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We consider two-dimensional waveguide arrays with anisotropic coupling coefficients. We show using
numerical and variational calculations that four stationary soliton types exist: site centered, bond centered, hybrid
X, and hybrid Y . For the isotropic case the last two modes become identical and equivalent to the known hybrid
soliton. With a variational calculation using a Gaussian trial function and six variational parameters corresponding
to the soliton’s position, width, and velocity components, the four stationary soliton types are reproduced and
their equilibrium widths are accounted for accurately for a wide range of anisotropy ratios. We obtained using the
variational calculation the Peierls-Nabarro potential and barrier heights for the four soliton types and different
anisotropy ratios. We have also obtained a phase diagram showing regions of soliton stability against collapse
and subregions of mobility in terms of the initial kick-in speed and anisotropy ratio. The phase diagram shows
that two-dimensional (2D) solitons become highly mobile for anisotropy ratios larger than some critical values
that depend on the initial kick-in speed. This fact was then exploited to design tracks within the 2D waveguide
array along which the soliton can be accelerated and routed. We have calculated the actual waveguide separations
needed to realize the proposed guided trajectories of 2D solitons.
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I. INTRODUCTION

Discrete solitons appear in many systems such as optical
waveguide arrays or optical lattices [1,2]. Discreteness intro-
duces new features in the stability and mobility of solitons as
compared with their continuum counterparts, such as mobility
threshold [3], discrete self-trapping [4], bistability [5], colli-
sions [5,6], and the presence of the Peierls-Nabarro (PN) ef-
fective potential [7–10]. Existence of stationary solitons, their
mobility, and interaction have been well studied [1,2,11–13].
The discrete nonlinear Schrödinger equation was solved using
variational, perturbative, and numerical approaches [14–16].
Specifically, the height of the PN potential for highly localized
nonlinear modes was calculated in Ref. [8] and the two on-site
and intersite stationary states were obtained in Ref. [17]. The
profile of the PN potential has been calculated in Refs. [8,18].
The potential applications of discrete solitons in data process-
ing described by the nonlinear Schrödinger equations with
various kinds of nonlinearities, such as unidirectional flow,
switching, and logic gates [19], were some of the most studied
in the field [1].

Two-dimensional discrete solitons have also gained consid-
erable interest especially due to the additional advantages in
data processing applications introduced by the dimensionality
[20–22] and in particular after their experimental observation
in optically induced nonlinear photonic lattices [23]. Unlike
their continuum counterparts, discrete 2D solitons are stable
against collapse. This is a unique feature introduced by the
discreetness [24]. However, 2D discrete solitons have this
natural tendency to collapse but that results only in narrowing
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their profile which leads to stronger pinning by the PN potential
and hence low mobility [24–26]. Different setups have thus
been considered to explore the existence, stability, and mobility
including waveguides with modulated nonlinearity [27], 2D
solitons in dipolar condensates [28], rotating waveguide arrays
[29], waveguide arrays with defects [30], waveguide arrays
with PT -symmetric couplers [31], and waveguide setups for
the nonlinear Dirac equation [32]. The fundamental 2D station-
ary discrete solitons were first constructed in Ref. [33] using
finite difference numerical method. The three stationary soliton
types found are the so-called site-centered, bond-centered,
and hybrid solitons (see Figs. 1–4 below). In Ref. [22], the
authors propose a unique method of routing 2D solitons using
“blocker” high intensity solitons.

In the present work, we consider an anisotropic waveguide
array where the strength of the coupling coefficients in one
direction is larger than in the other, to investigate the role of
anisotropy on the existence, stability, and mobility of the 2D
solitons. We start by looking for the stationary 2D solitons
where we found, in addition to the known soliton types for
the isotropic case, that the hybrid soliton splits into two
types with very different profiles. Investigating the role of
anisotropy on the stability of the 2D solitons, we found a
phase diagram of stable solitons in terms of the strengths
of the coupling in the two directions. The diagram showed
a region of stability separated by a sharp border line from
the unstable soliton region. Based on these results, we show
that with anisotropy management along predesigned tracks the
soliton can be guided to follow the track preserving its integrity
to a large extent. This opens the possibility for all-optical data
processing in two dimensions.

We follow the numerical technique developed by Ref. [33]
to find the stationary fundamental solitons in an anisotropic
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FIG. 1. Isotropic site-centered (SC) soliton. Obtained from the
numerical solution of Eq. (1). We use the trial function given by Eq. (5)
and the parameters L = 20, P = 2.5, γ = 4, with dx = dy = 0.2.
The plots on the right show the two cross-section profiles (points). The
lines correspond to the variational calculation using a Gaussian
trial function, Eq. (11) (red dashed line), and kusplike exponential
trial function, Eq. (31) (blue solid line).

waveguide array. It turns out that, due to the anisotropy,
the hybrid soliton splits into two different solitons, which
we denote here as hybrid X and hybrid Y , as the first is
elongated along one direction and the second is elongated
along the other direction. For the sake of analytical insight
and future investigations, we perform a variational calculation
with a Gaussian trial function and six variational parameters
corresponding to the two components of the soliton position,
width, and velocity. The variational calculation accounts for
the four fundamental modes and gives the profile of the PN
potential in terms of the indices of the waveguide array in
the two directions. It is noted here that other trial functions
have been used in the literature such as the hyperbolic secant
function and the kusplike function for the 1D case [8,17] and
the 2D case [34,35], but, as argued in [36], the Gaussian trial
function has the advantage of leading to an analytical profile
of the PN potential, which we derive here. It is then clearly
shown how the anisotropy reduces the PN barrier along one
direction rendering the 2D soliton mobile along that direction.
Both variational and numerical calculations are then used to
generate a phase diagram for the stability and mobility of the
2D solitons in terms of the anisotropy.

Having determined the mobility region in the phase dia-
gram, we design tracks within the 2D waveguide array along
which the coupling coefficients satisfy the anisotropy required
for mobility and modulated in their strength such that they
are site dependent. This is equivalent to an effective potential
[37,38] which we choose to be a linear potential that leads
to soliton motion with constant acceleration. With a track
composed of three segments perpendicular to each other,

FIG. 2. Isotropic bond-centered (BC) soliton. Trial function (6)
and the parameters of Fig. 1 are used.

FIG. 3. Isotropic hybrid X (HX). Trial function (7) and the
parameters of Fig. 1 are used.

the soliton is then guided along these tracks preserving its
integrity. Based on an experimental calibration of the strength
of couplings in terms of separation [39], we have calculated
the waveguide separations in μm that are expected to result in
such a guided trajectory.

The rest of the paper is organized as follows. In Sec. II
we use numerical and variational calculations to construct the
four stationary fundamental anisotropic 2D solitons. We also
investigate their stability and calculate their stability phase
diagram in terms of the anisotropy. In Sec. VI, we investigate
the mobility of the anisotropic 2D solitons and calculate a
phase diagram that shows regions of stable mobile 2D solitons
in terms of anisotropy. Then, in Sec. VI B, we employ this
fact to design tracks where solitons are accelerated and routed.
Finally, we end with summarizing our main conclusions and
discussing some future followups in Sec. VII.

II. ANISOTROPIC 2D SOLITONS AND PN POTENTIAL

In this section, we construct the four stationary fundamental
anisotropic 2D solitons using both numerical procedure, in
Sec. III, and variational approach in Sec. IV. With a Gaussian
trial function we derive analytical expressions for the 2D PN
potential surface. We calculate in this section the PN barrier
depths for the four types of solitons using two trial functions,
namely the Gaussian and the kusplike exponential function.
Finally we calculate in Sec. V a phase diagram for the stability
of the 2D anisotropic solitons against collapse in terms of the
anisotropy.

III. MODEL EQUATION AND NUMERICAL PROCEDURE

The scaled 2D discrete nonlinear Schrödinger equation
describing propagation of solitons in anisotropic waveguide
arrays can be written, in a straightforward generalization to

FIG. 4. Isotropic hybrid-Y (HY) soliton. Trial function (8) and
the parameters of Fig. 1 are used.
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the anisotropic case, as [40]

i
∂

∂t

�i,j + dx �i−1,j + dx �i+1,j + dy�i,j−1

+ dy�i,j+1 − 2(dx + dy)�i,j + γ
∣∣�i,j

∣∣2
�i,j = 0, (1)

where �i,j is the field variable at the site (i,j ), γ is the strength
of the nonlinearity which is assumed to be positive in order
to support bright solitons, and dx and dy are the coupling
coefficients between waveguides in the horizontal and vertical
directions, respectively. Trivially, for dx = dy the isotropic
case is retrieved. Discrete nonlinear Schrödinger equations
are derived from a tight-binding model where the coupling
coefficients correspond to the evanescent interaction between
the modes in neighboring waveguides. The 2D waveguide
array can thus be set up such that the coupling between the
waveguides along one direction is stronger than the other.
This can be performed, for instance, by setting the waveguides
along, say, the horizontal direction, closer to each other than
for the perpendicular waveguides along the vertical direction,
which results in coupling coefficients along the horizontal
direction being larger than in the vertical direction. Such an
anisotropic setup is indeed described by Eq. (1).

The isotropic version of Eq. (1) supports three stationary 2D
soliton types, known in the literature as the site-centered, bond-
centered, and hybrid solitons. Some references use though
other names. The purpose of this section is to investigate
the role of the anisotropy on the existence and profile of the
stationary modes which requires solving Eq. (1) numerically.
For a numerical procedure, we employ here a slightly modified
version of the finite difference method developed by Ref. [33].
We assume an L × L dimensional square lattice. The initial
condition is given in matrix form [H ] of the following type:
namely,

[H ]n,m = 2 dx + 2 dy − γ |�n,m|2, (2)

[H ]n+1,m = [H ]n−1,m = −dx, (3)

[H ]n,m+1 = [H ]n,m−1 = −dy, (4)

where n = i + (l − 1)j and m = j + (l − 1)i, l =
1,2, . . . ,L, for the square lattices of size L × L. Solving
the linear eigenvalue problem refines the prediction of �i,j

as the eigenfunction corresponding to the most negative
eigenvalue. This procedure is repeated until the desired
precision is reached.

Using four different trial functions given by

�SC
i,j = Ae−(|i−L/2|+|j−L/2|), (5)

�BC
i,j = Ae−(|i−L/2+1/2|+|j−L/2+1/2|), (6)

�HX
i,j = Ae−(|i−L/2+1/2|+|j−L/2|), (7)

and

�HY
i,j = Ae−(|i−L/2|+|j−L/2+1/2|), (8)

to solve the model given by Eq. (1) we have found four types
of solitons, as shown in Figs. 1–8, which we denote as site

FIG. 5. Anisotropic site-centered soliton. Trial function (5) and
the parameters of Fig. 1 are used, but with dx = 1.5, dy = 0.2.

centered (SC), bond centered (BC), hybrid X (HX), and hybrid
Y (HY).

For the purposes of checking our numerical calculation, we
have generated first the three 2D soliton types of the isotropic
case, as shown by Figs. 1–4. It is clear that the two hybrid
solitons, in Figs. 3 and 4, are in this case equivalent; one
is merely the 90o rotation of the other. Therefore, these are
considered in the literature as one type and denoted as just
hybrid soliton. On the other hand, the two hybrid solitons for
the anisotropic case, see Figs. 7 and 8, are different and not
related to each other by a rotation. Hence the two names HX
and HY. The effect of anisotropy on the other two solitons, SC
and BC, is a mere elongation in the direction of larger coupling.

The general feature of anisotropy elongating the solitons
along one direction as compared with the isotropic case has the
effect of enhancing the mobility of the soliton in that direction,
as we will see below. This will be confirmed in the next section
where we calculate and plot the PN potential and show that the
PN barrier decreases in the direction of larger coupling.

IV. VARIATIONAL APPROACH AND THE PN POTENTIAL

In this section, we use a variational calculation to account for
the four stationary solitons found numerically in the previous
section and then derive an analytical expression for the PN
potential in terms of the two waveguide indices which will
enable us to calculate the PN barrier in any direction and for
any of the four soliton types. This will provide an insight on the
role of anisotropy in enhancing the mobility of the 2D solitons.
Furthermore, we will be able to calculate the phase diagram
for soliton stability against collapse.

FIG. 6. Anisotropic bond-centered soliton. Trial function (6) and
the parameters of Fig. 5 are used.
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FIG. 7. Anisotropic hybrid-X soliton. Trial function (7) and the
parameters of Fig. 5 are used.

The Lagrangian corresponding to the above 2D discrete
nonlinear Schrödinger equation, Eq. (1), is written as

L =
∞∑

i=−∞

∞∑
j=−∞

[
i

2

(
�i,j

∂

∂t
�∗

i,j − �∗
i,j

∂

∂t
�i,j

)

+ �∗
i,j (dx�i−1,j + dx�i+1,j + dy�i,j−1 + dy�i,j+1

− (dx + dy)�i,j ) + 1

2
γ |�i,j |4

]
, (9)

where the dispersion and nonlinear terms define the energy
functional

E = −
∞∑

i=−∞

∞∑
j=−∞

[
�∗

i,j

(
dx �i−1,j + dx �i+1,j + dy�i,j−1

+dy�i,j+1 − 2(dx + dy)�i,j

) + 1

2
γ
∣∣�i,j

∣∣4
]
. (10)

As for the trial function, three options are available, namely
the kusplike exponential function [15,17], the hyperbolic
secant function [8], and the Gaussian function [36]. With the
kusplike exponential trial function analytic expression for the
Lagrangian can be obtained in a compact form. However, this
requires knowledge of whether the soliton is peaked at a site or
between two sites. Thus, as argued in Ref. [36], the dynamics
of center of mass of a soliton that travels across the sites cannot
be obtained with this trial function. For the hyperbolic secant
trial function, the sums in the Lagrangian cannot be performed
in a compact form and only asymptotic expressions can be
obtained in the large soliton width limit. The Gaussian trial
function has been used by Ref. [36], where it was shown that
the Langrangian can be obtained in a compact analytic form
without a priori assumptions about the location of the peak

FIG. 8. Anisotropic hybrid-Y soliton. Trial function (8) and the
parameters of Fig. 5 are used.

of the soliton, which lead to an account of the soliton motion
across the sites and to a profile of the PN potential in terms of
the soliton’s location. For this reason, we use here the Gaussian
trial function to derive the 2D solitons’ profile and PN potential.
We will also recalculate the solitons’ profile and PN barriers
using the kusplike trial function in the next section for the
purpose of comparing the two trial functions with each other
and with the exact numerical solution.

The Gaussian trial function reads

ψ
g

i,j = Ae
− (i−n1)2

η2
1

− (j−n2)2

η2
2

+iv1(i−n1)+iv2(j−n2)
, (11)

where A is the normalization constant and the coordinates
of the peak position, n1,2, the widths of the soliton in the
horizontal and vertical directions, η1,2, and the group-velocity
components in the two directions, v1,2, are six variational
parameters. The first step is to normalize the trial function
given by Eq. (11) to the constant power P

P =
∞∑

i=−∞

∞∑
j=−∞

|�g

i,j |2, (12)

which gives A in terms of the elliptical function, ϑ3(x),

A =
√

P√
1
2πη1η2ϑ3

(−n1π e− 1
2 π2η2

1
)
ϑ3

(−n2π e− 1
2 π2η2

2
) . (13)

The normalized trial function is then used to calculate the
energy functional

E[v1,v2,n1,n2,η1,η2]

= − P 2γϑ3
(−n1π,e− 1

4 π2η2
1
)
ϑ3

(−n2π,e− 1
4 π2η2

2
)

2πη1η2ϑ3
(−n1π,e− 1

2 π2η2
1
)2

ϑ3
(−n2π,e− 1

2 π2η2
2
)2

− 2 P (−(dx + dy) + dx cos(v1)E1 + dy cos(v2)E2),

(14)

where

E1 = e
− 1

2η2
1 ϑ3

[− 1
2 (1 + 2n1)π,e− 1

2 π2η2
1
]

ϑ3
(−n1π,e− 1

4 π2η2
1
) , (15)

E2 = e
− 1

2η2
2 ϑ3

[− 1
2 (1 + 2n2)π,e− 1

2 π2η2
2
]

ϑ3
(−n2π,e− 1

4 π2η2
2
) . (16)

Stationary solitons are obtained by minimizing the energy
functional with respect to the parameters v1,v2,η1,η2,n1,n2.
By inspection, it is found that the energy functional is minimum
for stationary solitons, v1,v2 = 0, for all values of the other
variational parameters. Setting this condition in the energy
functional gives the PN potential

VPN(n1,n2,η1,η2)

= E[0,0,n1,n2,η1,η2]

= − P 2γϑ3
(−n1π,e− 1

4 π2η2
1
)
ϑ3

(−n2π,e− 1
4 π2η2

2
)

2πη1η2ϑ3
(−n1π,e− 1

2 π2η2
1
)2

ϑ3
(−n2π,e− 1

2 π2η2
2
)2

− 2 P (−(dx + dy) + dx E1 + dy E2). (17)
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FIG. 9. PN potential for the isotropic case for the same choice of
parameters used in Figs. 1–4, respectively.

It is noticed that VPN is periodic in both n1 and n2 with periods
equal n1π and n2π , respectively. This leads to four stationary
points in VPN in terms of n1 and n2, determined by n1 and n2

being integer or half-integer. Each one of these four cases will
correspond to a stationary 2D soliton, which will be identified
below as the ones obtained above numerically, namely the SC,
BC, HX, and HY solitons. The equilibrium widths of these
solitons are obtained by minimizing VPN with respect to η1

and η2. For instance, when n1 and n2 are both integers, which
without loss of generality can be taken as n1 = n2 = 0, the 2D
soliton will be the site-centered soliton and the PN potential
for this specific case takes the form

V SC
PN (η1,η2) = VPN(0,0,η1,η2). (18)

The equilibrium width of this soliton type will be given by

∂V SC
PN (η1,η2)

∂η1

∣∣∣∣
η1=ηSC

1eq

= 0,
∂V SC

PN (η1,η2)

∂η2

∣∣∣∣
η2=ηSC

2eq

= 0, (19)

where ηSC
1eq and ηSC

2eq are the equilibrium widths of the
SC soliton. Substituting back the equilibrium widths in
VPN(n1,n2,η1,η2), we obtain the PN potential for the SC soliton
in terms of n1 and n2, namely,

V SC
PN (n1,n2) = VPN

(
n1,n2,η

SC
1eq ,η

SC
2eq

)
, (20)

which is plotted in Fig. 9. The SC soliton is peaked at the
minimum of the PN potential. The depth of the PN potential
at the soliton peak is given by ESC

min = V SC
PN (η1eq ,η2eq). The

equilibrium soliton profiles can be obtained by substituting
the equilibrium widths in the variational function, Eq. (11).
The variational soliton profiles across the ith and j th cross
sections are then plotted in Fig. 1 where excellent agreement
with the numerical profiles is observed. The PN potentials for
the other three soliton types are similarly given by

V BC
PN (η1,η2) = VPN

(
1
2 , 1

2 ,η1,η2
)
, (21)

V HX
PN (η1,η2) = VPN

(
1
2 ,0,η1,η2

)
, (22)

V HY
PN (η1,η2) = VPN

(
0, 1

2 ,η1,η2
)
. (23)

TABLE I. Variational soliton equilibrium widths and energy for
the isotropic case with dx = dy = 0.2.

Type of solution n1 n2 η1eq η2eq Emin

Site centered Integer Integer 0.505721 0.505721 −2.108
Bond centered Half-int Half-int 0.879461 0.879461 −0.439898
Hybrid X Half-int Integer 0.78443 0.557776 −0.961864
Hybrid Y Integer Half-int 0.557776 0.78443 −0.961864

Minimizing these potentials with respect to η1 and η2 and
then substituting back in VPN(n1,n2,η1,η2), we obtain the PN
potential for each soliton type:

V BC
PN (n1,n2) = VPN

(
n1,n2,η

BC
1eq ,η

BC
2eq

)
, (24)

V HX
PN (n1,n2) = VPN

(
n1,n2,η

HX
1eq ,η

HX
2eq

)
, (25)

V HY
PN (n1,n2) = VPN

(
n1,n2,η

HY
1eq ,η

HY
2eq

)
. (26)

The four PN potentials are plotted in Fig. 9 and the variational
profiles are plotted in Figs. 1–4 together with the numerical
profiles.

As can be seen in Fig. 9, the primitive cell of the periodic
PN potential is bounded by two barriers parallel to the ith
direction and two barriers parallel to the j th direction. The
SC soliton is peaked at the center of the cell, the BC soliton
has an equal amplitude at the centers of four nearest-neighbor
cells, the HX soliton has an equal amplitude at the centers
of two neighboring cells aligned along the ith direction, and
the HY soliton has an equal amplitude at the centers of two
neighboring cells aligned along the j th direction. The depth
of the PN potential at the point where the soliton is peaked
is a characteristic value for the potential. Therefore, the PN
potential has four characteristic energy barriers defined by

ESC
min = VPN

(
0,0,ηSC

1eq ,η
SC
2eq

)
, (27)

EBC
min = VPN

(
1
2 , 1

2 ,ηBC
1eq ,η

BC
2eq

)
, (28)

EHX
min = VPN

(
1
2 ,0,ηHX

1eq ,η
HX
2eq

)
, (29)

EHY
min = VPN

(
0, 1

2 ,ηHY
1eq ,η

HY
2eq

)
, (30)

where ESC
min, EBC

min, EHX
min, and EHY

min are the PN barrier depths at
the center of the SC, BC, HX, and HY solitons, respectively. In
Table I, we give an example with the specific case of dx = dy =
0.2, where we calculate the variational equilibrium widths of
the four soliton types and their PN barrier. It is noticed that
the SC soliton has the largest barrier depth and therefore is the
most pinned soliton type. On the other hand, the BC soliton
is the most mobile soliton since it has the lowest PN barrier
depth. Due to the isotropic symmetry, the barrier depths of the
HX and HY solitons are equal and the (η1eq,η2eq) of the HX
soliton are equal to (η2eq,η1eq) of the HY soliton, respectively,
which means that the HX and HY solitons are equivalent when
one is rotated by 90o with respect to the other.

Having established confidence in the variational calculation
by accounting for the known 2D stationary solitons, their
accurate profiles and widths, and their PN potential profiles
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FIG. 10. PN potential for the anisotropic solitons for the same
choice of parameters used in Figs. 5–8.

and barriers, we move now to use the variational calculation in
investigating the effect of anisotropy on all of these quantities
and properties of 2D solitons. We start by the numerical
solution for the anisotropic case of dx = 1.5 and dy = 0.2.
The profiles of the four soliton types are shown in Figs. 5–8,
with new features that have been discussed in the previous
section. Most importantly, the symmetry between the HX and
HY solitons is now broken and they are treated as two different
types. The variational calculation for such an anisotropic case
still gives an accurate account for the soliton widths and profiles
in comparison with the numerical values, as shown on the right
panels of these figures.

The mobility of the soliton is determined by the height of
the PN potential. By comparing Fig. 9 with Fig. 10 for the
SC soliton, we observe that for the anisotropic case (dx > dy),
the height of the PN barrier in the ith direction becomes less
than that in the j th direction, which means that, due to the
anisotropy, the mobility of the SC soliton will be enhanced in
the direction of the larger coupling. A similar conclusion can be
drawn for the other soliton types. To quantify the comparison,
we have re-calculated in Table II the solitons’ equilibrium
widths and PN barrier depths for the anisotropic case. In Table I
we used dx = dy = 0.2 and in Table II we used dx = 1.5 and
dy = 0.2; therefore, the absolute values of PN barriers should
not be compared directly; the total energy is different for the
two cases. Instead, we compare the PN barrier heights relative
to a reference, in which we take the PN height for the SC
soliton. For the isotropic case, the PN barrier for the HX relative
to the SC soliton is −0.962/(−2.101) = 0.456, while for the
anisotropic case, the ratio is −0.484/(−1.027) = 0.471, which
is slightly more. For the HY soliton, the barriers’ ratio for the

TABLE II. Variational soliton equilibrium widths and energy for
the anisotropic case with dx = 1.5, dy = 0.2.

Type of solution n1 n2 η1eq η2eq Emin

Site centered Integer Integer 0.731183 0.51165 −1.02698
Bond centered Half-int Half-int 1.92085 0.975147 −0.0889755
Hybrid X Half-int Integer 1.20644 0.568304 −0.484191
Hybrid Y Integer Half-int 0.991607 0.838762 −0.0916029

FIG. 11. PN barriers for the four soliton types calculated numer-
ically (points) and variationally with a Gaussian trial function (blue)
and kusplike trial function (red). Parameters used: dy = 0.2, P =
2.5, γ = 4.

isotropic case is the same as for HX, namely 0.456, while for
the anisotropic case it equals 0.089. Keeping in mind that the
PN barrier for the HX soliton is the depth of the PN potential
at the middle of the horizontal junction in the cell and the PN
barrier for the HY soliton is the depth of the PN potential at
the middle of the vertical junction in the cell, we conclude that
the PN barrier depth of the junction parallel to the ith direction
drops from 0.96 to 0.09, while the barrier depth for the junction
parallel to the j th direction drops from 0.96 to 0.48 as a result
of an anisotropy of ratio dx/dy = 7.5. This means that for a
soliton propagating in the ith direction, the PN barrier will be
much less than the PN barrier for the soliton propagating in the
j th direction, i.e., mobility has been enhanced in the direction
of larger coupling. This fact will be exploited to enhance the
mobility of the 2D soliton.

To further investigate the role of anisotropy on the PN
potential barriers, we calculate the PN barriers for the four
soliton types in terms of a wide range of anisotropy values.
We perform the calculation using the numerical procedure
and variational calculations described above with the two trial
functions considered. The results are shown in Fig. 11. Both
trial functions agree well with the numerical values for the
whole range apart from an artifact cusp at about dx = 3 in the
Gaussian variational curve. Starting from the isotropic case
(dx = dy = 0.2), the PN barriers for the HX and HY solitons
are seen to overlap, as expected due to the rotation symmetry
of these modes. Anisotropy splits the degeneracy with the
HX having smaller PN barrier indicating higher mobility than
the HY soliton. Of course this would have been reversed had
we taken dy > dx . As mentioned above, the SC soliton has
the deepest PN barrier and the BC soliton has the shallowest
barrier; thus the former being the least mobile and the latter
being the most mobile. Interestingly, the SC and the HY curves
merge for dx > 3.2 and the BC and HX curves merge for
dx > 1.5. The HY soliton is elongated in the j th direction. With
dx � dy , the profile of this soliton tends to be more isotropic,
hence approaching the SC profile. On the other hand, with large
anisotropy the profile of the BC soliton approaches that of the
HX soliton. Thus, for large anisotropy, the four soliton types
reduce to two, namely those of the 1D case. In conclusion,
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this figure gives an idea about the anisotropy ratio at which
the solitons become effectively one dimensional, at least with
respect to their PN barriers.

For completeness and for the sake of comparison, we
perform the variational calculation again with the kusplike
exponential trial function

ψe
i,j = Ae

− |i−n1 |
η1

− |j−n2 |
η2

+iv1(i−n1)+iv2(j−n2)
. (31)

Due to the presence of the absolute-value function, the summa-
tions in the Lagrangian cannot be performed unless n1 and n2

are identified in advance as either integers, half-integers, or any
other value between two consecutive integers [17,36]. Having
set n1 and n2, one cannot calculate the energy functional
and PN potential in terms of n1 and n2, as was the case
with the Gaussian trial function. Instead, we have to specify
in advance the soliton type before calculating the energy
functional. Consequently, this trial function leads to only the
PN barrier heights but not the PN profile. Nonetheless, previous
works have calculated the profile of the PN potential in terms
of a variable, 0 � χ � 1, equal to the soliton location with
respect to the closest site. In such a case the absolute-value
function can indeed be treated analytically [17]. This will
give the profile of the PN potential within one cell of the
periodic structure of the PN potential. For the purposes of
studying the center-of-mass dynamics of the solitons’ motion
across the waveguides, this will not be sufficient and the
continued PN profile will be needed, as already obtained by the
above Gaussian trial function. The kusplike trial function will
however provide an account for the solitons widths and profile
that we can use to compare with the results of the Gaussian trial
function. The trial functions corresponding to the four types of
2D solitons are in this case written as

�SC
i,j = Ae

− |i−L/2|
η1

− |j−L/2|
η2 , (32)

�BC
i,j = Ae

− |i−L/2−1/2|
η1

− |j−L/2−1/2|
η2 , (33)

�HX
i,j = Ae

− |i−L/2−1/2|
η1

− |j−L/2|
η2 , (34)

�HY
i,j = Ae

− |i−L/2|
η1

− |j−L/2−1/2|
η2 . (35)

The energy functional, which is equivalent to the PN potential
in this case, is then calculated by substituting these trial
functions in Eq. (10),

V SC
PN = dx

(
1 − sech

(
1

η1

))
+ dy

(
1 − sech

(
1

η2

))

− 1

64
γ P

[(
sinh

(
3

η1

)
− sinh

(
1

η1

))
sech3

(
1

η1

)

×
(

sinh

(
3

η2

)
− sinh

(
1

η2

))
sech3

(
1

η2

)]
, (36)

V BC
PN = dx

(
1 − sech

(
1

η1

))
+ dy

(
1 − e−1/η2 − e−1/η2

sinh

(
1

η2

))
− 1

16
γ P

[
tanh3

(
1

η1

)
tanh

(
1

η2

)

+ tanh

(
1

η1

)
tanh

(
1

η2

)]
, (37)

V HX
PN = dx

(
1 − e−1/η1 − e−1/η1 sinh

(
1

η1

))

+ dy

(
1 − sech

(
1

η2

))

+ 1

32
γ P

[
tanh

(
1

η1

)
tanh

(
1

η2

)
sech2

(
1

η2

)

− tanh

(
1

η1

)
sinh

(
3

η2

)
sech3

(
1

η2

)]
, (38)

V HY
PN = dx

(
1 − e−1/η1 − e−1/η1 sinh

(
1

η1

))

+ dy

(
1 − e−1/η2 − sinh

(
1

η2

))
+ 1

16
γ P

× tanh

(
1

η1

)
tanh

(
1

η1

)
. (39)

Minimizing these potentials with respect to the soliton
widths η1 and η2 gives the equilibrium widths which can then
be used to plot the variational profiles, as shown by the blue
lines in Figs. 1–8. Similar to the Gaussian trial function, very
accurate agreement with the numerical profiles is obtained. We
have also used these potentials to calculate the PN barriers, as
shown in Fig. 11 with the red lines. For most of the range of
dx considered in this figure, the kusplike and Gaussian trial
functions agree well with the numerical values. As mentioned
above, the Gaussian trial function curve shows a cusp near
dx = 3 which we have verified as an artifact of the trial
function. The kusplike trial function does not suffer from such
an artifact and continues smoothly across the numerical points
at this region. On the other hand, for larger dx , the Gaussian
trial function seems to fit the numerical points better than the
kusplike trial function.

V. STABILITY PHASE DIAGRAM
IN TERMS OF ANISOTROPY

We found a limit on the anisotropy value above which stable
2D solitons do not exist; they simply decay. This was found
first numerically, where we have recorded the critical values
of anisotropy for which the 2D solitons are on the border of
stability. This is shown in Fig. 12 with points for the four soliton
types. The curves show a border of stability where dx and
dy are inversely related to each other. The two-dimensional
solitons are stable for anisotropies below this border line and
are unstable above it. This behavior can be accounted for using
a variational calculation. The stability region is where the PN
potential VPN(n1,n2,η1,η2), given by Eq. (17), does have a
minimum in terms of η1 and η2. Once this minimum is lost, the
width of the soliton, according to the variational calculation,
diverges. In mathematical terms, the condition is written as

∂V SC
PN (η1,η2)

∂η1
�= 0 or

∂V SC
PN (η1,η2)

∂η2
�= 0, for all η1,2, (40)

and similarly for the other soliton types. This is equivalent to
the observed decay in the numerical solution. To verify this,
we have calculated the border line at which the minimum in
the PN potential starts to disappear, which is plotted with solid
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FIG. 12. Stability phase diagram of 2D solitons using numerical
(points) and variational calculations (solid lines). The red dashed
curve corresponds to the approximate formula (42). Parameters used
P = 2.5, γ = 4.

curves in Fig. 12. Quantitatively, there is a good agreement
with the numerical border.

A crude but simple analytic formula for the stability border
can be obtained from the variational calculation in the large η1

and η2 limit which is equivalent to the condition of decaying
soliton, as mentioned above. In this limit, the zeroth-order
expansion of conditions defining the border reads

−4dx + Pγ η1/(π η2)

4η3
1

= 0,
−4dy + Pγ η2/(π η1)

4η3
2

= 0,

(41)
which are solved for

dx = γ 2 P 2

16π2 dy

(42)

confirming the inverse relation between dx and dy on the sta-
bility border. This is a very rough formula as can be seen when
plotted versus the numerical and variational results in Fig. 12
shown with the red dashed curves. There is though a good
quantitative agreement for the BC soliton. The approximation
can be enhanced by taking higher-order terms in the expansion.

VI. ENHANCED MOBILITY

A. Stability of movable 2D solitons

In this section, we investigate the role of anisotropy of the
coupling coefficients on the mobility of 2D solitons. We have
seen in the previous section that the PN barrier reduces in
one direction for anisotropic coupling coefficients. We show
here that 2D solitons will be indeed mobile in the direction of
reduced PN barrier. However, there will be a critical anisotropy
value above which mobility is triggered. The critical anisotropy
value depends on the kick-in speed given initially to the soliton
in order to move it. Therefore, investigating the mobility
requires scanning the parameter space of both anisotropy ratio
and kick-in speed. Since the site-centered soliton is the most
pinned among the four soliton types, as can be seen in Tables I

FIG. 13. Phase diagram showing stability and mobility of the
site-centered 2D soliton (inset of Fig. 12) in terms of the coupling
coefficients dx and dy , which define the anisotropy ratio. Stable
stationary (pinned) 2D solitons exist only in the shaded area. Mov-
able stable solitons exist in the area below the dashed black line.
Points (open squares) connected by lines correspond to anisotropy
thresholds for solitons mobility; solitons are mobile only in the area
to the right of each of these lines while each line corresponds to a
different initial kick-in speed which read, starting from the right, vx =
0.1,0.2,0.3,0.5,0.7,1.0,1.5,1.85. The red dashed line corresponds to
the 1D case. Parameters used are γ = 4, P = 2.5, L = 20.

and II where the PN barrier depth is the largest in magnitude,
we investigate the role of anisotropy on this type of 2D soliton.
The rationale is that, if the most pinned soliton is turned to
mobility by a certain value of anisotropy, all other types will
be also mobile by the same amount of anisotropy.

The previously found phase diagram of site-centered soliton
stability, Fig. 12, will be the basis for our study in this section.
We have performed a systematic investigation by scanning the
whole parameter space of anisotropy—in the stable-solitons
part of this diagram—and kick-in speed values by solving
numerically Eq. (1) and recording the critical values of these
parameters at which the soliton starts to leave its site. We point
out here that we followed this criterion for mobility with no
regard to where the soliton will stop later on due to friction
with the PN potential. The result of this investigation is shown
in Fig. 13. We found that solitons are mobile only in the region
below the black dashed line. Outside this region, the solitons
are not mobile for any nonzero value of the kick-in speed;
they start decaying once they start the motion. In the mobility
region, solitons also show some decay in their amplitude as
they start the motion, but then keep a finite value of amplitude
for a very long time (we show below how long is that time).
The mobility region is also divided by the values of the kick-in
speed into subregions, as shown by the blue lines with square
points. For each of these lines a different kick-in speed is used
with the lowest kick-in speed for the line on the right; see the
caption of the figure for details. For a given kick-in speed, the
soliton is mobile only in the region to the right of the blue line.
As the anisotropy decreases, larger speed is required to move
the soliton which is consistent with the above-mentioned fact
of PN barrier increasing with decreasing anisotropy. There is
also an upper limit on the speed above which the solitons are
not mobile for any anisotropy even for the extreme case of 1D

023820-8



ENHANCED MOBILITY OF DISCRETE SOLITONS IN … PHYSICAL REVIEW A 97, 023820 (2018)

FIG. 14. Soliton peak position (left) for four values of dx, dy =
0.1, and initial speed vx = 0.2. Amplitude of the soliton is shown
(right) for the case with dx = 3.9. Other parameters used are γ =
4, P = 2.5, and L = 30. Initial soliton position is at (n1,n2) =
(15,10).

solitons (dy = 0). This is given by the left end of the red dashed
line on the horizontal axis. The square points on this dashed
line give the critical mobility kick-in speed of the 1D soliton
in terms of dx .

To show a specific case of mobility, we plot in Fig. 14 the tra-
jectory of the soliton and its amplitude for four values of dx with
a fixed kick-in speed, namely dx = 3.6, 3.7, 3.8, 3.9, dy =
0.1, and vx = 0.2. Since the soliton is kicked only in the
x direction (vy = 0), it does not move in the y direction;
therefore, we show only the evolution of x component of
the soliton position, namely n1 while n2 remains a constant
that is equal to its initial value. We have employed periodic
boundary conditions to be able to track the soliton trajectory for
long times. It is clear that increasing the anisotropy enhances
considerably on the soliton mobility. All curves show the
common feature of dissipative motion due to radiation losses
caused by the PN potential. As a result, the solitons’ speed
reduces to a value such that the soliton will be ultimately
pinned. However, for the large anisotropy ratios, such as
dx/dy = 38 and 39 for the upper two curves, the soliton settles
at values as large as n1 = 170 and 300, respectively. For
dx/dy = 36 and 37, the soliton gets pinned much earlier. For
dx/dy < 36, the soliton is completely pinned. This gives an
idea of how much anisotropy is needed to unpin the soliton.
In the mobility cases, such as dx/dy = 39, the amplitude of
the soliton oscillates around a finite value, though it is slightly
less than the initial value due to losses by the PN potential.
This figure shows that 2D highly mobile solitons exist but
with anisotropy ratio larger than one. It should be stressed
here that this study was performed for the site-centered soliton
with dx � dy . For the other types of soliton and anisotropy
ratios, lower values of anisotropy will be required to render
the soliton to mobility.

B. Accelerating and routing 2D solitons

It is established for discrete solitons propagating in one-
dimensional waveguide arrays that an effective potential can
be created by varying the strengths of the coupling coefficients
across the waveguides [37,38]. The profile of the effective
potential is directly proportional to that of the coupling co-
efficients. Furthermore, the strengths of the coupling coeffi-
cients can be varied by varying the separations between the
waveguides; the strength of the coupling coefficient decays
exponentially with the separation between waveguides [39].

Combining this fact with that found in the previous section,
namely 2D solitons being mobile in anisotropic waveguide

FIG. 15. Upper panel: accelerating a soliton using linearly in-
creasing coupling dx = 3.9 + 0.05 i (left). The dashed curve corre-
sponds to the “force,” F eff = 0.025 i2. Soliton amplitude is shown to
oscillate around a constant finite value (right). Parameters used: dy =
0.1, γ = 4, P = 2.5, L = 30, and initial soliton position (i,j ) =
(15,10). Lower panel: soliton trajectory and amplitude along the
three-branches track defined by Eqs. (44)–(46). On the left subfigure,
red corresponds to n1 and blue corresponds to n2. Parameters used:
γ = 4, P = 2.5, L = 30, and initial soliton position (i,j ) = (15,10).

arrays, one can design 2D waveguide profiles to control the
flow of the solitons in two dimensions. In the following, we
demonstrate this idea by two examples: accelerating a soliton
along one direction and routing the soliton from one direction
to the other. In the first example, we show that a linearly
increasing strength of the coupling coefficients in one direction
amounts to a linear effective potential which results in an
accelerated soliton in that direction. Specifically,

dx(i,j ) = 3.9 + 0.05i,

dy(i,j ) = 0.1. (43)

It is noted that our specific choices of the values of dy = 0.1
and initial value of dx = 3.9 is based on our previous finding
that the 2D soliton will be highly mobile with these parameters;
see Fig. 14. The time evolution of the soliton is performed in
two steps. First, we prepare the initial soliton by solving Eq. (1)
with dx = 3.9 and dy = 0.1, as described in Sec. III. This will
result in a stable and stationary soliton profile that is elongated
along the i direction and hence has high flexibility to move
in that direction. The second step is to evolve this stationary
soliton by inserting the above index-dependent coefficients
in Eq. (1). Effectively, this will be equivalent to evolving
a stationary soliton in a 2D waveguide array with constant
coefficients and an effective potential in the ith direction,
namely V eff (i) ∝ −dx(i). The resulting numerical simulation
supports this description, as shown in Fig. 15, where the peak
position is indeed being accelerated along the ith direction. The
width and peak height of the soliton also remain constant on
the average which shows that the soliton preserved its integrity
in such an inhomogeneous medium. Furthermore, one can see
that the soliton is being affected by a constant “force” as a
result of the effective potential, namely Feff ∝ −dV eff /di =
0.05i. The trajectory of objects moving by a constant force is
parabolic. The peak position should thus follow the trajectory
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FIG. 16. Strengths of the coupling coefficients along the three
branches defined by Eqs. (44)–(46). Blue surface refers to dy(i,j ) and
red surface refers to dx(i,j ). The arrows show the direction of the
soliton trajectory.

n1(i) = ∫
Feff di = (n1)0 + 0.025i2, where (n1)0 is the initial

position. This prediction fits perfectly with the numerical result
for the trajectory, as Fig. 15 shows.

We exploit this possibility of accelerating solitons in our
second example where we also route the soliton performing
two 90o bends in its trajectory. We start with a 2D waveg-
uide array with isotropic homogeneous couplings, dx(i,j ) =
dy(i,j ) = 0.1, everywhere except along certain paths where we
modulate the couplings such that the soliton will be accelerated
along these paths. The path we design is made of three branches
as follows. Branch 1: the soliton is accelerated along the j th
direction using the profile

dy(i,j ) = 2.2 + 0.05j, j � 8, 8 � i � 14. (44)

Then in Branch 2, which starts at the end of Branch 1, the
soliton is accelerated in the ith direction with the profile

dx(i,j ) = 1.1 + 0.03i, 13 � j � 16, 8 � i � 26,

dy(i,j ) = 2.2 + 0.05j, 8 < j < 15, 8 � i � 26. (45)

FIG. 17. Time evolution of a 2D soliton with couplings’ profile
given by Eqs. (44)–(46). Initially, the soliton is located at (i,j ) =
(10,15). The arrows show the direction of the motion.

Finally, in Branch 3, the soliton is again accelerated in the j th
direction with the profile

dy(i,j ) = 2.0 + 0.1j, j � 15, 26 � i � 28. (46)

Outside these three branches the values of dx(i,j ) and dy(i,j )
take their default value of 0.1. The strengths of the coupling
coefficients along these three branches are shown in Fig. 16.

Similar to the previous example, we first prepare an elon-
gated stationary soliton with high anisotropy, dy = 8 and
dx = 0.1. Then we use Eq. (1) to evolve this soliton using the
above coupling profiles. The resulting dynamics shows the 2D
soliton indeed following the designed path, as shown in Fig. 17.
The trajectory and width of the soliton are plotted in Fig. 15. It is
clear from these two figures that, while there is a reduction from
the initial amplitude of the soliton due to radiation losses, the
soliton keeps its integrity by preserving an average finite width
and amplitude along the three segments of the path. It can also
be noted that the soliton profile is compressed at the two turning
points connecting the different branches. At these points the
soliton is forced to react to the sudden change in the anisotropy
of the waveguides by modulating its widths and amplitude.

The profile of coupling coefficients, Eqs. (44)–(46), leading
to the three branches trajectory can be realized by modulating

FIG. 18. Waveguide separation profile corresponding to the three-branches trajectory defined by Eqs. (44)–(46). Waveguide sites are at the
intersection between horizontal and vertical lines. Left: gaps between the three branches are filled by stacking them to each other. The arrows
indicate the direction of soliton’s motion. Right: gaps between the branches are filled by adding more waveguides.
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the waveguides’ separations. It is found experimentally that
the strength of the coupling coefficients decays exponentially
with their separation; see Fig. 3(b) of Ref. [39]. Fitting
the experimental data, for the wavelength 543 nm, with an
exponential law, we find the following relation:

d = d0 e
− r−r0

a0 , (47)

with r0 = 14 μm, a0 = 4.3 μm, and d0 = 0.45 cm−1. Here, r
is the separation between two consecutive waveguides and d

is the coupling strength between them. Inverting this relation
to express the separation in terms of coupling, we obtain

r = 14 − 4.3 ln

(
d

0.45

)
. (48)

There is a maximum coupling strength, d = 11.67 cm−1, cor-
responding to zero separation. This value is well above the cou-
pling strengths used in the present paper and thus our coupling
strengths can be realized with finite separations between the
waveguides. Using this relation, the above coupling strengths
profile for the three-branches trajectory, Eqs. (44)–(46),
can be “translated” into a waveguide separations profile, as
shown in Fig. 18. Since we are accelerating the solitons along
the three branches, which amounts to a linearly increasing
coupling strength, the separations between the waveguides will
be decreasing. As a result the total length of the branch will be
less than its equivalent length for a uniform coupling profile.
This will create a gap between the branches. We propose
two methods of filling these gaps. One method is to shift the
waveguides as a whole and stack them to each other, as shown
by the left subfigure in Fig. 18. Alternatively, we may add more
waveguides along a branch by extrapolating the separations law
along that branch, as shown by the right subfigure.

VII. CONCLUSIONS

There are four main conclusions of the present work. First,
we have shown that it is possible to enhance the mobility of
2D discrete solitons by breaking the isotropy in the coupling
coefficients. Mobility will be enhanced in the direction with
larger coupling coefficients. Second, we have obtained the 2D
PN potential using a variational calculation with a Gaussian
trial function. Third, we have obtained a phase diagram
showing regions of stability and subregions of mobility in
terms of the anisotropy of the waveguide array. Fourth, we
have shown that it is possible to guide and route 2D solitons
by designing tracks with anisotropic coupling coefficients and
modulated separations.

We started by showing that stationary solitons exist in
anisotropic waveguide arrays as they do in isotropic waveg-
uides but with an important difference. The difference is that
in the isotropic waveguides only three fundamental stationary
soliton types exist, as shown in Figs. 1–4. In the present
anisotropic case, four types exist: site-centered, bond-centered,
hybrid-X, and hybrid-Y solitons, as shown in Figs. 5–8. So,
what used to be one type in the isotropic case, namely the hybrid
soliton, degenerates in the anisotropic case into the hybrid-X
and hybrid-Y solitons. These results were obtained from the
numerical solution of the governing equation, Eq. (1), of 2D

solitons. We have also laid down the framework of a two-
dimensional variational calculation that predicts the existence
of the four stationary soliton types and accounts accurately
for their equilibrium widths, as shown by Figs. 1–8. We have
used a Gaussian variational trial function, Eq. (11), with six
variational parameters corresponding to the two components
of the soliton position, width, and velocity. We have also used
the kusplike variational function, Eq. (31), for the purpose of
comparison. The advantage of the Gaussian trial function is that
the extended PN potential can be obtained, as shown in Figs. 9
and 10. In addition, the variational calculation reproduces
accurate values of the PN barrier hight for the four soliton
types in comparison with the numerical values, as shown in
Fig. 11.

The stability of 2D solitons against collapse was then
investigated versus the anisotropy ratio using both numerical
and variational calculations. Good agreement was obtained
between both calculations for the phase diagram showing
stability region versus the coupling coefficients dx and dy . This
was performed for the four soliton types, as shown in Fig. 12.
Then we investigated the stability of the most pinned soliton,
namely the site-centered soliton, in terms of the initial kick-in
speed. This resulted in the mobility phase diagram shown by
Fig. 13.

Controlling the trajectory of the 2D solitons was then
demonstrated by two examples. In the first example, we have
shown that it is possible to accelerate the soliton along a track
where the coupling strength is increasing, as shown in Fig. 14.
In the second example, we have designed a track composed
of three segments along which the soliton is being accelerated
by the same method as in the first example; see Fig. 16. This
resulted in the soliton following the designed path that included
two 90o bends, as shown in Figs. 15 and 17. Finally, we have
calculated the separations between the waveguides needed to
perform the predicted guided trajectory of 2D solitons. This
was based on the experimental calibration of the coupling
strength decay in terms of waveguide separations [39], as
shown in Fig. 18.

We have focused in the present work on the mobility of
the most pinned 2D soliton, namely the site-centered soliton.
However, one may also consider other types of soliton where
even better mobility is expected to be obtained. In addition,
it will be interesting to study the mobility of the anisotropic
solitons, such as the HX soliton, along the different directions,
including the horizontal, vertical, and diagonal directions.
High contrast is expected to be observed in this case. One
may also consider performing all-optical operations using the
routing mechanism described here. One of the most looked for
goals in this respect is to achieve the function of a transistor
which requires 2D waveguides.
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