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Partially coherent isodiffracting pulsed beams
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We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported
by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian
Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-
spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a
power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary
light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing
beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any
propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle,
single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence
even though full spectral coherence is assumed.
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I. INTRODUCTION

One of the well-known properties of spherical-mirror laser
cavities is that the spatial scale of the transverse cavity modes
depends on the frequency ω (or wavelength λ) of the radiation
[1]. In continuous-wave lasers the small spectral bandwidth
implies that this dependence is negligible, and the same applies
to pulsed lasers in the many-cycle regime. However, advances
in mode locking of lasers open prospects for generating single-
cycle pulses even in the visible region [2–4]. Pulses in this
regime have such large spectral bandwidths that the frequency
dependence of the modal scale must be considered; coherent
(single-spatial-mode) subcycle, single-cycle, and few-cycle
optical pulses are known to feature strong spatiotemporal
coupling effects [5–7].

If more than one transverse mode is supported by a laser
cavity, the emitted radiation becomes spatially partially co-
herent [8]. The most commonly used model for stationary
partially coherent beams is the Gaussian Schell model (GSM)
[9], which results from superpositions of Hermite-Gaussian
(HG) laser cavity modes that satisfy a certain power-law weight
distribution at a given frequency [10,11]. There are several
studies on the extension of the GSM to pulsed beams [12–18].
However, in all of these studies the source field is described by
frequency-independent transverse scale parameters, and hence
the resulting models are not applicable to pulses with time
scales of few cycles or less. Fundamental problems emerge
with extensions of the GSM to ultrashort pulses if a Gaussian
spectral distribution is associated with the field (as has been
customary). These problems arise from the negative frequency
components in the spectrum (unless they are truncated), and
they do not vanish even if the contribution of the negative
components is very small [6].
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In the present paper we extend the GSM for stationary
(polychromatic) beams to pulsed beams by making use of the
coherence theory of nonstationary fields [19,20]. We assume
that the spatial modes are of the usual HG form and have the
frequency-dependent transverse scaling that follows from the
theory of spherical-mirror laser resonators. The modal weights
are chosen to obey the same power-law distribution that leads to
stationary GSM beams. Furthermore, in describing the space-
time properties of the pulsed fields, we use a power-exponential
spectral distribution that does not contain negative frequencies.

In Sec. II we consider polychromatic stationary GSM beams
[21], which satisfy the correct spectral scaling law of the HG
modes. This model is extended in Sec. III to partially coherent
pulsed beams in the space-frequency domain, where our pulses
share the isodiffracting character of stationary GSM beams:
shape-invariant propagation with a monotonously increasing
transverse scale at each single frequency. In Sec. IV we intro-
duce the power-exponential spectral distribution and derive the
space-time characteristics of the pulsed beams by evaluating
the two-time mutual coherence function in terms of Gauss
hypergeometric functions. The main space-time properties of
our model pulses, including spatiotemporal coupling and the
reduction of temporal coherence due to partial spatial coher-
ence, are illustrated in Sec. V. Final remarks and conclusions
are provided in Sec. VI.

II. STATIONARY ISODIFFRACTING BEAMS

Let us start from the coherent-mode representation of sta-
tionary GSM beams [10,11], which is a weighted superposition
of HG modes. Since these modes are separable in cartesian
coordinates, it is sufficient to consider one-dimensional repre-
sentations in, say, x direction.

The waist of a HG mode of order m originating from a
stable laser cavity has a space-frequency representation of the
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form [1]

ψm(x; ω) = g(ω)
(2/π )1/4

√
2mm!w0(ω)

× Hm

[ √
2x

w0(ω)

]
exp

[
− x2

w2
0(ω)

]
, (1)

where Hm is a Hermite polynomial of order m. The spatial
beam width at the waist varies with ω as

w0(ω) =
√

ω0

ω
w0. (2)

Here w0 = w(ω0) is the beam width at reference frequency
ω0, which may be chosen as the peak or mean frequency of the
(possibly complex-valued) spectral weight function g(ω). This
function can be chosen to fulfill the normalization condition∫ |g(ω)|2dω = 1, but we consider a more general case where
the integral

∫ |g(ω)|2dω yields an arbitrary but finite constant.
By assuming that g(ω) is the same for all m we neglect the
small differences in the resonance frequencies of the transverse
modes [1]. This assumption is well justified for the short pulses
considered below, since the spectral width of g(ω) is then far
greater than the modal frequency separation.

The space-frequency-domain coherence properties of
steady-state (stationary) fields are characterized by the cross-
spectral density (CSD) function. If more than one mode is
present in a stationary field, any incoherent superposition of
the type [22]

W (x1,x2; ω) =
∞∑

m=0

cm(ω)ψ∗
m(x1; ω)ψm(x2; ω) (3)

represents a valid CSD. In particular, we may choose the
weights cm(ω) as [10,11,23]

cm = w0

√
2π

β

1

1 + 1/β

(
1 − β

1 + β

)m

, (4)

where we have assumed them to be independent on ω (though
in general needs not be the case). In Eq. (4), β is a parameter
that can vary in the range 0 � β � 1, where the lower and
upper bounds represent full incoherence and full coherence,
respectively. The effective (or overall) degree of spatial coher-
ence of the field [24] now has the form

μ̄ =
[ ∑∞

m=0 c2
m

]1/2∑∞
m=0 cm

=
√

β, (5)

thus being simply related to the parameter β.
On inserting from Eqs. (1), (2), and (4) into Eq. (3) and

rearranging the terms we get

W (x1,x2; ω) = 2√
β

1

1 + 1/β

√
ω

ω0
|g(ω)|2

× exp

(
− ω

ω0

x2
1 + x2

2

w2
0

) ∞∑
m=0

Hm

(√
ω

ω0

√
2x1

w0

)

× Hm

(√
ω

ω0

√
2x2

w0

)
tm

m!
, (6)

where

t = 1

2

1 − β

1 + β
. (7)

We immediately recognize that Eq. (6) is an exponential
generating function of the form

∞∑
m=0

Hm(x)Hm(y)
tm

m!

= 1√
1 − 4t2

exp

[
−4t2(x2 + y2) − 4xyt

1 − 4t2

]
, (8)

where the equality is valid when |t | �= 1/2 (for |t | = 1/2 the
summation leads to the Dirac delta function). On substituting
from Eq. (8) to Eq. (6) and simplifying, we obtain

W (x1,x2; ω) =
√

ω

ω0
|g(ω)|2 exp

(
−1 + β2

2β

ω

ω0

x2
1 + x2

2

w2
0

)

× exp

(
1 − β2

β

ω

ω0

x1x2

w2
0

)
. (9)

We can, in general, express the CSD in terms of the spectral
density S(x; ω) = W (x,x; ω) and the complex spectral degree
of spatial coherence μ(x1,x2; ω) as

W (x1,x2; ω) = [S(x1; ω)S(x2; ω)]1/2μ(x1,x2; ω). (10)

It then follows from Eq. (9) that the spectral density has the
Gaussian form

S(x; ω) =
√

ω

ω0
|g(ω)|2 exp

(
− ω

ω0

2x2

w2

)
, (11)

where

w = w0√
β

. (12)

The spectral degree of spatial coherence is also a Gaussian
function

μ(x1,x2; ω) = exp

[
− ω

ω0

(x1 − x2)2

2σ 2

]
, (13)

where the parameter

σ = β√
1 − β2

w =
√

β√
1 − β2

w0 (14)

describes the spatial coherence width of the field at the plane of
the waist for ω = ω0. Full spatial coherence and incoherence
are obtained in the limits σ → ∞ and σ → 0, respectively.

The expressions given above describe the waist of a sta-
tionary isodiffracting Gaussian Schell-model beam; the term
Schell model refers to the fact μ(x1,x2; ω) is a function of
the spatial coordinate difference �x = x2 − x1 only. Since
Eq. (14) leads to the relation

β =
(

1 + w2

σ 2

)−1/2

, (15)

the coherent and incoherent limits defined in terms of σ agree
with the one defined above in terms of β. Moreover, β and
Eq. (12) determine the scale w0 of the coherent modes in
Eq. (1), if the coherence width σ and the beam width w at the
plane of the waist have been fixed. Considering an arbitrary
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frequency, the coherence width is σ (ω) = σ
√

ω0/ω and the
beam width is w(ω) = w

√
ω0/ω. Hence the ratio

σ (ω)

w(ω)
= σ

w
(16)

is independent on ω. This may be considered as a characteristic
property of stationary, isodiffracting GSM beams generated in
spherical-mirror cavities.

III. PULSES IN SPACE-FREQUENCY DOMAIN

If more than one spatial mode is present in a nonstationary
field, but each mode is spectrally fully coherent, the two-
frequency CSD may then be expressed in the form of a
coherent-mode superposition [14]

W (x1,x2; ω1,ω2) =
∞∑

m=0

cmψ∗
m(x1; ω1)ψm(x2; ω2), (17)

where the coefficients cm must be independent on the frequen-
cies ω1 and ω2. The effective degree of spatial coherence is
still given by Eq. (5), which is valid in both space-frequency
and space-time domains [14], independently on the choice of
g(ω).

On inserting from Eqs. (1), (2), and (4) into Eq. (17) we
have

W (x1,x2; ω1,ω2) = 2√
β

1

1 + 1/β

(
ω1

ω0

ω2

ω0

)1/4

× g∗(ω1)g(ω2) exp

(
−ω1x

2
1 + ω2x

2
2

ω0w
2
0

)

×
∞∑

m=0

Hm

(√
ω1

ω0

√
2x1

w0

)

× Hm

(√
ω2

ω0

√
2x2

w0

)
tm

m!
, (18)

where t is again given by Eq. (7). Using Eq. (8) we now obtain

W (x1,x2; ω1,ω2) =
(

ω1

ω0

ω2

ω0

)1/4

g∗(ω1)g(ω2)

× exp

(
−1 + β2

2β

ω1x
2
1 + ω2x

2
2

ω0w
2
0

)

× exp

(
1 − β2

β

√
ω1ω2

ω0

x1x2

w2
0

)
. (19)

Representing the two-frequency CSD in terms of the spectral
density and the two-frequency complex degree of spatial
coherence as

W (x1,x2; ω1,ω2) = [S(x1; ω1)S(x2; ω2)]1/2μ(x1,x2; ω1,ω2),
(20)

we find that the spectral density has exactly the same form as
in the stationary case in Eq. (11). Furthermore, the complex

degree of spatial coherence can be cast in the form

μ(x1,x2; ω1,ω2) = exp

[
−

(√
ω1x1 − √

ω2x2
)2

2ω0σ 2

]

× exp[iϕ(ω1,ω2)], (21)

where σ is given by Eq. (14) and the phase

ϕ(ω1,ω2) = arg[g(ω2)] − arg[g(ω1)] (22)

vanishes for real-valued spectral distributions g(ω).
When evaluated at a single frequency (ω1 = ω2 = ω), this

result reduces to Eq. (13). The model presented in this section
can indeed be considered as an extension of an isodiffracting
Gaussian Schell-model beam to the nonstationary case. It
should be noted, however, that the field is not of the Schell-
model form when two different frequencies are considered.

Let us consider paraxial free-space propagation of pulsed
beams radiated by sources defined above. The propagated form
of a HG mode of order m at distance z from the waist is [1]

ψm(x,z; ω) = g(ω)
(2/π )1/4 exp[iφ(z; ω)]√

2mm!w0(z; ω)
Hm

[ √
2x

w0(z; ω)

]

× exp

[
− x2

w2
0(z; ω)

]
exp

[
i
ω

c

x2

2R(z)

]
, (23)

where c is the speed of light and the quantities

w0(z; ω) =
√

ω0

ω
w0(z), (24)

w0(z) = w0

(
1 + z2

z2
R

)1/2

, (25)

R(z) = z + z2
R

z
, (26)

φ(z; ω) = ω

c
z −

(
m + 1

2

)
arctan

(
z

zR

)
, (27)

zR = ωw2
0(ω)

2c
= ω0w

2
0

2c
(28)

are the usual Gaussian-beam propagation parameters. The
special feature of isodiffracting HG fields, which may be taken
as their defining property, is that because the waist of the beam
is frequency dependent, the Rayleigh range zR is independent
on the frequency.

Since the modes in Eq. (17) are mutually uncorrelated at the
plane of the waist, they propagate independently of each other.
Hence the CSD at any plane z = const, may be expressed as

W (x1,x2,z; ω1,ω2) =
∞∑

m=0

cmψ∗
m(x1,z; ω1)ψm(x2,z; ω2),

(29)

where the coefficients cm are the same as at the plane z =
0. Inserting from Eqs. (4), (23), and (24) into Eq. (29)
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we obtain

W (x1,x2,z; ω1,ω2)

= 2√
β

1

1 + 1/β

(
ω1

ω0

ω2

ω0

)1/4

× g∗(ω1)g(ω2)
w0

w0(z)
exp[−i(ω1 − ω2)z/c]

× exp

(
−ω1x

2
1 + ω2x

2
2

ω0w
2
0(z)

)
exp

[
− i

(
ω1x

2
1 − ω2x

2
2

)
2cR(z)

]

×
∞∑

m=0

Hm

(√
ω1

ω0

√
2x1

w0(z)

)
Hm

(√
ω2

ω0

√
2x2

w0(z)

)
tm

m!
, (30)

with t defined in Eq. (7). Using again Eq. (8), we have

W (x1,x2,z; ω1,ω2)

= [S(x1,z; ω1)S(x2,z; ω2)]1/2μ(x1,x2,z; ω1,ω2), (31)

where

S(x,z; ω) =
√

ω

ω0
|g(ω)|2 w

w(z)
exp

[
− ω

ω0

2x2

w2(z)

]
, (32)

with

w(z) = w

(
1 + z2

z2
R

)1/2

= w0(z)√
β

(33)

and

|μ(x1,x2,z; ω1,ω2)| = exp

[
− (

√
ω1x1 − √

ω2x2)2

2ω0σ 2(z)

]
, (34)

with

σ (z) = σ

w
w(z). (35)

Hence the ratio of the coherence width and the beam width (at
any given frequency) remains constant upon propagation, as is
the case for stationary Gaussian Schell-model beams. Finally,
the phase of the complex degree of spatial coherence has the
form

arg[μ(x1,x2,z; ω1,ω2)] = arg[g(ω2)] − arg[g(ω1)]

− (ω1 − ω2)z/c − ω1x
2
1 − ω2x

2
2

2cR(z)
,

(36)

where the most significant term is the last phase factor that
represents a spherical wave with radius R(z).

IV. PULSES IN SPACE-TIME DOMAIN

The space-time coherence properties of nonstationary fields
are characterized by the two-time mutual coherence function
(MCF) �(x1,x2; t1,t2; z), which is connected to the CSD by the
generalized Wiener-Khintchine theorem

�(x1,x2,z; t1,t2) =
∫∫ ∞

0
W (x1,x2,z; ω1,ω2)

× exp[i(ω1t1 − ω2t2)]dω1dω2. (37)

The complex degree of coherence in the space-time domain is
defined similarly to its spectral counterpart,

γ (x1,x2,z; t1,t2) = �(x1,x2,z; t1,t2)√
I (x1,z; t1)I (x2,z; t2)

, (38)

where I (x,z; t) = �(x,x,z; t,t) is the spatiotemporal intensity
distribution of the field. On inserting from Eqs. (31)–(36) into
Eq. (37) we obtain

�(x1,x2,z; t1,t2) = w

w(z)

∫∫ ∞

0

(
ω1

ω0

ω2

ω0

)1/4

g∗(ω1)g(ω2) exp

[
−ω1x

2
1 + ω2x

2
2

ω0w2(z)

]
exp

[
−

(√
ω1x1 − √

ω2x2
)2

2ω0σ 2(z)

]

× exp
{
i
[
ω1t1 − ω2t2 − (ω1 − ω2)

z

c

]}
exp

[
−i

ω1x
2
1 − ω2x

2
2

2cR(z)

]
dω1dω2. (39)

This expression can be rearranged into the form

�(x1,x2,z; t1,t2) = w

w(z)

∫ ∞

0

(
ω1

ω0

)1/4

g∗(ω1)J (x1,x2,z; t1,t2,ω1) exp

[
−T ∗(x1,z; t1)

ω1

ω0

]
dω1, (40)

where

T (x,z; t) =
[

1

w2(z)
+ 1

2σ 2(z)

]
x2 + iω0

[
t ′ − x2

2cR(z)

]
, (41)

t ′ = t − z/c is the retarded time, and

J (x1,x2,z; t1,t2,ω1) =
∫ ∞

0

(
ω2

ω0

)1/4

g(ω2) exp

[
−T (x2,z; t2)

ω2

ω0

]
exp

[
x1x2

σ 2(z)

√
ω1

ω0

√
ω2

ω0

]
dω2. (42)

To proceed further, we need to fix the spectral field distribution g(ω).
Let us assume that the spectral shape of the modes is of the power-exponential form (see, e.g., Ref. [25]) by writing(

ω

ω0

)1/4

g(ω) = 1√
�(2n)

(
2n

ω

ω0

)n

exp

(
−n

ω

ω0

)
, (43)
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where n is a real and positive constant that can be varied to control the spectral bandwidth of the pulse train and �(x) is the
familiar gamma function. This expression is clearly not normalized, and it has its maximum at ω = ω0, which is therefore a
natural choice as the reference frequency. Another physically plausible wideband spectrum (with no negative frequencies) would
be the blackbody spectrum considered in, e.g., Ref. [18]. However, the present choice leaves us far greater freedom to control the
spectral bandwidth, which reduces as n increases. In fact, with large values of n, the spectral function in Eq. (43) approaches a
Gaussian profile centered at ω = ω0.

The final result for the spatiotemporal field is obtained by inserting from Eq. (43) into Eq. (42). The details of the derivation
are presented in Appendix A. The final result can be conveniently represented as a sum of three terms:

�(x1,x2,z; t1,t2) =
3∑

j=1

�j (x1,x2,z; t1,t2). (44)

We will see below that these terms play an interesting role in characterization of spatiotemporal coupling. Explicitly, by denoting

Tn(x1,x2,z; t1,t2) = [T ∗(x1,z; t1) + n][T (x2,z; t2) + n] (45)

we have

�1(x1,x2,z; t1,t2) = (2n)2nω2
0
�2(n + 1)

�(2n)

w

w(z)
T −(n+1)

n (x1,x2,z; t1,t2)2F1

[
n + 1,n + 1;

1

2
;

x2
1x2

2

4σ 4(z)Tn(x1,x2,z; t1,t2)

]
, (46)

�2(x1,x2,z; t1,t2) = −(2n)2nω2
0

�2(n + 3/2)

(n + 1)2�(2n)

w

w(z)
T −(n+3/2)

n (x1,x2,z; t1,t2)

[
σ 2(z)

x1x2
Tn(x1,x2,z; t1,t2) − x1x2

4σ 2(z)

]

× 2F1

[
n + 3

2
,n + 3

2
; −1

2
;

x2
1x2

2

4σ 4(z)Tn(x1,x2,z; t1,t2)

]
, (47)

�3(x1,x2,z; t1,t2) = (2n)2nω2
0

�2(n + 3/2)

(n + 1)2�(2n)

w

w(z)
T −(n+3/2)

n (x1,x2,z; t1,t2)

[
σ 2(z)

x1x2
Tn(x1,x2,z; t1,t2) −

(
n + 3

2

)
x1x2

σ 2(z)

]

× 2F1

[
n + 3

2
,n + 3

2
;

1

2
;

x2
1x2

2

4σ 4(z)Tn(x1,x2,z; t1,t2)

]
, (48)

where 2F1(a,b; c; z) is the (Gauss) hypergeometric function.
Let us next consider the axial form of the temporal pulses by setting x1 = x2 = 0. All of the hypergeometric functions in the

MCF then equal unity and �2 + �3 = 0. Now T (0,z; t) = iω0t
′,

Tn(0,0,z; t1,t2) = n2 + ω2
0t

′
1t

′
2 + inω0

(
t ′2 − t ′1

)
, (49)

with axial MCF taking the simple form

�(0,0,z; t1,t2) = (2n)2nω2
0
�2(n + 1)

�(2n)

w

w(z)

[
n2 + ω2

0t
′
1t

′
2 + inω0(t ′2 − t ′1)

]−(n+1)
. (50)

The axial intensity is now given by

I (0,z; t) = (2n)2nω2
0
�2(n + 1)

�(2n)

w

w(z)

(
n2 + ω2

0t
′2)−(n+1)

(51)

and the on-axis complex degree of temporal coherence takes
the form

γ (0,0,z; t1,t2) =
[(

n2 + ω2
0t

′2
1

)(
n2 + ω2

0t
′2
2

)](n+1)/2[
n2 + ω2

0t
′
1t

′
2 + inω0

(
t ′2 − t ′1

)]n+1 (52)

so that |γ (0,0,z; t1,t2)| = 1. Hence the axial field is temporally
fully coherent for all values of w, σ , and n. The axial intensity
distribution is a symmetric function of (retarded) time, with a
full width at half-maximum

t ′FWHM = T0
n

π

√
21/(n+1) − 1, (53)

where T0 = 2π/ω0 is the duration of the optical cycle at
frequency ω0. Hence we are in the single-cycle regime when

n ∼ 15, clearly in the subcycle regime when n < 10, and
in the few-cycle regime when n ∼ 50 or larger. In the few-
cycle regime the axial temporal intensity becomes nearly
indistinguishable from a Gaussian profile with 1/e2 half-width
T = t ′FWHM/

√
2 ln 2.

On comparing the three contributions to the MCF in
Eq. (44), we find that the terms �2 and �3 are a factor of
∼(n + 1)−2 smaller than �1. Hence, when n is large, the
dominant term is �1. In the few-cycle regime the terms �2 and
�3, which are mainly responsible for spatiotemporal coupling,
can effectively be ignored.

V. ILLUSTRATIONS AND INTERPRETATIONS

Since the final result given by Eqs. (44)–(48) is not
particularly transparent, we proceed to illustrate its main
characteristics by plotting �(x1,x2,z; t1,t2) as a function of
selected parameters. It is convenient to use dimensionless
quantities here: the transverse spatial coordinates x1 and x2 are
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FIG. 1. Normalized spatiotemporal intensity profiles I (x,z; t) at
different propagation distances z. In the upper row n = 1 and pulses
at distances z/zR = 0,2,4 are shown for (a) β = 1 and (b) β = 0.1.
In the lower row n = 25, z/zR = 0,4,8, and pulses are shown for
(c) β = 1 and (d) β = 0.1.

normalized to the modal scale parameter w0, the longitudinal
spatial coordinate z to the Rayleigh range zR, and the temporal
coordinates to T0. The spectral width is controlled by varying
the parameter n and the state of spatial coherence is controlled
by the choice of β. Because of a numerical issue discussed in
Appendix B, we consider pulses in the subcycle to few-cycle
regimes (up to n = 50), where spatiotemporal coupling effects
are most prominent.

In Fig. 1 we plot normalized spatiotemporal pulse inten-
sity profiles I (x,z; t) at different propagation distances. We
consider both completely spatially coherent pulse trains with
β = 1 (only mode m = 0 is present), and spatially partially
coherent pulse trains with β = 0.1. The propagation distances
are chosen to correspond to multiples zq = qzR of the Rayleigh
range zR, and for clarity we show the pulses centered in the
time domain at instants tq = qT0.

Several expected features are evident from Fig. 1. The pulses
become temporally longer with increasing n, and spatially
wider with decreasing β, as more and more modes with the
same transverse scale factor w0 emerge. The pulsed beam ac-
quires a spherical-wave character upon propagation, as is usual
for paraxial beam propagation. Strong spatiotemporal coupling
is observed for n = 1, since the pulse profile at z = 0 features
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FIG. 3. Absolute value of complex degree of spatial coher-
ence |γ (x1,x2,0; 0,0)| for β = 0.1. (a) Subcycle pulse with n = 1,
(b) single-cycle pulse with n = 10, and (c) two-cycle pulse with
n = 50.

spatial side lobes with temporal lengths much greater than the
axial pulse duration. These effects are greatly reduced when
n = 25—as expected—since the term �1 becomes dominant.
In this domain the temporal and spatial intensity distributions
become nearly uncoupled. The temporal pulses approaches a
Gaussian shape centered on a circle of radius R(z), and the
spatial intensity profiles approach Gaussian distributions as
well, like in the case of stationary GSM beams.

Figure 2 illustrates the initial normalized spatiotemporal
intensity profiles (at z = 0) in more detail. Here we consider
pulses with a relatively low degree of spatial coherence (β =
0.1) and different spectral bandwidths. The spatiotemporal
coupling effects reduce with increasing n and nearly vanish
above the single-cycle regime.

Spatiotemporal coupling effects are also prominently
present if we consider the coherence properties of ultrashort
pulses. Figure 3 illustrates the absolute value of the time-
domain complex degree of spatial coherence

γ (x1,x2,0; 0,0) = �(x1,x2,0; 0,0)√
I (x1,0; 0)I (x2,0; 0)

(54)

of the initial pulse (z = 0, t1 = t2 = 0). Obviously, for small
values of n, the pulses do not obey the Schell model in the
spatial domain since the distributions depend substantially on
both x1 and x2, not only on their difference �x = x2 − x1. The
effective spatial coherence length (the width of the distribution
in the antidiagonal direction) is shortest near the center of the
pulse and increases with the average spatial coordinate x̄ =
1
2 (x1 + x2). The effect is highly prominent for subcycle pulses,
but diminishes rapidly in the few-cycle regime.

In view of Eq. (52), the field along the optical axis is
fully temporally coherent regardless of the degree of spatial
coherence or the bandwidth of the pulses. However, the off-axis
degree of temporal coherence depends on both β and n.
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FIG. 2. Normalized spatiotemporal intensity profiles I (x,0; t) for β = 0.1. (a) Subcycle pulse with n = 1, (b) single-cycle pulse with
n = 10, and (c) two-cycle pulse with n = 50.
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FIG. 4. Absolute value of the complex degree of temporal coher-
ence |γ (w0,w0,0; t1,t2)| at an off-axis spatial position x1 = x2 = w0

and for β = 0.1. (a) Subcycle pulse with n = 1, (b) single-cycle pulse
with n = 10, and (c) two-cycle pulse with n = 50.

Figure 4 illustrates the absolute value of the two-time complex
degree of temporal coherence

γ (w0,w0,0; t1,t2) = �(w0,w0,0; t1,t2)√
I (w0,0; t1)I (w0,0; t2)

(55)

of the initial pulse at a distance x1 = x2 = w0 from the optical
axis for β = 0.1. For small values of n the temporal coherence
length in the center of the pulse, i.e., for small values of the
average time t̄ = 1

2 (t1 + t2), is less than the pulse duration, and
the temporal coherence function is not of the Schell-model
form. With increasing n the width of |γ (w0,w0,0; t1,t2)| in
the antidiagonal direction becomes nearly constant (the field
is temporally of the Schell-model form), and the effective
coherence time rapidly becomes larger than the pulse duration.

The overall degree of temporal coherence of the train as a
function of spatial position can be conveniently characterized
by the quantity γ̄ (x,z), defined as

[γ̄ (x,z)]2

=
∫∫ ∞

−∞ I (x,z; t1)I (x,z; t2)|γ (x,x,z,t1,t2)|2dt1dt2∫∫ ∞
−∞ I (x,z; t1)I (x,z; t2)dt1dt2

, (56)

which is an intensity weighted average over the two-time
degree of temporal coherence. Figure 5 illustrates this quantity
for pulses with different bandwidths at z = 0. For subcycle
pulses in particular, this effective degree of temporal coherence
reduces substantially below unity within the effective spatial
area of the beam.

The physical origin of the spatiotemporal coherence cou-
pling effects can be traced to the frequency dependence of the
modal scale. In view of Eq. (2), low-frequency components

-4 -2 0 2 4

0.5

0.6

0.7

0.8

0.9

1.0

x/w0

|γ(
x
)| n = 1

n = 10

n = 50

FIG. 5. Overall degree of temporal coherence scanned over the x

axis for n = 1, n = 10, and n = 50.

have a larger spatial extent than high-frequency components,
and hence the spectral beam profile becomes “redshifted,”
when one moves away from the optical axis. This implies
that the number of frequency components that effectively
contribute to the beam reduces with x. This is in accordance
with some previous studies on pulsed [25] and stationary
[26] propagation-invariant fields, where spatial and temporal
coherence are also intimately linked.

Because of the isodiffractive nature of the laser resonator
modes, effects similar to those shown in Figs. 3–5 are observed
also at finite propagation distances. If we had assumed a
frequency-independent modal scale at the waist instead of
Eq. (2), the initial field at z = 0 would have been temporally
fully coherent. However, the beam would become tempo-
rally partially coherent upon propagation because different
frequency components would diverge at different rates.

VI. CONCLUSIONS

We have extended the standard concept of (stationary)
Gaussian Schell-model beams into the domain of pulsed
beams, using a modal representation that is consistent with
the theory of multimode spherical-mirror laser resonators. Our
model permits the analysis of spatiotemporal properties of
ultrashort pulses of any duration, from few-cycle down to
subcycle regimes. It reveals strong spatiotemporal coupling
effects, which depend on the state of spatial coherence of the
beam.

Given the widespread use of the Gaussian Schell model
in coherence theory of stationary fields, we expect our model
to find extensive use in studies of ultashort spatially partially
coherent pulses and their applications. In this work full spectral
coherence of the field was assumed. It appears possible to lift
this restriction and allow also partial correlations between the
spectral field components, but this requires further investiga-
tion.
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APPENDIX A

In this Appendix we derive the final solution for the
spatiotemporal field, Eqs. (44)–(48) of the main text.

Inserting from Eq. (43) into Eq. (42) and changing variables
as

√
ω2/ω0 = ξ yields

J (x1,x2,z; t1,t2,ω1)

= 2(2n)nω0√
�(2n)

∫ ∞

0
ξ 2n+1 exp{−[T (x2,z; t2) + n]ξ 2}

× exp

[
x1x2

σ 2(z)

√
ω1

ω0
ξ

]
dξ. (A1)
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The integral in this expression can be evaluated with∫ ∞

0
ξ 2n+1 exp

(−aξ 2 + bξ
)
dξ = 1

2an+3/2

[√
a �(n + 1)1F1

(
n + 1;

1

2
;
b2

4a

)
+ b �

(
n + 3

2

)
1F1

(
n + 3

2
;

3

2
;
b2

4a

)]
, (A2)

where 1F1(a; b; z) is the Kummer confluent hypergeometric function. Hence we get

J (x1,x2,z; t1,t2,ω1) = (2n)nω0√
�(2n)

(
�(n + 1)

[T (x2,z; t2) + n]n+1 1F1

{
n + 1;

1

2
;

x2
1x2

2

4σ 4(z)[T (x2,z; t2) + n]

ω1

ω0

}

+ �(n + 3/2)

[T (x2,z; t2) + n]n+3/2

x1x2

σ 2(z)

√
ω1

ω0
1F1

{
n + 3

2
;

3

2
;

x2
1x2

2

4σ 4(z)[T (x2,z; t2) + n]

ω1

ω0

})
. (A3)

Inserting this expression into Eq. (40) and changing variables as
√

ω1/ω0 = ζ we arrive at

�(x1,x2,z; t1,t2) = 2(2n)2nω2
0

�(2n)

w

w(z)

∫ ∞

0
ζ 2n+1 exp{−[T ∗(x1,z; t1) + n]ζ 2}

×
(

�(n + 1)

[T (x2,z; t2) + n]n+1 1F1

{
n + 1;

1

2
;

x2
1x2

2

4σ 4(z)[T (x2,z; t2) + n]
ζ 2

}

+ �(n + 3/2)

[T (x2,z; t2) + n]n+3/2

x1x2

σ 2(z)
ζ 1F1

{
n + 3

2
;

3

2
;

x2
1x2

2

4σ 4(z)[T (x2,z; t2) + n]
ζ 2

})
dζ. (A4)

The remaining integral can be evaluated with∫ ∞

0
ζ 2n+1 exp

(−aζ 2
)

1F1

(
n + 1;

1

2
; bζ 2

)
dζ = �(n + 1)

2an+1 2F1

(
n + 1,n + 1;

1

2
;
b

a

)
(A5)

and ∫ ∞

0
ζ 2n+2 exp

(−aζ 2)
1F1

(
n + 3

2
;

3

2
; bζ 2

)
dζ = �(n + 3/2)

8ban+3/2(n + 1)2

{
(b − a) 2F1

(
n + 3

2
,n + 3

2
; −1

2
;
b

a

)

+[a − 2b(2n + 3)] 2F1

(
n + 3

2
; n + 3

2
;

1

2
;
b

a

)}
, (A6)

where 2F1(a,b; c; z) is the Gauss hypergeometric function. The final result expressed in Eqs. (44)–(48) follows after some
simplification.

APPENDIX B

In this Appendix we consider numerical issues related to the evaluation of spatiotemporal fields with large values of n. The
implication is that the model considered here is numerically most appropriate for ultrashort pulses in subcycle or (at most)
few-cycle regimes. This, however, is the regime we are most interested in.

The Gauss hypergeometric function can be defined for |z| < 1 using the infinite sum

2F1(a,b; c; z) =
∞∑

m=0

(a)m(b)m
(c)m

zm

m!
, (B1)

where ( )m denotes the Pochhammer symbol. For large values of n the first term of the MCF is most significant and
�(x1,x2,z; t1,t2) ≈ �1(x1,x2,z; t1,t2). Explicitly,

2F1

[
n + 1,n + 1;

1

2
;

x2
1x2

2

4σ 4(z)Tn(x1,x2,z; t1,t2)

]
=

∞∑
m=0

(n + 1)2
m

m!( 1
2 )m

[
x2

1x2
2

4σ 4(z)Tn(x1,x2,z; t1,t2)

]m

=
√

π

(n!)2

∞∑
m=0

(n + m)!

m!(m − 1
2 )!

[
x2

1x2
2

4σ 4(z)Tn(x1,x2,z; t1,t2)

]m

, (B2)

where the Pochhammer symbols were written in terms of factorials to get the final equality. To get numerical results with negligible
error, one needs to evaluate the sum over m 
 n. If, e.g., n = 10 and we evaluate the sum in the interval x = [−4w0,4w0] for
β = 0.1, the numerical values of the term m = n range over ∼100 orders of magnitude within the area of the pulse. Hence, for
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large values of n, numerical instabilities are encountered (in particular for small values of β) in the evaluation of the higher-order
terms even though the MCF is mathematically well defined for any n.
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