ , (4.46)

which consists of one θ0O(�|q+q ′ |) term and higher-order
terms, as ranked by Eq. (4.33). To evaluate the magnitude of the
higher-order terms, note that, for a centrosymmetric |�(k)|2,
(H−1)qr ∝ Grq = 0 if |r| = |q| + 1, |q| + 3, . . . [24], so∑

|r+r ′ |>|q+q ′ |
(H−1)qr (H−1)q ′r ′�rr ′ = θ0O(�|q+q ′ |+2), (4.47)

which is smaller than the leading-order term by two orders of
magnitude. A simplified estimator, involving only one �̌qq ′ ,
can then be constructed as

θ̌ ′
q+q ′ = (H−1)qq(H−1)q ′q ′ �̌qq ′ = �̌qq ′

HqqHq ′q ′
, (4.48)

where the last step uses the fact that (H−1)qq = 1/Hqq for a
triangular matrix. The bias is then the negative of Eq. (4.47),
viz.,

E(θ̌ ′
q+q ′ ) − θq+q ′ = θ0O(�|q+q ′ |+2). (4.49)

Figure 3 summarizes the relationships among the various
quantities defined in this section, while Appendix G discusses
a generalization of the estimator for nonseparable PSFs.

Given Eq. (4.34), the variance of the estimator is

V(θ̌ ′
q+q ′ ) = V(�̌qq ′ )

H 2
qqH

2
q ′q ′

= θ2
0

Ns

O(�2 min(|q|,|q ′|)). (4.50)

FIG. 3. A flowchart that summarizes the relationships among the
various quantities defined for SPADE in Sec. IV.

To minimize the variance for a given moment θμ with μ =
q + q ′, min(|q|,|q ′|) should be made as high as possible. This
can be accomplished by choosing

for each j ∈ {1,2, . . . ,D},

qj =

⎧⎪⎪⎨
⎪⎪⎩

μj/2 if μj is even,⌊
μj/2

⌋
if μj is the first odd number,⌈

μj/2
⌉

if μj is odd and the last choice was 
 �,⌊
μj/2

⌋
if μj is odd and the last choice was � �.

(4.51)

The alternating floor (
�) and ceil (��) operations keep |q| high
without exceeding |q ′|. If |μ| is even, μ has an even number
of odd elements, then |q| = |q ′| = |μ|/2. If |μ| is odd, μ has
an odd number of odd elements, then |q| = (|μ| − 1)/2 and
|q ′| = (|μ| + 1)/2. Hence one can achieve

min(|q|,|q ′|) =
⌊ |μ|

2

⌋
, (4.52)

V(θ̌ ′
μ) = θ2

0

Ns

O(�2
|μ|/2�), (4.53)

and the mean-square error becomes

MSE(θ̌ ′
μ,θμ) = V(θ̌ ′

μ) + [E(θ̌ ′
μ) − θμ]2 (4.54)

= θ2
0

Ns

O(�2
|μ|/2�) + θ2
0 O(�2|μ|+4). (4.55)

Compared with the CRB for direct imaging given by Eq. (3.14),
Eq. (4.55) can be much lower in the � � 1 subdiffraction
regime if |μ| � 2, the bias is negligible, and ηs is on the same
order of magnitude as the direct-imaging efficiency. This is the
central result of Sec. IV. The conclusion holds also from the
Bayesian or minimax perspective, since the BCRB for direct
imaging is close to the CRB in the asymptotic limit, as argued
in Sec. III A, while Eq. (4.55) also applies to the Bayesian or
worst-case error for SPADE if θ0 is replaced by a suitable prior
value.

A heuristic explanation of the enhancements is as fol-
lows. Recall that Poisson noise is signal-dependent, and any
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TABLE I. A list of measurement bases for moment estimation with a D = 2 separable PSF and their spatial modes. Measurement in each
basis can provide a set of moment estimators {θ̌ ′

μ} according to Eq. (4.48), where the set of μ = (μ1,μ2) indices is listed in the last two columns.
The case of D = 1 can be retrieved by considering the PAD, iPAD1, and iPAD4 bases and q1 and μ1 only.

Basis Spatial modes q1 q2 μ1 = q1 + q ′
1 μ2 = q2 + q ′

2

PAD φq (x) N0 N0 2N0 2N0

iPAD1 ϕ±
qq ′ (x); q ′ = q + (1,0) 2N0 N0 4N0 + 1 2N0

iPAD2 ϕ±
qq ′ (x); q ′ = q + (0,1) N0 2N0 2N0 4N0 + 1

iPAD3 ϕ±
qq ′ (x); q ′ = q + (1, − 1) N0 2N0 + 1 2N0 + 1 4N0 + 1

iPAD4 ϕ±
qq ′ (x); q ′ = q + (1,0) 2N0 + 1 N0 4N0 + 3 2N0

iPAD5 ϕ±
qq ′ (x); q ′ = q + (0,1) N0 2N0 + 1 2N0 4N0 + 3

iPAD6 ϕ±
qq ′ (x); q ′ = q + (1, − 1) N0 2N0 + 2 2N0 + 1 4N0 + 3

background in the signal increases the variance. In the subd-
iffraction regime, the direct image is so blurred that it resembles
the PSF |ψ(x)|2, and the fundamental mode φ0(x) = ψ(x)
acts as a background and the main contributor of noise.
With SPADE, on the other hand, each moment estimator
is designed to use spatial modes with the highest possible
orders. The isolation from the lower-order modes, including
the fundamental, substantially reduces the background and
improves the signal-to-noise ratio.

C. Multimoment estimation

The remaining question is the number of bases needed to
estimate all moments. For D = 1, three bases are enough: a
measurement in the PAD basis provides

{�̌qq,q ∈ N0} and {θ̌ ′
μ; μ ∈ 2N0}, (4.56)

where 2N0 = {0,2,4, . . . }, a measurement in the basis
{ϕ±

q,q+1(x); q ∈ 2N0}, provides

{�̌q,q+1,q ∈ 2N0} and {θ̌ ′
μ; μ ∈ 4N0 + 1}, (4.57)

where 4N0 + 1 = {1,5,9, . . . }, and a measurement in the basis
{ϕ±

q,q+1(x); q ∈ 2N0 + 1} provides

{�̌q,q+1,q ∈ 2N0 + 1} and {θ̌ ′
μ; μ ∈ 4N0 + 3}, (4.58)

where 2N0 + 1 = {1,3,5, . . . } and 4N0 + 3 = {3,7,11, . . . }.
If the light is split for measurements in all three basis, the
condition of energy conservation given by Eq. (4.24) implies

min(ηs) � 1
3 . (4.59)

For D = 2, seven bases—defined by Table I and illustrated by
Fig. 4—can do the job. I call these bases PAD and iPAD1–
iPAD6, which generalize the TEM and iTEM1–iTEM6 bases
proposed in Ref. [8] for the Gaussian PSF. Energy conservation
now implies

min(ηs) � 1
7 (4.60)

if measurements in all seven bases are performed. The essential
point is that the penalty in efficiency for multimoment estima-
tion is only a constant factor, and significant enhancements
over direct imaging remain possible.

FIG. 4. An illustration of the PAD and iPAD1–iPAD6 bases in the mode-index space. Each dot in the (q1,q2) space represents a PAD mode,
and the PAD modes form the PAD basis on the left. For each iPAD basis, a line connecting two dots represents an interference between the
two PAD modes, producing two new modes that replace the original PAD modes in the basis. Each bracketed pair of numbers denote the order
(μ1,μ2) = (q1 + q ′

1,q2 + q ′
2) of the estimator θ̌ ′

μ that a projection can provide via Eq. (4.48). In each iPAD basis, the unconnected dots represent
the PAD modes that complete the basis and can also be measured to provide extra information.
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D. Criterion for informative estimation

A word of caution is in order: even with SPADE, there
are severe resolution limits. This is because the moments
are inherently small parameters in the subdiffraction regime
according to Eq. (3.11), and the error needs to be much smaller
than the prior range of the parameter for the estimation to
be informative. To evaluate the usefulness of an estimation
relative to prior information, I adopt the Bayesian perspective
[23,45,52] and consider the Bayesian error given by Eq. (2.21).
In the absence of measurements, the error is determined by the
prior and given by

BMSE(�)
μμ ≡ E(�)[θμ − E(�)(θμ)]2 � θ2

0

(
�

2

)2|μ|
, (4.61)

where E(�) denotes the expectation with respect to �(θ ), the
upper bound comes from Eq. (3.11), and θ0 is assumed to be
given for simplicity. Using the bound as a conservative estimate
of the prior error, a rule of thumb for informative estimation is

BMSEμμ

θ2
0 (�/2)2|μ| � 1. (4.62)

The small prior error places a stringent requirement on the
post-measurement error. For direct imaging, assuming the
asymptotic limit where the BCRB is close to the CRB given
by Eq. (3.14), the fractional BCRB is

BCRBμμ

BMSE(�)
μμ

≈ CRBμμ

BMSE(�)
μμ

= O(�−2|μ|)
N

. (4.63)

This value grows exponentially with the order |μ|, meaning that
the estimation of higher-order moments requires exponentially
more photons to become informative.

For SPADE, an achievable Bayesian error can be obtained
by averaging MSE(θ̌ ′

μ,θμ), and the magnitude is also given by
Eq. (4.55). The fractional error becomes

BMSEμμ

BMSE(�)
μμ

= O(�2
|μ|/2�−2|μ|)
Ns

+ O(�4). (4.64)

The O(�4) relative bias is always much smaller than 1, but
the fractional variance still grows with |μ| exponentially.
Compared with direct imaging, the exponent is reduced for
|μ| � 2 and not as many photons are needed to achieve a small
fractional error for a given moment, but higher-order moments
remain more difficult to estimate.

This consideration suggests that SPADE is most useful for
scenarios that depend on only a few low-order moments. For
example, the two-point problem studied in Refs. [1–7,9–18,20]
requires moments up to the second order only [8], the case of
two unequal sources studied in Refs. [19,20] requires moments
up to the third, and parametric object models with size and
shape parameters [8,38] can also be related to low-order
moments.

V. GAUSSIAN POINT-SPREAD FUNCTION

A. Direct imaging

For an illustrative example of the general theory, consider
the Gaussian PSF,

ψ(x) = 1

(2π )d/4
exp

(
−||x||2

4

)
, (5.1)

which is a common assumption in fluorescence microscopy
[28,53]. The Hermite polynomials can be used to compute the
CRB in the limit of � → 0, as shown in Appendix F. The
result is

CRBμν → θ2
0

N
μ!δμν, (5.2)

which coincides with the D = 2 theory in Ref. [8].

B. SPADE

The PSF in the spatial-frequency domain is

�(k) =
(

2

π

)d/4

exp(−||k||2). (5.3)

A set of orthogonal polynomials with respect to |�(k)|2 is
defined by

gq(k) = 1√
q!

Heq(2k), (5.4)

and the PAD mode functions become

�q(k) =
(

2

π

)d/4 (−i)|q|
√

q!
Heq(2k) exp(−||k||2), (5.5)

φq(x) = 1

(2π )d/4
√

q!
Heq(x) exp

(
−||x||2

4

)
. (5.6)

The PAD basis in this case is simply the TEM basis, as
expected. The propagator given by Eq. (4.11) can be computed
analytically with the help of the generating function for
Hermite polynomials [54,55]; the result is

hq(X) = Hqq exp

(
−||X||2

8

)
Xq, (5.7)

Hqq = 1

2|q|√q!
. (5.8)

The mutual coherence matrix � defined by Eq. (4.10) becomes

�qq ′ = HqqHq ′q ′

∫
dX exp

(
−||X||2

4

)
Xq+q ′

F (X|θ ). (5.9)

Unbiased estimators of �qq ′ can be constructed from pro-
jections in the PAD and iPAD spatial modes according to
Eqs. (4.14) and (4.22); the iPAD modes are called iTEM modes
in Ref. [8]. The estimator variances are given by Eqs. (4.15)
and (4.23), with magnitudes given by Eq. (4.34).

To estimate a given moment θμ, q and q ′ = μ − q can
be chosen according to Eq. (4.51), the simplified estimator
given by Eq. (4.48) can be used, and the error then agrees
with Eq. (4.55). These results again agree with Ref. [8],
except that Ref. [8] neglects the contribution of bias to the
mean-square error and therefore does not include the second
term in Eq. (4.55).
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C. Exactly unbiased estimator

For D = 2, the PAD and iPAD1–iPAD6 bases described by
Table I and Fig. 4 become the TEM and iTEM1–iTEM6 bases
proposed in Ref. [8], and the estimator given by Eq. (4.48) is
equivalent to the ones proposed in Ref. [8]. Interestingly, it
is possible to go further than Ref. [8] and construct exactly
unbiased moment estimators from these measurements. First
note that Eq. (5.9) offers a shortcut to express each moment in
terms of � as follows:

θq+q ′ =
∫

dX exp

( ||X||2
4

)
exp

(
−||X||2

4

)
Xq+q ′

F (X|θ )

(5.10)

=
∫

dX
∑

r

X2r

r!4|r| exp

(
−||X||2

4

)
Xq+q ′

F (X|θ )

(5.11)

=
∑

r

1

r!4|r|

∫
dX exp

(
−||X||2

4

)
Xq+q ′+2rF (X|θ )

(5.12)

=
∑

r

�q+r,q ′+r

r!4|r|Hq+r,q+rHq ′+r,q ′+r

. (5.13)

Combining Eqs. (4.48) and (5.13), it can then be shown that
the estimator

θ̌μ =
∑

r

θ̌ ′
μ+2r

r!4|r| (5.14)

is exactly unbiased. To construct

{θ̌μ; μ ∈ (2N0) × (2N0)}, (5.15)

one simply needs {θ̌ ′
μ; μ ∈ (2N0) × (2N0)} from the PAD

basis. To construct

{θ̌μ; μ ∈ (2N0 + 1) × (2N0)}, (5.16)

one needs {θ̌ ′
μ; μ ∈ (2N0 + 1) × (2N0)}, which can be ob-

tained from the iPAD1 and iPAD4 bases. Similarly, to construct

{θ̌μ; μ ∈ (2N0) × (2N0 + 1)}, (5.17)

one needs {θ̌ ′
μ; μ ∈ (2N0) × (2N0 + 1)}, which can be ob-

tained from the iPAD2 and iPAD5 bases. Finally, to construct

{θ̌μ; μ ∈ (2N0 + 1) × (2N0 + 1)}, (5.18)

one needs {θ̌ ′
μ; μ ∈ (2N0 + 1) × (2N0 + 1)}, which can be

obtained from the iPAD3 and iPAD6 bases. The error matrix
of the unbiased estimator becomes

MSEμν(θ̌ ,θ ) = Vμν(θ̌) = θ2
0

min(Ns)
O(�2
|μ|/2�)δμν, (5.19)

which remains on the same order of magnitude as the variance
of the simplified estimator in Eq. (4.55), while the bias
contribution is no longer present. The number of bases needed
to achieve enhanced and exactly unbiased multimoment es-
timation for other PSFs and dimensions remains an open
question.
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FIG. 5. Simulated and theoretical errors of moment estimation
via direct imaging and SPADE for the Gaussian PSF. The discrete
points are from the Monte Carlo simulations, and the lines are from
the analytic theory. All axes are normalized, dimensionless, and in
logarithmic scale. See the main text for details.

VI. NUMERICAL DEMONSTRATION

I now present Monte Carlo simulations to corroborate the
theory. Assume D = 1. Each simulated object is an ensemble
of S = 5 point sources with randomly generated positions
{Xσ ; σ = 1, . . . ,S} within the interval

|Xσ | � �

2
, � = 0.2, (6.1)

such that

F (X|θ ) = θ0

S

S∑
σ=1

δ(X − Xσ ). (6.2)

50 objects are generated for each PSF under study. For direct
imaging, I assume that the mean photon number isN = 50 000,
the pixel size is dx = 0.1, and 1000 samples of Poisson images
are generated for each object. The estimator described in
Appendix C is applied to each sample to estimate the moments
θμ for μ = 1,2,3,4 (θ0 can be estimated by summing all the
photon counts and the results are trivial). The sample errors
with respect to the true parameters are averaged to approximate
the expected values. The averaged errors are then plotted for
two different PSFs in Figs. 5 and 6 and compared with the CRB
given by Eq. (3.14), omitting the O(�) correction.

To simulate SPADE according to Sec. IV, measurements in
three different bases are simulated. The first basis is

{φ0(x),φ1(x),φ2(x)}, (6.3)

with the simulated photon counts denoted by {n0,n1,n2}, the
second basis is

{ϕ+
01(x),ϕ−

01(x),φ2(x)}, (6.4)
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FIG. 6. Simulated and theoretical errors of moment estimation via
direct imaging and SPADE for the bump aperture given by Eq. (6.12).
The format of the plots is identical to that of Fig. 5. See the main text
for details.

with the photon counts denoted by {n+
01,n

−
01,n

′
2}, and the third

basis is

{φ0(x),ϕ+
12(x),ϕ−

12(x)}, (6.5)

with the photon counts denoted by {n′
0,n

+
12,n

−
12}. The light is

split equally among the three measurements, such that Ns =
N/3. All photons in higher-order modes are neglected.

To estimate the moments with SPADE, I use the simplified
but biased estimator given by Eq. (4.48), with q given by
Eq. (4.51). Using Eq. (4.22) for �̌01, the estimator of θ1

becomes

θ̌ ′
1 = �̌01

H00H11
= n+

01 − n−
01

2H00H11τs

. (6.6)

The estimator is applied to 1000 samples of the simulated
photon counts for each object. The sample errors with respect
to the true parameters are averaged and compared with the
analytic expression

MSE11 ≈ V
(
θ̌ ′

1

) = V
(
�̌01

)
H 2

00H
2
11

≈ �00

4H 2
00H

2
11τs

≈ θ0

4H 2
11τs

,

(6.7)

which neglects the bias and applies the approximations

�qq + �q ′q ′ ≈ �qq ≈ H 2
qqθ2q (6.8)

to Eqs. (4.23) and (4.32). Similarly,

θ̌ ′
2 = n1

H 2
11τs

, MSE22 ≈ θ2

H 2
11τs

, (6.9)

θ̌ ′
3 = n+

12 − n−
12

2H11H22τs

, MSE33 ≈ θ2

4H 2
22τs

. (6.10)
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FIG. 7. Simulated and theoretical errors of moment estimation
via SPADE for the rectangle aperture given by Eq. (6.13). The format
of the plots is identical to that of Figs. 5 and 6. Note that the spread of
errors for μ = 4 looks more severe because the range of the vertical
axis is smaller than those of the other μ = 4 plots in Figs. 5 and 6.
Also, relatively few photons from a subdiffraction object are coupled
into the φ2(x) mode, so the error itself has a high variance and more
samples would be required for the average errors to get closer to the
expected values.

To estimate θ4, I use both of the photon counts that come from
the two φ2(x) projections to obtain

θ̌ ′
4 = n2 + n′

2

2H 2
22τs

, MSE44 ≈ θ4

2H 2
22τs

. (6.11)

There is no need to specify θ0, τ , or τs individually if the errors
are normalized with respect to θ2

0 . The simulated errors and
the analytic expressions are plotted in Figs. 5–7 against the
relevant parameters in log-log scale for the three PSFs. The
three PSFs in the spatial-frequency domain under study and
the associated PAD modes are plotted in Fig. 8.

Figure 5 plots the results for the Gaussian PSF described in
Sec. V. The simulated errors all match the theory, despite the
approximations in the analytic expressions. In particular, the
agreement confirms that the contribution of bias to the errors
of SPADE is negligible. For μ = 1, SPADE uses one-third of
the photons only, and its errors are three times those of direct
imaging. For higher moments, however, SPADE outperforms
direct imaging by orders of magnitude.

It is important to note that the plotted mean-square errors
are normalized with respect to θ2

0 (�/2)2μ, which is the square
of the prior limit given by Eq. (3.11), and only the normalized
errors for μ = 1,2 go significantly below 1. According to the
discussion in Sec. IV D, this implies that only the estimation
for μ � 2 is informative, while the estimation for μ � 3 would
require a lot more photons to become informative. The high
variances of the estimators for μ � 3 also suggest that, for the
given photon number, replacing them with Bayesian estimators
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FIG. 8. Left column: the aperture functions for the three PSFs
under study: the Gaussian (first row), the bump given by Eq. (6.12)
(second row), and the rectangle given by Eq. (6.13) (third row). Right
column: the PAD modes φ0(x), φ1(x), and φ2(x) for each PSF. All the
axes follow the dimensionless units defined in the main text.

[23,45,52] can reduce their errors to the vicinity of the prior
levels given by Eq. (4.61), although the bias will go up a lot.

The second PSF under study is the “bump” aperture function
[40]

�(k) =
{
�(0) exp

(− k2

1−k2

)
, |k| < 1,

0, |k| � 1,
(6.12)

where �(0) ≈ 1.0084 is a normalization constant. The com-
pact support models a hard bandwidth limit, while the infinite
differentiability of�(k) ensures that all the moments of |ψ(x)|2
are finite and the direct-imaging theory in Sec. III is valid,
as discussed in Appendix H. The simulated errors, plotted
in Fig. 6, behave similarly to those in the Gaussian case,
except that the direct-imaging errors are substantially higher
for higher moments. The enhancements by SPADE appear even
bigger, though not big enough to bring the errors for μ � 3
down to the informative regime for the given photon number.

The final PSF is the textbook rectangle aperture function

�(k) =
{

1, |k| < 1/2,

0, |k| � 1/2.
(6.13)

The second and higher moments of |ψ(x)|2 are infinite, mean-
ing that the direct-imaging theory in Sec. III is inapplicable,
as discussed in Appendix H. Fortunately, the orthogonal
polynomials with respect to |�(k)|2 and therefore the PAD
basis remain well-defined [15]. Figure 7 plots the results for

SPADE, which are similar to those for the bump aperture in
Fig. 6. Although these results have no direct-imaging limits
to compare with, the earlier results on the two-point problem
for this PSF [1,14,15] suggest that significant improvements
remain likely.

VII. CONCLUSION

The semiclassical treatment complements the quantum
approach in Ref. [8] by offering a shortcut to the Poisson
photon-counting model for incoherent sources, passive linear
optics, and photon counting. Besides pedagogy, this work
generalizes the results in Refs. [1–20] for more general objects
and PSFs in the context of moment estimation, demonstrating
that the giant enhancements by SPADE are not limited to the
case of two point sources or Gaussian PSF considered in prior
works.

Many open problems remain, such as extensions for more
general PSFs, more complex objects, and three-dimensional
imaging; the effect of excess statistical and systematic errors,
such as dark counts, aberrations, turbulence, and nonparaxial
effects [56]; the application of more advanced Bayesian or
minimax statistics [23,33–39,45]; and the quantum optimality
of the measurements [1,4–10,15,18–20]. Experimental imple-
mentation is another important future direction. For proof-of-
concept demonstrations, it should be possible to use the same
setups described in Refs. [11–14] to estimate at least the second
moments of more general objects. For practical applications in
astronomy and fluorescence microscopy, efficient demultiplex-
ing for broadband sources is needed. The technical challenge
is by no means trivial, but the experimental progress on spatial-
mode demultiplexers has been encouraging [11–14,57–63],
and the promise of giant imaging enhancements using simply
far-field linear optics should motivate further efforts.
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APPENDIX A: MULTI-INDEX NOTATION

A D-dimensional vector of continuous variables is written
as

x = (x1,x2, . . . ,xD) ∈ RD. (A1)

For such a vector, the following notations are assumed:

dx ≡
D∏

j=1

dxj ,

∫
dx ≡

∫
RD

dx,

δ(x − x ′) ≡
D∏

j=1

δ(xj − x ′
j ), ∂x ≡

(
∂

∂x1
, . . . ,

∂

∂xD

)
,

kx ≡
D∑

j=1

kjxj , ||x||2 ≡ xx. (A2)

If the subscript is omitted in ∂ , derivatives with respect to x

are assumed.
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A vector of integer indices, on the other hand, is defined as

μ = (μ1,μ2, . . . ,μD) ∈ ND
0 . (A3)

For such a vector, the following notations are assumed:

0 ≡ (0, . . . ,0), |μ| ≡
D∑

j=1

|μj |,

∑
μ

≡
∑

μ∈ND
0

,

ξ∑
μ=ν

≡
ξ1∑

μ=ν1

· · ·
ξD∑

μ=νD

,

μ! ≡
D∏

j=1

μj !.

(
μ

ν

)
≡ μ!

(μ − ν)!ν!
. (A4)

Note that the one-norm is assumed for index vectors. Other
useful notations include

xμ ≡
D∏

j=1

x
μj

j , ∂μ
x ≡

D∏
j=1

∂μj

∂x
μj

j

. (A5)

APPENDIX B: CRB FOR DIRECT IMAGING

It is useful to define a Hilbert space

H ≡ span
{
bμ(x); μ ∈ ND

0

}
(B1)

with respect to

bμ(x) ≡ (−∂)μ|ψ(x)|2
μ!f̃ (x|θ )

, f̃ (x|θ ) ≡ f (x|θ )

θ0
, (B2)

and the weighted inner product

〈u,v〉 ≡
∫

dx f̃ (x|θ )u(x)v(x), (B3)

where span is the closed linear span inside the L2(f̃ ) space
[24,40] and f̃ (x|θ ) is the normalized image. In other words,
any function in H can be expressed as a linear combination of
{bμ(x)}. Equation (3.3) becomes

Jμν = τ

θ0
〈bμ,bν〉. (B4)

This can be inverted with the help of orthogonal polynomials.
Define

a ≡ {
aμ(x); μ ∈ ND

0

}
, (B5)

where aμ(x) is a real polynomial with degree |μ| and the
orthonormal condition is

〈aμ,aν〉 = δμν. (B6)

For orthogonal polynomials to exist, the moment matrix M

given by Eq. (3.5) should be positive-definite [24], or equiva-
lently ∫

dx f̃ (x|θ )P2(x) > 0 (B7)

for any polynomial P . The strict positiveness can be satisfied
as long as the support of f̃ (x|θ ) is an infinite set, as P2(x) has
a finite number of zeros only.

The orthogonal polynomials can be computed by apply-
ing the Gram-Schmidt procedure to the set of monomials

{xμ; μ ∈ ND
0 } if the set is totally ordered [24]. For D = 1, the

natural order {1,x,x2, . . . } leads to a unique set of orthogonal
polynomials for a given weight function. For D � 2, however,
the situation is more complicated. A useful requirement is that
the order should respect the degree in the sense of

ν � μ ⇒ |ν| � |μ|. (B8)

An example is the graded lexicographical order, defined by

ν > μ ⇔ |ν| > |μ|, or if |ν| = |μ|,
the first nonzero νj − μj > 0. (B9)

For D = 2, for example, the order is

(0,0) < (0,1) < (1,0) < (0,2) < (1,1) < (2,0)

< · · · (0,|μ|) < (1,|μ| − 1) < · · · < (|μ|,0) < · · · ,

(B10)

but one should see in this example that indices with the same
total degree |μ| may be ordered in other ways and there is
no single compelling choice; a different choice will lead to
a different set of orthogonal polynomials. In the following, I
assume simply that a degree-respecting order has been chosen;
the analysis is valid regardless of the choice.

Express each polynomial as

aμ(x) =
∑

ν

Aμνx
ν, (B11)

where A is a matrix that satisfies the lower-triangular property

Aμν = 0 if ν > μ. (B12)

Combining Eqs. (3.5), (B6), and (B11), I obtain∑
ξ,ζ

AμξMξζAνζ = δμν. (B13)

Given a total order of the indices, the matrices can be rasterized
into two-dimensional matrices. Equation (B14) can then be
written more compactly as

AMA� = I, (B14)

where � denotes the matrix transpose and I is the identity
matrix. As M is positive-definite, A can be obtained from the
Cholesky decomposition

M = LL�, (B15)

where L is a real lower-triangular matrix with positive diagonal
elements [64]. Since the diagonal elements of a triangular
matrix are also its eigenvalues, L is invertible, L−1 is also
lower-triangular, and setting

A = L−1 (B16)

leads to

M = (A−1)(A−1)�, (B17)

which satisfies Eq. (B14).
To invert Eq. (B4), I also need to prove that a is an

orthonormal basis in H. The orthonormality given by Eq. (B6)
is satisfied by definition, while the completeness follows from
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the fact that the only function u(x) = ∑
ν λνbν(x) in H that is

orthogonal to a in the sense of

〈aμ,u〉 =
∑

ν

〈aμ,bν〉λν = 0, μ ∈ ND
0 , (B18)

is the zero function, provided that

Bμν ≡ 〈aμ,bν〉 = 1

ν!

∫
dx aμ(x)(−∂)ν |ψ(x)|2 (B19)

is an invertible matrix. To prove so, apply integration by parts
to Eq. (B19) to obtain

Bμν = 1

ν!

∫
dx|ψ(x)|2∂νaμ(x) =

∑
ξ

AμξCξν, (B20)

B = AC, (B21)

where C is defined by Eq. (3.6). Since A is invertible, it suffices
to prove that C is also invertible. Consider the term ∂νxμ in
Cμν . ν > μ in a degree-respecting order implies |ν| > |μ|, or
|ν| = |μ| and ν �= μ. In either case, there exists at least one
νj > μj that makes ∂νxμ vanish, resulting in

Cμν = 0 if ν > μ, (B22)

meaning that C is lower-triangular. The eigenvalues of C are
then the diagonal elements and given by

Cμμ = 1

μ!

∫
dx|ψ(x)|2∂μxμ =

∫
dx|ψ(x)|2 = 1. (B23)

Hence C is invertible. Since both A and C are lower-triangular
and invertible, B = AC is also lower-triangular and invertible,
and

B−1 = C−1A−1 (B24)

is lower-triangular as well.
I can now use the a basis to express Eq. (B4) as

Jμν = τ

θ0

∑
ξ

〈bμ,aξ 〉〈aξ ,bν〉 = τ

θ0

∑
ξ

BξνBξν. (B25)

In matrix form,

J = τ

θ0
B�B, (B26)

and the CRB becomes

CRB = J−1 = θ0

τ
B−1(B−1)� (B27)

= θ0

τ
C−1M(C−1)�, (B28)

where I have applied Eqs. (B24) and (B17).

APPENDIX C: A MOMENT ESTIMATOR
FOR DIRECT IMAGING

Let a′ be a set of orthogonal polynomials with respect to
f̃ (x|θ ′) at a trial parameter value θ ′. Each polynomial can be
expressed as

a′
μ(x) =

∑
ν

A′
μνx

μ. (C1)

The orthonormal condition is∫
dx f̃ (x|θ ′)a′

μ(x)a′
ν(x) = δμν. (C2)

The mean image given by Eq. (3.2) can be expanded in the a′
basis as

f (x|θ ) = f̃ (x|θ ′)
∑

μ

a′
μ(x)βμ, (C3)

which is an example of orthogonal-series expansion in non-
parametric density estimation [65,66], and

βμ ≡
∫

dx f (x|θ )a′
μ(x) =

∑
ν

B ′
μνθν (C4)

are the generalized Fourier coefficients, where

B ′
μν =

∫
dx a′

μ(x)(−∂)ν |ψ(x)|2 =
∑

ξ

A′
μξCξν. (C5)

Let {n(S);S ⊆ RD} be the Poisson process [67,68] ob-
tained by direct imaging with infinitesimal pixel size. The
expected value of n over an area S is

E[n(S)] = τ

∫
S

dx f (x|θ ), (C6)

and {n(S1),n(S2), . . . } are independent Poisson variables if
{S1,S2, . . . } are disjoint subsets. Equations (C2), (C3), and
(C6) imply that

β̌μ = 1

τ

∫
n(dx)a′

μ(x) (C7)

is an unbiased estimator of β and

θ̌μ =
∑

ν

(B ′−1)μνβ̌ν (C8)

is an unbiased estimator of θ . The covariances of the estimators
are

Vμν(β̌) = 1

τ

∫
dx f (x|θ )a′

μ(x)a′
ν(x), (C9)

V(θ̌) = (B ′−1)V(β̌)(B ′−1)�. (C10)

Suppose for the moment that the trial θ ′ happens to coincide
with the true θ . Then f̃ (x|θ ′) = f̃ (x|θ ), a′ = a, and B ′ = B,
resulting in

Vμν(β̌) = 1

τ

∫
dx f (x|θ )aμ(x)aν(x) = θ0

τ
δμν, (C11)

V(θ̌) = θ0

τ
(B−1)(B−1)�, (C12)

which is equal to the CRB given by Eq. (B27). In reality, θ

is unknown of course, but f̃ (x|θ ) can be approximated in the
subdiffraction regime as

f̃ (x|θ ) = |ψ(x)|2 + O(�), (C13)

and I can set

f̃ (x|θ ′) = |ψ(x)|2. (C14)
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This gives A′M (0)A′� = I , where M (0)
μν ≡ �μ+ν is the PSF

moment matrix. The covariances become

Vμν(β̌) = θ0

τ

∫
dx[|ψ(x)|2 + O(�)]a′

μ(x)a′
ν(x) (C15)

= θ0

τ
[δμν + O(�)], (C16)

V(θ̌ ) = θ0

τ
[(B ′−1)(B ′−1)� + O(�)] (C17)

= θ0

τ
[(C−1)M (0)(C−1)� + O(�)], (C18)

which coincides with the CRB given by Eq. (3.14) in the
leading order. An iterative approach that replaces f̃ (x|θ ′) with
an estimated f̃ (x|θ ) in each step should further improve the
estimation, though it is unnecessary for Sec. VI.

APPENDIX D: CRB FOR DIRECT IMAGING IN THE
DIFFRACTION-UNLIMITED REGIME

Suppose that the PSF |ψ(x)|2 = δ(x) is infinitely sharp
and f (x|θ ) = F (x|θ ). The image moments given by Eq. (3.5)
become identical to those of the object, viz.,

Mμν = θμ+ν

θ0
, (D1)

the C matrix given by Eq. (3.6) becomes

Cμν = 1

ν!

∫
dxδ(x)∂νxμ = δμν, (D2)

and the CRB given by Eq. (3.4) becomes

CRBμν = θμ+ν

τ
. (D3)

This represents an ideal scenario in which the imaging is
limited only by shot noise and not by diffraction. Equation
(D3) also serves as a general lower bound on the CRB given
by Eq. (2.19) for any linear-optical processing, as Eq. (2.6) is
a Markov chain on F (X|θ ) and the data-processing inequality
[42] can be invoked.

To verify Eq. (D3), suppose that F consists of isolated point
sources, viz.,

F (X|θ ) =
∑

σ

ϑσ δ(X − Xσ ), (D4)

and since |ψ(x)|2 = δ(x), their positions can be perfectly
resolved. The unknowns are then ϑ , and the CRB with respect
to ϑ is

J (ϑ)
σγ = τ

ϑσ

δσγ , CRB(ϑ)
σγ = ϑσ

τ
δσγ . (D5)

Expressing the moments as

θμ =
∑

σ

ϑσXμ
σ , (D6)

I can compute the CRB with respect to the moments via the
transformation

CRBμν =
∑
σ,γ

∂θμ

∂ϑσ

CRB(ϑ)
σγ

∂θν

∂ϑγ

= θμ+ν

τ
, (D7)

which coincides with Eq. (D3).

APPENDIX E: PROPERTIES OF MATRICES IN SEC. IV

Equation (4.5) can be inverted to give

kr =
∑

s

(G−1)rsgs(k). (E1)

Substituting this in Eq. (4.28) and using the orthonormality
given by Eq. (4.8), I obtain

Hqr = i|q|(−i)|r|

r!

∑
s

(G−1)rs

∫
dk|�(k)|2gq(k)gs(k) (E2)

= i|q|(−i)|r|

r!
(G−1)rq . (E3)

The inverse is given by Eq. (4.30), which can be confirmed
by directly computing HH−1 or H−1H . Since G−1 and G are
lower-triangular, H and H−1 are upper-triangular.

If |�(k)|2 is centrosymmetric according to Eq. (4.21),
Ref. [24] shows that gq(k) consists of only even-order mono-
mials {kr ; |r| even} if |q| is even and only odd-order monomials
{kr ; |r| odd} if |q| is odd. Thus

Gqr = 0 if |q| − |r| is odd, (E4)

gq(k) = (−1)|q|gq(−k). (E5)

Substituting k with −k in the integral in Eq. (4.25) yields

hq(X) = i|q|
∫

dk|�(−k)|2gq(−k) exp(ikX) (E6)

= (−i)|q|
∫

dk|�(k)|2gq(k) exp(ikX) (E7)

= h∗
q(X), (E8)

and hq(X) is real. It follows that H and H−1 are real as well.

APPENDIX F: CRB FOR DIRECT IMAGING WITH
THE GAUSSIAN PSF

In the limit of � → 0,

f̃ (x|θ ) = |ψ(x)|2 = 1

(2π )d/2
exp

(
−||x||2

2

)
. (F1)

A set of orthogonal polynomials are

aμ(x) = 1√
μ!

Heμ(x), (F2)

where

Heμ(x) ≡
D∏

j=1

Heμj
(xj ), (F3)

and the definition of the single-variable Hermite polynomials
can be found, for example, in Refs. [54,55]. The B matrix
defined by Eq. (B19) can then be computed by substituting the
identity

(−∂)ν |ψ(x)|2 = |ψ(x)|2 Heν(x) (F4)

for Hermite polynomials [54,55] and using the orthonormality
of a. The result is

Bμν = 1√
μ!

δμν, (F5)

which can be substituted into Eq. (B27) to give Eq. (5.2).
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APPENDIX G: AN ESTIMATOR FOR SPADE WITH
NONSEPARABLE PSFs

The simple estimator given by Eq. (4.48) relies on the
strong upper-triangular property of H given by Eq. (4.44)
for separable PSFs. Without it, the weaker property given by
Eq. (4.31) for a degree-respecting order still implies that the∑

r sum in Eq. (4.36) can be separated into an |r| = |q| group
and and an |r| > |q| group, viz.,

∑
r

=
∑

|r|=|q|
+

∑
|r|>|q|

, (G1)

and Eq. (4.36) becomes

θq+q ′ =
∑

|r|=|q|,|r ′|=|q ′|
(H−1)qr (H−1)q ′r ′�rr ′

+
∑

|r+r ′|>|q+q ′ |
(H−1)qr (H−1)q ′r ′�rr ′ . (G2)

If I assume the estimator

θ̌ ′
q+q ′ =

∑
|r|=|q|,|r ′|=|q ′|

(H−1)qr (H−1)q ′r ′ �̌rr ′ , (G3)

the bias is also given by Eq. (4.49), while the variance is

V(θ̌ ′
q+q ′ ) =

∑
|r|=|q|,|r ′|=|q ′|

[(H−1)qr ]2[(H−1)q ′r ′ ]2V(�̌rr ′)

(G4)

= θ2
0

min(Ns)
O(�|q+q ′ |), (G5)

which can still be minimized by choosing q and q ′ according
to Eq. (4.51).

A problem with Eq. (G3) is that, for a given |q| and |q ′|, the
number of (r,r ′) indices with |r| = |q| and |r ′| = |q ′| is(|q| + D − 1

|q|
)

×
(|q ′| + D − 1

|q ′|
)

, (G6)

so the estimator may require a large number of �̌rr ′ ’s and a large
number of bases to implement for a high-order moment, lead-
ing to a reduction in min(Ns). This difficulty is compounded
by the fact that, for D � 2, there exist infinitely many sets of
orthogonal polynomials for a given weight function, as pointed
out in Appendix B, leading to infinite possible choices of the c

polynomials and the PAD basis. For separable PSFs, the choice
of the separable PAD basis in Sec. IV B fortunately leads to
only one term in Eq. (G3), but it remains an open question
whether Eq. (G3) can be further simplified via a more specific
choice of the PAD basis for nonseparable PSFs.

APPENDIX H: CONDITIONS FOR FINITE
IMAGE MOMENTS

Given Eqs. (3.11) and (3.12), M is finite if all the PSF
moments {�μ; μ ∈ ND

0 } are finite. Consider

�μ =
∫

dk �∗(k)(i∂k)μ�(k) (H1)

in terms of the Fourier transform given by Eq. (4.3). A
sufficient condition for � to be finite is that �(k) is infinitely
differentiable and has compact support; an example is the bump
function given by Eq. (6.12).

If any �μ is infinite, the C matrix given by Eq. (3.7) and
the CRB given by Eq. (3.14) also have infinite elements, and
the direct-imaging theory in Sec. III and Appendix B breaks
down. This happens for the rectangle aperture function given
by Eq. (6.13). A solution, not explored in this work, may be
to smooth �(k) by convolving it with a bump function with
support width w, such that the smoothed �(k) becomes in-
finitely differentiable but remains compactly supported. When
w � 1, the result should offer a good approximation of that
for the original �(k).
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