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People have been paying attention to the role of atoms’ complex internal level structures in the research
of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels
usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic
states and the atomic transitions’ linkage structure, clear signatures of quantum interference induced by the probe
and coupling light’s polarizations can emerge from a typical EIT phenomena. We propose to study a four-state
system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under
the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and
atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the
polarization-induced interference enables polarization-dependent cross modulation between incident weak lights
that can be effective even at the few-photon level. The theme is to gain more insight into the essential question:
how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear
optical interactions, valid for a wide range of incidence intensities down to the few-photon level?
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I. INTRODUCTION

Ever since the early days of investigating EIT and four-
wave mixing (FWM) in atomic mediums, it has been noticed
that the effects of the multiple Zeeman sublevels cannot be
overlooked [1–6]. Under special scenarios such a multistate
system with complicated linkage structure can be transformed
back into a simple three-level EIT system [7–9], while typically
it leads to complexities in the EIT or FWM processes which
usually exhibit strong correlations with the polarizations of
the incident light [4,5,10–13]. Investigations into these effects
have already led to a few interesting findings, such as the
controlled rotation of the polarization of an incident optical
pulse [10], manipulation of the transparency window [5,12,14],
vector magnetometry from EIT in linearly polarized light
[15], and controlling enhancement or suppression of FWM by
polarized light [4]. Of particular importance is the construction
of quantum memory for photon polarization states via utilizing
those Zeeman sublevels [16,17]. Those previous investigations
have paved the way for studying the quantum interference
induced by the polarizations of the driving lasers with special
linkage geometry of atomic states in optically thick medium
formed by cold alkali-metal atoms.

Meanwhile, generating and manipulating nonlinear inter-
actions between optical fields of low intensities at the few-
photon level is of essential importance in the research frontier
of quantum optics [18]. According to early predictions of
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Harris and Hau, large cross-phase shifts through enhancing
the weak Kerr effect by EIT at very low light intensities
down to the single-photon level are hardly attainable [19]. In
particular, a lot of effort has been devoted to enhancement
of the nonlinear interaction between single photon pulses via
high-finesse cavity [20–22] or Rydberg blockade [23–25].
Moreover, people are trying to seek novel schemes based upon
EIT and FWM for cross modulation at the single-photon level
without invoking the experimental complexities of high-Q
cavities or Rydberg atoms. Much exciting progress has been
achieved along this direction, including the double slow light
method in a multilevel system [26,27], stationary light method
[28], and especially the recent developments of cross-phase
modulation (XPM) via FWM of double-� configuration in a
three-level system [29] or four-level system [30]. Although the
photonic polarization degree of freedom has not been explicitly
brought into these XPM schemes so far, they have naturally
triggered the motivation of introducing polarization-dependent
nonlinear interactions between optical fields of low intensities
down to the few-photon level via EIT and FWM methods.

In this article, we discuss the polarization-induced quantum
interference under the general EIT condition in a special
double-V linkage structure of atomic internal electronic states,
which can be realized in 87Rb atoms. We demonstrate in
theory that this interference is inherently associated with the
polarization degree of freedom, has clear physical signature,
and can be observed with moderate experimental conditions.
Then we extend this concept to a multistate system with
double-M linkage structure, where we construct a mechanism
of polarization-dependent cross modulation between two weak
incident optical fields. The proposed mechanism is in principle
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applicable to very low incident intensities such as a weak
coherent light pulse containing energy equivalent to only a
few photons. Throughout this article, the atom-light interaction
is treated with the one-dimensional approximation [31,32],
where effectively only one transverse spatial mode of the
optical fields is taken into consideration. In the Appendixes,
we include details of derivations and more examples from
numerical simulations omitted in the main text. First we offer a
discussion of the relatively simple case of polarization-induced
quantum interference in a four-state system of double-V link-
age structure without spontaneous emission in Appendix A.
Then we provide more analysis and more examples for EIT
with the double-V linkage structure under the presence of
decoherences in Appendix B. Finally, we present more details
about the atom-light interaction with the double-M linkage
structure, focusing on the polarization-dependent dynamics
between two weak copropagating optical fields in Appendix C.

II. DOUBLE-V LINKAGE STRUCTURE

To begin with, consider an EIT process where the polar-
izations of the probe and coupling lights are resolved such
as Figs. 1(a) and 1(b), where an optical pumping process

FIG. 1. Polarization-resolved configuration of EIT in atoms with
double-V linkage pattern. (a) Schematic of the double-V linkage
structure of a simplified four-state system where the two excited
states are degenerate in energy. The k vectors of incident coupling
and probe lights are along the z direction such that they couple to the
σ+ transitions and σ− transitions, respectively. The probe beam is
assumed to have relatively low intensity; hence it does not disturb the
population of state |1〉. (b) Implementation of the abstracted double-V
linkage structure in 87Rb D1 or D2 transitions, where |1〉 and |4〉
are realized by the two magnetic insensitive clock states while |2〉
and |3〉 are realized in the manifold of the 5P level. It can also be
implemented in the Rydberg EIT system [6]; see Appendix B. (c)
A double-V linkage structure where |2〉 and |3〉 are not degenerate
in energy. (d) Simplified proposal for experimental implementation.
The cold atom ensemble goes through an optical pumping process at
the beginning, which prepares the initial state as |F = 2,mF = 0〉 of
the ground level. Typically, the coupling laser is cw and the incident
probe light takes the form of an optical pulse. Probe beam and coupling
beam are assumed to be parallel and overlapping, or with a tiny angle
for the purpose of phase matching in the medium if desired.

concentrates the initial population into state |1〉. The state
initialization is necessary to remove the requirement of J = 0
of Ref. [5] which severely limits the choice of atoms to special
ones like thallium. When the probe light intensity is weak, its
equation of motion (EOM) up to the first order can be derived
from the Maxwell-Bloch equations in the rotating wave frame
as the following:
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where subscripts p and c stand for probe and coupling lights,
respectively, � is the one-photon detuning, δ is the two-photon
detuning, � is the decay rate of |2〉 and |3〉 where the dominant
decay channel is regarded as the spontaneous decay to the
ground levels, γ is the decoherence rate between |1〉 and |4〉,
n is the atom density, and σ is the atom-light cross section
for the probe light. �p+, �c√

2
are the Rabi frequencies for the

σ+ transitions, while �p−,
βc�c√

2
are the Rabi frequencies for

the σ− transitions, with |βc| = 1. Namely, the coupling light
is assumed to be linearly polarized with decomposition via
the circular polarization basis: Pc = 1√

2
(P+ + βcP−). This

assumption of linear polarization is not necessary and the
analysis below can be easily extended to any polarization state
of the coupling light; see Appendix B for further details.

We examine the propagation of the probe beam through the
cold atom medium of finite optical depth (OD) along the z

direction, by solving for the steady-state solution of Eq. (1)
[33], where we eliminate the terms of time derivatives; then
the equation governing the dynamics of the probe light’s two
polarization components is obtained as the following:
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The matrix A has eigenvalues λ1,λ2 as in the following

equation; therefore, Eq. (2) can be decoupled into two inde-
pendent branches which correspond to two types of different
propagation dynamics of the probe light:

λ1 = −2� − 2δ − i�, (3a)

λ2 = �2
c

2(2δ + iγ )
− 2� − 2δ − i�. (3b)

From Eq. (3), an observation can be made that λ1 is tied
to dynamics similar to a two-level atom (TLA), while λ2 is
tied to dynamics similar to typical EIT. Upon incidence, the
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FIG. 2. Numerical simulation for the dispersion of the probe
beam after propagation in the optically dense cold atom ensem-
ble (OD = 30), where the atomic structure and coupling laser
linkage pattern are according to Fig. 1(a). The upper graph is for
the TLA-like branch, and the lower graph is for the EIT-like branch.
The solid lines are for absorption while the dashed lines are for phase
shift. The atomic parameters are � = 2π × 5.75 MHz, which is from
87Rb D1 transition, γ = 0.001 × �, and the optical parameters are
�c = 2π × 2.5 MHz, � = 0.

probe light decomposes into two components with opposite
polarizations: 1√

2
(�p+ + β∗

c �p−) is the projection onto the

TLA branch and 1√
2
(−�p+ + β∗

c �p−) is the projection onto
the EIT branch. In general, the polarization ingredients for
probe light of the two branches are solely determined by the
coupling light’s polarization. Loosely speaking, the coupling
light induces birefringence in the medium such that for the
probe laser, the medium is transparent to one polarization
component but opaque to the other. This process can also
be equivalently interpreted from the FWM viewpoint. An
example of numerical simulation is shown in Fig. 2. We note
that the assumption of weak probe light pulse intensity is
important in the above derivations for the following reason.
During the interaction, when the dissipation of the probe
light takes place, some population will be possibly pumped
into some magnetic sublevels other than |F = 2,mF = 0〉 by
spontaneous emission. Under the weak probe light assumption,
this population displacement is tiny and its effect of backaction
onto the probe light can be safely neglected.

Due to the energy degeneracy of the states |2〉,|3〉, the level
structure of Fig. 1(a) possesses a special symmetry from the
viewpoint of the Morris-Shore transform [7,8]. Therefore, it is
necessary to examine the case where this symmetry is broken,
namely with the energy degeneracy lifted. This triggers the
study of a linkage structure shown in Fig. 1(c), where the
energies of |2〉 and |3〉 differ by 2h̄� and the frequency of
the coupling light is naturally chosen to correspond to the
energy difference from |4〉 to the middle of |2〉 and |3〉. This
special linkage structure can also be implemented according
to Fig. 1(b) within 87Rb D1 or D2 transitions, where an extra

magnetic field along the z direction can be applied to lift the
energy degeneracy of |2〉 and |3〉. When the applied magnetic
field is of reasonably moderate strength, only the first-order
Zeeman shift needs to be considered and the energy shift of
relevant states with mF = 0 can be effectively treated as zero.

Formally, assuming that the probe pulse duration τ is long
enough such that |τ · �| � 1,|τ · �c| � 1; then the EOM for
the system is given by the Maxwell-Bloch equations almost
identical to Eq. (1), with an essential difference of � →
−� in Eq. (1c). After applying the steady-state condition,
the equation governing the dynamics of the probe light’s
propagation through the medium is
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analyzing B, whose eigenvalues are the following:
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Analogously, Eq. (4) can be decoupled into two independent

branches with different dispersion relations for the incident
probe light. Although λ± are of quite different appearances
compared with Eq. (3), we can still identify that one is
associated with a TLA scattering behavior branch while the
other one is associated with an EIT scattering behavior branch.
To explain this classification, we first examine the situation
with δ = 0, where Eq. (4) is reduced to

d

dz
(−βc�p+ + �p−) = 0, (6a)

d

dz
(βc�p+ + �p−) = −nσ

2
(βc�p+ + �p−). (6b)

For δ �= 0, we invoke the approximation that |δ| is
small such that |�c|2 � |2� · 4δ| and γ = 0, which leads

to
√

4�2 + ( |�c|2
4δ

)2 ≈ |�c|2
4δ

+ 8δ�2

|�c|2 . Then to the lowest or-

der, λ+ ≈ |�c|2
2δ

− 2δ − i�, while λ− ≈ −2δ − i�. The two
branches’ behaviors are EIT-like and TLA-like, respectively,
and henceforth the previous observation is justified. A numer-
ical simulation is presented in Fig. 3. In general, if the energy
degeneracy of two excited states with different angular mo-
mentum is lifted, the polarization decomposition into the two
branches of the incident probe beam is subject to not only the
polarization of the coupling light but also its detuning, although
the signature of polarization-induced interference persists. One
possible application of an experimental realization of Fig. 1(c)
is the precision measurement of the relative Zeeman shifts
experienced by the excited states |2〉,|3〉.

III. DOUBLE-M LINKAGE STRUCTURE

Ideally, all-optical control and switching in the polarization
degree of freedom and polarization filtering can be imple-
mented by utilizing the double-V linkage structure of Fig. 1.
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FIG. 3. Numerical simulation for the dispersion of the probe
beam after propagation in the optically dense cold atom ensemble
(OD = 30), where the atomic structure and coupling laser linkage
pattern are according to Fig. 1(c). The upper graph is for the TLA-like
branch and the lower graph is for the EIT-like branch. The solid
lines are for absorption while the dashed lines are for phase shift.
The atomic parameters are � = 2π × 5.75 MHz, which is from 87Rb
D1 transition, γ = 0.001 × �, � = 2π × 5 MHz, and the optical
parameters are �c = 2π × 2.5 MHz. Note that in the neighborhood
of δ = 0 the behavior is similar to that of Fig. 2.

Nevertheless, it requires the coupling light intensity to be
much higher above the single-photon level. If one insists on
coupling light of low intensity, then some form of enhancement
such as a high finesse optical cavity has to be employed.
Otherwise, modifications to the double-V linkage are in need to
pursue polarization-induced interference within EIT and FWM
processes between two weak optical fields.

FIG. 4. (a) Schematic of the double-M linkage structure of a
four-level seven-state system. It can be realized in the 87Rb D1
or D2 transitions; see also Appendix C. (b) Simplified proposal
for experimental implementation of the optical configuration. The
reference and probe lights are almost parallel with a possible tiny
cross angle for the purpose of phase matching. The coupling and
driving lasers are assumed to be cw, of the same spatial mode, uniform
in intensity across the cold atom ensemble and cross the probe and
reference optical axis at right angle. The atoms are assumed to be cold
enough such that the inhomogeneous broadening caused by atomic
motion can be neglected.

In particular, consider the polarization-discriminating
cross-modulation process according to configurations shown in
Fig. 4, where the linkage structure enables double EIT for both
the σ+,σ− transitions. The coupling and driving lasers are of
moderate Rabi frequencies comparable to the linewidth of the
transitions, while the incident probe and reference light pulses
are of very low optical intensities. The driving and coupling
lasers are essentially of the same physical nature even though
they are different in frequencies. Both of them are narrow
linewidth cw lasers shining onto the cold atom ensemble with
a well-defined linear polarization.

Then, up to a global phase, the dynamics up to the lowest
order can be derived from the Maxwell-Bloch equations
[29,30,34] in the rotating wave frame, where the polarization
is resolved with respect to the quantization axis choice as the
z direction:
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where �c is the decay rate of states |2〉,|3〉, �d is the decay
rate of states |4〉,|5〉, γ is the decoherence rate of states
|6〉,|7〉, which is typically tiny, and σp,r are the atom-light cross
sections for the probe and reference lights. The EOMs for �p−
and �r− are of the same form with the following replacements:
ρ21 → ρ31, ρ41 → ρ51, ρ61 → ρ71.

An inherent symmetry about polarization can be observed
in the atom-light interaction with this atomic linkage structure.
Equation (7) is now written with the circular polarization
basis; nevertheless its form is invariant under the Morris-Shore
transform to any orthonormal polarization basis; see also
Appendix C. This symmetry is closely tied to the observation
that the polarization-induced interference considered here is
only up to the relative polarization difference of the probe and
reference while no special polarization orientation preexists in
the system.

We analyze the dynamics via the steady-state solution of
Eq. (7) under the assumption of perfect ground-level coherence
γ = 0 and equivalent detunings �c = �d = �. The steady-
state solution is useful when the incident pulse duration is
very long such that an effective single frequency description is
adequate. Then the dynamics of the probe and reference lights
is specified by the following equation:
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FIG. 5. Numerical simulation for the cross modulation between
probe and reference incidences after propagation in an optically
dense cold atom ensemble (OD = 10), where the atomic structure
and controlling lasers are set according to Fig. 4. The total emergent
intensity is plotted with normalization to the total incident intensity,
where the incident probe and reference beams are assumed to be
linearly polarized and at the same intensity. At alignment a, the angle
between two linear polarizations is π

6 , while at alignment b the angle
is 2π

3 . The relative phase between the two lights is scanned, which
is defined with respect to their left circular polarization component.
The atomic parameters are �c = �d = � = 2π × 6.07 MHz, which
is from 87Rb D2 transition, γ = 0.01 × �, and the optical parameters
are �c = �d = 2π × 5 MHz, where the detuning � is scanned.

with the constants ξ and ar defined as
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where we can further assume that �c = �d = � typically.
For appropriate settings of control parameters, this system

can demonstrate cross-modulation capabilities for the probe
and reference lights involving the polarization degree of
freedoms, provided the optical depth along the propagation
axis is adequate.

In particular, we first analyze the two extreme cases where
the polarization states of the probe and reference beams are
identical or orthogonal. If their polarization states are identical,
the situation reduces to that of a typical FWM, where the cross
modulation is subject to their initial relative phase difference,
just as Refs. [29,30]. If the polarizations of the incident
probe and reference lights are orthogonal �r+(0)�∗

p+(0) +
�r−(0)�∗

p−(0) = 0, then their initial phase difference does not
contribute to their total transmitted power. To observe this,
we can simply take a Morris-Shore transform such as that in
the transformed new polarization basis �′

p−(0) = �′
r+(0) = 0,

where ′ denotes quantities expressed in the new basis.
More specifically, we discuss the cross modulation of am-

plitude, and the results of numerical simulations are presented
in Figs. 5 and 6. These numerical simulations are carried out
under the assumption that both the incident probe and reference
optical fields are linearly polarized. In order to quantify
the relative differences in polarization and phase, the inci-
dences with respect to the rotating wave frame are configured
as �p+(0) = �1, �p−(0) = �1, �r+(0) = eiθ�2, �r+(0) =
eiθ eiϕ�2, where real numbers �1,�2 are constant amplitude
factors, θ describes the relative phase difference, and ϕ de-
scribes the relative polarization difference.

FIG. 6. Numerical simulation for the cross modulation between
probe and reference incidences after propagation in an optically dense
cold atom ensemble with OD = 2 and 20, with the same atomic
parameters and coupling and driving Rabi frequencies as Fig. 5. The
difference is that the detunings are fixed here: � = 5 MHz, while
the relative phase and relative polarization angle is scanned. Note
that when the polarizations of the probe and reference lights are
orthogonal, the scanning of the relative phase does not cause any
change in the total emergent intensity.

To study the dynamics in detail, Eq. (7) can be effectively
analyzed by Fourier transform, whose details are provided
in Appendix C. Nevertheless, the steady-state description of
Eq. (8) suffices to provide insight into the features of the
system. In the special on-resonance condition of � = 0, the
emergent probe light intensity can be computed and it contains
a succinct term indicative of interference with clear signature
from the polarization,

Re

{
�c

�d

[�r+(0)�∗
p+(0) + �r−(0)�∗

p−(0)]

}
, (10)

where the outcome of interference is up to the relative polar-
ization difference of the probe and reference lights and a phase
accumulation involving all four optical fields. More generally,
Eq. (8) permits two modes of different dynamics with respect
to the two eigenvalues of M0,

λ1 = 0, λ2 =
(

−�d

�c

− �∗
c

�∗
d

)
�, (11)

where λ1 corresponds to an EIT-like transparency window and
λ2 corresponds to a TLA-like dispersion often with strong
dissipation. λ1 = 0 implies the existence of nontrivial e = [e1

e2
]

such that d
dz

(e∗
1�p± + e∗

2�r±) = 0 which can be recognized
as the “dark state.” In other words, for the right circularly
polarized components of the incidences �+(0) = [�p+(0)

�r+(0)], their
projection onto e is subject to the transparency, which is the
same case for the left circularly polarized components of the
incidences �−(0) = [�p−(0)

�r−(0)]. In particular, we find that both the
probe and reference optical fields for the transparency window
share the same polarization.

The above observation sketches the inherent characteristics
of such a system. Upon the probe and reference incidences
of some prescribed initial polarizations and phases, they
immediately recombine into two composite optical fields
corresponding to two modes of propagation dynamics, re-
spectively. Each mode contains both the probe and reference
frequency components. The two modes are typically of dif-
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FIG. 7. Numerical simulation for the polarization properties of
the dynamics during propagation, where the cold atom ensemble
is assumed to be uniformly distributed, of length z0 = 1 cm and
OD = 80. The polarization indicator ζ for a general polarization P

is defined as P = κ(P+ + ζP−), with κ ≡ (1 + |ζ |2)−
1
2 , where P+,−

are the right and left circular polarization basis. The atomic parameters
are � = 2π × 6.07 MHz associated with 87Rb D2 transition, γ =
0.01 × �, and the optical parameters are �c = �d = 2π × 5 MHz,
� = 5 MHz, together with the incidences �p+(0) = �1, �p−(0) =
i�1, �r+(0) = �1, �r−(0) = −i�1, where �1 is a common constant
amplitude factor which eventually cancels out. This simulation is
carried out under the assumption that the incident probe and reference
pulse envelopes are very long; henceforth they can be effectively
treated as single frequency optical fields.

ferent dispersion relations and different group velocities: one
mode experiences EIT-like transparency, while the other mode
experiences TLA-like dispersion. When the incident pulse
duration is long enough such that a single frequency description
applies, within each mode the polarization states of the probe
and reference frequency components are effectively identical.
Usually, the TLA-like mode decays away rather rapidly, its
energy is dissipated via spontaneous emission, and therefore
only one mode of two is emergent from the optically thick
cold atom medium. A numerical simulation of the polarization
change with the propagation along the z direction is given in
Fig. 7.

The derivations so far are essentially within the semiclassi-
cal framework, where the probe and reference incidences are
assumed to be weak coherent classical optical pulses. Even
though the analysis holds for very low incident power, the
natural question to ask is whether it makes sense for genuine
single-photon incidences. In principle, due to the fact that the
EOM Eq. (7) is linear in �p±,�r± [32], it is anticipated that the
polarization-induced interference still exists if both the probe

and reference optical fields are quantized. The detailed analysis
of this issue is an interesting subject for future work.

IV. CONCLUSION

In conclusion, we have proposed particular forms of atomic
linkage structures where the polarization of the optical fields
is of essential role in the atom-light interaction. We have
shown that the polarization-induced quantum interference
comes naturally within the EIT and FWM processes from the
double-V and double-M atomic linkage structures. We have
also studied the fundamental properties of the polarization-
dependent cross-modulation in the double-M structure. We
hope that our work helps the effort of realizing strong
polarization-dependent nonlinear interactions between weak
optical pulses down to the single-photon level in a cold
atom medium. We also hope that it helps the research into
the polarization degree of freedom from a quantum op-
tics perspective on the topic of stimulated Raman adiabatic
passage [35].
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APPENDIX A: FOUR-STATE SYSTEM WITHOUT DECAYS

Here we choose to analyze the double-V linkage structure
which is reconfigured in the format of a topologically equiva-
lent diamond shape shown in Fig. 8 for pedagogical purpose.
Moreover, we are going to stick to one major simplification in
the discussions of this section: we leave out the spontaneous
emission. Then an analytical discussion with a clear picture is
allowed, where we put no restriction on the intensities of the
two driving lasers: coupling and probe. Before delving into the
details, it shall be noted that this interference effect is due to the

FIG. 8. Level scheme of a diamond shape connection, which is
purely artificial and not associated with real atoms. State |1〉 is in
the ground level, states |2〉 and |3〉 are in the intermediate level,
and state |4〉 is in the upper level. In reality, the upper level can
be recognized as a Rydberg level with long lifetime. The ground
level and the intermediate level is coupled by the probe laser,
while the intermediate level and the upper level is coupled by the
coupling laser.
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Equivalent

Morris-Shore transformation

23 + -

FIG. 9. Reduction of the linkage pattern in the case when the
lasers’ polarizations are parallel to each other.

quantized angular momentum of the atomic internal electronic
states, where the quantum nature of the light does not assume an
essential role here. Henceforth a purely semiclassical treatment
suffices for the purpose of this section.

We discuss the situation where the probe and coupling
lasers driving those transitions have linear polarizations, and
we express the polarizations in the circular polarization basis
P+ and P− as in the following equation, where |α| = |β| = 1.
The relative phase is adjusted with respect to the rotating wave
frame associated with Eq. (A2):

Pprobe = 1√
2

(P+ + αP−), (A1a)

Pcoupling = 1√
2

(P+ + βP−). (A1b)

And now we can write down the Hamiltonian and solve
for the time evolution of the four sublevel total system’s wave
function, which is (c1,c2,c3,c4)T if expressed in the bare states
basis. The associated constant phases of the rotating wave
frame can always be chosen such that the Rabi frequencies �p

and �c are real, where we also include the constant prefactor
1
2 and 1√

2
. Therefore, we arrive at the following equation:

i
d

dt

⎡⎢⎣c1

c2

c3

c4

⎤⎥⎦ = 1

2
√

2

⎡⎢⎣ 0 �p α�p 0
�p 0 0 β�c

α∗�p 0 0 �c

0 β∗�c �c 0

⎤⎥⎦
⎡⎢⎣c1

c2

c3

c4

⎤⎥⎦.

(A2)
In the situation when the probe and coupling lasers’ polar-

izations are parallel, namely, α = β, the linkage pattern would
reduce to the trivial case as shown in Fig. 9. This reduction
is acquired by linearly transforming the states in a process
(known as the Morris-Shore transformation) described by
Ref. [7], whose method is intended for a two-level system (see
also an extension of the original work at Ref. [8]). Explicitly,
instead of the two original intermediate sublevels |2〉 and |3〉,
we describe the system by two newly transformed states |+〉 =

1√
2
(|2〉 + |3〉) and |−〉 = 1√

2
(|2〉 − |3〉). In this situation, the

time evolution described by Eq. (A2) has no difference whether
there are two or one substates in the intermediate level. This is
also equivalent to a rotation of the coordinate system in Hilbert
space.

However, if the probe and coupling lasers’ polarizations
are orthogonal to each other, namely, α = 1 but β = −1, the
situation becomes quite different. A numerical simulation of
this situation is shown in Fig. 10, based on Eq. (A2). The
population is oscillating back and forth between the ground

FIG. 10. Numerical simulation of the time evolution of the total
four-level system with diamond linkage pattern, when the lasers’
polarizations are orthogonal to each other. It is simulating Eq. (A2)
with cw lasers, where both �p and �c are set as constants to be 2π × 1
MHz over the time evolution.

level and the two intermediate sublevels during the time
evolution, but never gets transferred to the final level. In other
words, the population is trapped and the level |4〉 becomes
dark.

If we apply the same Morris-Shore transformation which
leads to Fig. 9, we will have a linkage pattern shown in
Fig. 11. We see that the final level |4〉 together with one of the
intermediate states |−〉 becomes dark if all the population were
to start from |1〉. They stay dark no matter whether the lasers are
pulsed or cw. This is solely a consequence of the polarizations’
differences between the probe and coupling lasers.

From the linkage reduction mechanisms shown in Fig. 9
and Fig. 11, it is clear that the one-photon detuning won’t
change the nature of the linkage pattern in these two extreme
situations. Namely, when the polarizations are parallel to each

Equivalent

Morris-Shore transformation

23 + -

FIG. 11. Reduction of the linkage pattern in the case when the
lasers’ linear polarizations are orthogonal to each other.
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other, the one-photon detuning is acting like it normally does
on a three-level system; when the polarizations are orthogonal
to each other, the one-photon detuning does nothing because
no population can be excited to state |4〉.

When the two intermediate levels receive probability am-
plitude pumped by the probe laser from the ground state, they
have a phase difference printed onto them by the polarization
of the probe laser. If the polarization of the coupling laser is
perpendicular to that of the probe laser, then this particular
phase of the two intermediate levels makes them dark to the
transition corresponding to the coupling laser. The linkage
pattern described in Fig. 8 says nothing dictating that |4〉 shall
be trivially dark; the excitation to the final level |4〉 is made
dark by the phase differences induced by the polarizations of
the coupling and probe lasers.

For the general case of different linear polarizations, let us
first consider the situation where �p and �c are real constants,
namely, the lasers are cw. We rewrite Eq. (A2) in a slightly
different form to begin with:

i
d

dt

⎡⎢⎣c1

c4

c2

c3

⎤⎥⎦ =

⎡⎢⎣ 0 0 �p α�p

0 0 β∗�c �c

�p β�c 0 0
α∗�p �c 0 0

⎤⎥⎦
︸ ︷︷ ︸

H4

⎡⎢⎣c1

c4

c2

c3

⎤⎥⎦. (A3)

To examine the time evolution described by Eq. (A3), we
look for the eigenstates and eigenvalues of H4. Then the
eigenvalue problem of Eq. (A3) reduces to find a λ to make
sure the eigenequation described in Eq. (A4) holds:

λ

[
c1

c4

]
=

[
�p α�p

β∗�c �c

]
︸ ︷︷ ︸

M

[
c2

c3

]
, (A4a)

λ

[
c2

c3

]
=

[
�p β�c

α∗�p �c

]
︸ ︷︷ ︸

M†

[
c1

c4

]
. (A4b)

A little observation of the symmetry between (c1,c4) and
(c2,c3) of Eq. (A4) would lead to a simplified eigenvalue
problem for 2 × 2 matrices:

λ2

[
c1

c4

]
= MM†

[
c1

c4

]
, (A5a)

λ2

[
c2

c3

]
= M†M

[
c2

c3

]
, (A5b)

where MM† and M†M are explicitly given in the following
formula:

MM† =
[

2�2
p (α + β)�p�c

(α∗ + β∗)�p�c 2�2
c

]
, (A6a)

M†M =
[

�2
p + �2

c α�2
p + β�2

c

α∗�2
p + β∗�2

c �2
p + �2

c

]
. (A6b)

Clearly MM† and M†M have the same eigenvalues and
they are all positive. From the form of MM† we see that the
value of α + β determines how much c1 and c4 are mixed in
the adiabatic states. Let us revisit the two extreme conditions.

When α and β are π out of phase, α + β = 0, there is no
mixing at all between c1 and c4 components, and this case can
be viewed as total destructive interference. When α and β are
in phase α = β, the mixing is maximum, and the population
transfer rate to the final level |4〉 is the highest during the time
evolution. This can be viewed as constructive interference.

Generally, we can set the criteria for judging how good the
excitation is as the time-averaged value of the population in
the final state |4〉, if we assume at the beginning all population
is in the ground state |1〉. Then we ought to look into the
time evolution described by Eq. (A3). Like in the case of a
simple two-level atom, the time evolution can be found from
the adiabatic states of the Hamiltonian in Eq. (A3). Different
adiabatic states’ time evolutions are different in the sense that
they oscillate at different frequencies corresponding to their
separate adiabatic energies. As a consequence of taking the
time average, those detailed frequencies of the adiabatic states
average out. The time-averaged value of the population in the
final level |4〉 is determined by how much population is in
the c4 component of the adiabatic states when the light is
turned on when the initial wave function (all population in
the ground state |1〉, bare state) is projected onto the adiabatic
states. Roughly speaking, we are to evaluate how much mixing
the lasers induce between |1〉 and |4〉 in the adiabatic states.

Let us denote the two eigenvalues of MM† as λMM†,1
and λMM†,2. The mixing depends on the difference |λMM†,1 −
λMM†,2| as in the following equation. The closer λMM†,1 and
λMM†,2 comes together, the larger the mixing is:

(λMM†,1 − λMM†,2)2

= 4
(
�2

p + �2
c

)2 − 8(1 − Re(α∗β))�2
p�2

c . (A7)

Pictorially, the phase differences in the transition ampli-
tudes (in terms of the Rabi frequencies) induced by the different
linear polarizations manifest themselves in the excitation
process which very much looks like an interference pattern.
From this point of view Fig. 8 is just similar to a dual
path optical interference experiment, whose paths’ phases are
determined by the “total sum” of the two lasers’ polarizations.
Therefore, this effect, nonrigorously speaking, is one example
of a Mach-Zehnder interferometer built inside an atom.

The discussion above does not include the effect of spon-
taneous emission. If the intermediate states |2〉 and |3〉 have
spontaneous emission channels to decay back to the ground
state |1〉, the basic properties of the above analysis still hold and
are serving as the physics backbone of the derived phenomena,
just as the discussions in the main text. The reason is that the
more chance the atom has at lying at the final excited state
|4〉, the less chance it stays at the lossy intermediate levels and
makes a decay. For the general cases including the spontaneous
emission, the density-matrix approach is needed. The overall
observation is that the physical viewpoint of the interference
is appropriate.

APPENDIX B: POLARIZATION-INDUCED
INTERFERENCE WITHIN EIT

This section is devoted to the details omitted in the main
text for the investigations of systems with the double-V linkage
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FIG. 12. Different implementation mechanisms for the double-V
linkage structure in 87Rb atom, via D1 transition. The decay rate of
states |2〉 and |3〉 is �. (a) This is the same type of implementation
as Fig. 1(b) of the main text. (b) State |4〉 is realized by a long-lived
Rydberg nS level’s F = 1,mF = 0 state. (c) State |4〉 is the same as
(b), but state |1〉 is changed to F = 1,mF = 0. Note that all these
three linkage structures share the common symmetry that without the
probe and coupling beams they are invariant under the Morris-Shore
transform; put in another equivalent way, the atom is not polarized to
begin with.

structure. Throughout this section, the discussions are carried
out under the rotating wave frame.

Since the phenomena is up to the polarization difference
between the probe and coupling beams, or, more specifically,
their relative positions on the Poincaré sphere, it is necessary
to clarify how the polarization difference between those two
optical fields of different frequencies is defined. In other
words, since we are describing the polarization state by the
circular polarization basis, the issue here is about the relative
phase between the basis states. Here we follow the natural
choice that the circular basis is derived from the rotating
wave frame defined by |1〉,|2〉,|3〉,|4〉. Namely, once the
phase of those atomic states is fixed in the rotating wave
frame, the phases of �c+,c− and �p+,p− are unambiguously
derived.

In the main text, the implementation of the double-V
linkage structure is embedded in the D1 transition of 87Rb. In
particular, the state |4〉 is chosen to be one of the clock states
of the hyperfine ground level F = 1,mF = 0. Nevertheless,
|4〉 can also be set as one of the long-lived Rydberg states
such that the double-V linkage structure is embedded in a
Rydberg EIT system [6] with sublevels, which is illustrated
in Fig. 12. In the main text, the polarization of the coupling
light is assumed to be linear; yet as long as the coupling light
has a fixed polarization state, this assumption is not necessary.
In discussions associated with Fig. 12, the coupling light can
be in any fixed polarization state.

The EOM corresponding to Fig. 12(a) is

∂

∂z
�p+ + 1

c

∂

∂t
�p+ = i

nσ�

2
ρ21, (B1a)

∂

∂z
�p− + 1

c

∂

∂t
�p− = i

nσ�

2
ρ31, (B1b)

d

dt
ρ21 = i

2
�p+ − i

2
�c+ρ41 +

(
i(� + δ) − �

2

)
ρ21, (B1c)

d

dt
ρ31 = i

2
�p− + i

2
�c−ρ41 +

(
i(� + δ) − �

2

)
ρ31,

(B1d)

d

dt
ρ41 = − i

2
�∗

c+ρ21 + i

2
�∗

c−ρ31 +
(
iδ − γ

2

)
ρ41, (B1e)

where γ is the decoherence rate between states |1〉 and |4〉.
The EOM corresponding to Fig. 12(b) is

d

dt
ρ21 = i

2
�p+ + i

2
�c−ρ41 +

(
i(� + δ) − �

2

)
ρ21, (B2a)

d

dt
ρ31 = i

2
�p− − i

2
�c+ρ41 +

(
i(� + δ) − �

2

)
ρ31, (B2b)

d

dt
ρ41 = i

2
�∗

c−ρ21 − i

2
�∗

c+ρ31 +
(
iδ − γ

2

)
ρ41, (B2c)

where we omit the wave equations for �p+,p−, which are the
same as Eq. (B1), and γ is the decay rate of the Rydberg state
|4〉.

And the EOM corresponding to Fig. 12(c) is

d

dt
ρ21 = i

2
�p+ + i

2
�c−ρ41 +

(
i(� + δ) − �

2

)
ρ21, (B3a)

d

dt
ρ31 = i

2
�p− + i

2
�c+ρ41 +

(
i(� + δ) − �

2

)
ρ31, (B3b)

d

dt
ρ41 = i

2
�∗

c−ρ21 + i

2
�∗

c+ρ31 +
(
iδ − γ

2

)
ρ41, (B3c)

where we omit the wave equations for �p+,p−, which are of
the same form of Eq. (B1), but the atom-photon interaction
cross section σ is different.

Next, we analyze the dynamics corresponding to Eqs. (B1),
(B2), and (B3). Not surprisingly, they share one property in
common that two branches of distinct optical propagation and
dispersion properties exist, as defined by λ1,λ2 in the following
equation:

λ1 = −2� − 2δ − i�, (B4a)

λ2 = |�c|2
2δ + iγ

− 2� − 2δ − i�, (B4b)

where we define |�c|2 = |�c+|2 + |�c−|2. λ1 corresponds to
the TLA branch with the dispersion relation exp( i�

2λ1
OD), while

λ2 corresponds to the EIT branch with the dispersion relation
exp( i�

2λ2
OD), where OD stands for optical depth of the medium.

Define three polarization states in the form of a two-
component unit vector with respect to the circular polarization
basis as the following:

v1 = 1

|�c|2
[−�c+

�c−

]
, v2 = 1

|�c|2
[−�c−

�c+

]
,

v3 = 1

|�c|2
[
�c−
�c+

]
. (B5)

They specify the polarization states corresponding to the EIT
branches of the three different configurations Fig. 12(a) and
Eq. (B1), Fig. 12(b) and Eq. (B2), and Fig. 12(c) and Eq. (B3),
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respectively. Their orthogonal polarization states correspond
to the TLA branches accordingly. Loosely speaking, the dark-
state polaritons as defined in Ref. [36] are now polarized.
The physics of the polarization-induced interference can be
explained via the Morris-Shore transform in a rather straight-
forward manner similar to the discussions in Appendix A.
It is also worth mentioning that the relative phase between
the probe and coupling lights is involved and implicitly taken
care of by the natural choice of the circular polarization
basis.

As the next step, we discuss some more details of the
analysis for the case where the energy degeneracy between
|2〉 and |3〉 is lifted, as shown in Fig. 1(c) of the main text. For
example, this situation can be generated by a magnetic field
along the z direction and therefore the symmetry of the σ+,σ−
transitions is broken. As stated in the main text, compared
with the situation of Fig. 1(a), the unique feature here is that
the polarization decomposition into the TLA-like and EIT-like
branches varies with the two-photon detuning δ of the probe
beam. In order to quantify the effects, we define the polarization
indicator ζ for the probe beam with the circular polarization
basis as the following equation:

P = κ(P+ + ζP−), with κ ≡ (1 + |ζ |2)−
1
2 , (B6)

where ζ = 0 corresponds to a purely right circularly polarized
light, ζ = ∞ corresponds to a purely left circularly polarized
light, and |ζ | = 1 corresponds to linearly polarized light.

The behaviors here can approximately be divided into two
categories according to the magnitude of �. The first one is
when � is comparable to or larger than the natural linewidth
of the excited state. In this case, the EIT transparency window
is relatively narrow and the two branches quickly become
strongly left or right circularly polarized when the two-photon
detuning |δ| becomes large. The second one is when � is
much less than the natural linewidth of the excited state. This
case bears more resemblance to the case where |2〉 and |3〉
share degenerate energy as stated in Fig. 1(a) of the main
text.

A numerical simulation including those two typical cases is
presented in Fig. 13. The coupling laser is assumed to be cw at
a constant Rabi frequency with a fixed linear polarization P =
P+ + P−. The shift � is fixed while the two-photon detuning δ

of the probe light is scanned. For each value of δ, two mutually
orthogonal polarization states exist, where one corresponds
to the EIT-like branch and the other one corresponds to the
TLA-like branch. The polarization indicator ζ of the TLA-like
branch is included in the figure.

In the main text, a long pulse length condition is imposed
upon the incident probe pulse in order to maintain the validity
of the steady-state solution. In essence, this condition is not
necessary in the discussion of the related phenomena, which
means the major observations hold for short probe pulses.
The reason is that the probe pulse can always be Fourier
transformed into the linear superposition of different frequency
components where each single frequency Fourier component
is well described by the derivations so far.

FIG. 13. Numerical simulation for the dispersion of the probe
beam after propagation in the optically dense cold atom ensemble
(OD = 30), where the atomic structure and coupling laser linkage
pattern are according to Fig. 1(c) of the main text. The solid lines
are for absorption while the dashed lines are for phase shift. The
polarization indicator ζ corresponding to the TLA-like branch is also
plotted, which is a complex number. All these simulations are plotted
against the probe beam’s detuning from the two-photon resonance
frequency in MHz, where the focus is put on the neighborhood of the
transparency window. The parameters for the simulation are chosen
as � = 2π × 5.75 MHz, which is from 87Rb D1 transition, γ =
0.001 × �, and �c = 2π × 2.5 MHz. For (a), � = 2π × 5 MHz,
while for (b) � = 2π × 0.05 MHz.

023815-10



POLARIZATION-INDUCED INTERFERENCE WITHIN … PHYSICAL REVIEW A 97, 023815 (2018)

FIG. 14. Implementation of the abstracted double-M linkage
structure in 87Rb D1 or D2 transition, where |1〉 is set as the the
magnetic insensitive clock state |F = 1,mF = 0〉.

APPENDIX C: POLARIZATION-INDUCED
INTERFERENCE AND CROSS MODULATION

IN DOUBLE-M LINKAGE STRUCTURE

In this section we focus on the analysis of the cross
modulation via the double-M linkage structure. As stated in the
main text, this linkage structure can be realized in a seven-state
system based upon 87Rb, as shown in Fig. 14. Even though
the discussions thereof are adhering to Fig. 14, it is worth
mentioning that a five-state system is also capable of realizing
the double-M linkage structure, as shown in Fig. 15.

In the main text, good coherence in the ground-level states
have been assumed: γ = 0; in this section, this assumption
is going to be lifted and the decoherence of ρ61,ρ71 is to
be accounted for. Moreover, the two-photon resonances are
assumed to be maintained such that the two-photon detunings
are all set to zero. Meanwhile, we also assume that the atoms
are cold enough such that the inhomogeneous broadening
caused by atomic motion can be neglected. With all these
preparations in mind, under a theoretical framework similar
to that of Ref. [34], the EOM describing the atom-light system
is found as the following equation, as presented in the main
text. Naturally, all discussions are carried out under the rotating
wave frame where the rotating wave approximation is invoked.
The wave fronts of the coupling and driving lasers are assumed
to be uniform in phase, and their frequencies are taken as the
rotating wave frequencies. Along the z direction, the rotating
wave frame basis for the states |2〉,|3〉,|4〉,|5〉,|6〉,|7〉 acquire
an additional phase term eikz to account for the probe and
reference lights’ phase advancing in space, where k is the wave
vector:

∂

∂z
�p+ + 1

c

∂

∂t
�p+ = i

nσp�c

2
ρ21, (C1a)

∂

∂z
�p− + 1

c

∂

∂t
�p− = i

nσp�c

2
ρ31, (C1b)

FIG. 15. Implementation of the abstracted double-M linkage
structure in 87Rb D1 or D2 transition with a five-state system, where
|1〉 is set as the magnetic insensitive clock state |F = 2,mF = 0〉.
Typically this configuration is operated under the condition that
|�c|,|�d | are large.

∂

∂z
�r+ + 1

c

∂

∂t
�r+ = i

nσr�d

2
ρ41, (C1c)

∂

∂z
�r− + 1

c

∂

∂t
�r− = i

nσr�d

2
ρ51, (C1d)

d

dt
ρ21 = i

2
�p+ + i

2
�cρ61 +

(
i�c − �c

2

)
ρ21, (C1e)

d

dt
ρ31 = i

2
�p− + i

2
�cρ71 +

(
i�c − �c

2

)
ρ31, (C1f)

d

dt
ρ41 = i

2
�r+ + i

2
�dρ61 +

(
i�d − �d

2

)
ρ41, (C1g)

d

dt
ρ51 = i

2
�r− + i

2
�dρ71 +

(
i�d − �d

2

)
ρ51, (C1h)

d

dt
ρ61 = i

2
�∗

cρ21 + i

2
�∗

dρ41 − γ

2
ρ61, (C1i)

d

dt
ρ71 = i

2
�∗

cρ31 + i

2
�∗

dρ51 − γ

2
ρ71, (C1j)

where the meanings of the symbols are the same as stated in
the main text.

In order to gain more physical insight into the dynamics in
the adiabatic limit, we choose to handle Eq. (C1) via Fourier
transform. Suppose that the Fourier transform variable of t is
δ, and denote the Fourier-transformed functions as ·̃. Then we
arrived at the following equations for �̃p+,�̃r+:

∂

∂z
�̃p+ − i

δ

c
�̃p+ = i

nσp�c

2
ρ̃21, (C2a)

∂

∂z
�̃r+ − i

δ

c
�̃r+ = i

nσr�d

2
ρ̃41, (C2b)

0 = i

2
�̃p+ + i

2
�cρ̃61 +

(
i�c + iδ − �c

2

)
ρ̃21, (C2c)

0 = i

2
�̃r+ + i

2
�dρ̃61 +

(
i�d + iδ − �d

2

)
ρ̃41, (C2d)

0 = i

2
�∗

c ρ̃21 + i

2
�∗

d ρ̃41 +
(
iδ − γ

2

)
ρ̃61. (C2e)

The Fourier transformed equations with �̃p−,�̃r− are
similar to Eq. (C2):

∂

∂z
�̃p− − i

δ

c
�̃p− = i

nσp�c

2
ρ̃31, (C3a)

∂

∂z
�̃r− − i

δ

c
�̃r− = i

nσr�d

2
ρ̃51, (C3b)

0 = i

2
�̃p− + i

2
�cρ̃71 +

(
i�c + iδ − �c

2

)
ρ̃31, (C3c)

0 = i

2
�̃r− + i

2
�dρ̃71 +

(
i�d + iδ − �d

2

)
ρ̃51, (C3d)

0 = i

2
�∗

c ρ̃31 + i

2
�∗

d ρ̃51 +
(
iδ − γ

2

)
ρ̃71. (C3e)

We analyze the symmetry embedded in this system
before solving Eqs. (C2) and (C3). Suppose there ex-
ists a unitary transform K such that �̃′

p = K�̃p, �̃′
r =

023815-11
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K�̃r , where �̃p,�̃′
p,�̃r ,�̃

′
r are defined in the equation

below:

�̃p = �̃p(z,δ) =
[
�̃p+
�̃p−

]
, �̃r = �̃r (z,δ) =

[
�̃r+
�̃r−

]
, (C4a)

�̃′
p =

[
�̃′

p+
�̃′

p−

]
, �̃′

r =
[
�̃′

r+
�̃′

r−

]
. (C4b)

The EOM for �̃′
p,�̃′

r is essentially assuming the identical
form of �̃p,�̃r , once the following replacements are made:[

ρ̃21

ρ̃31

]
→ K

[
ρ̃21

ρ̃31

]
,

[
ρ̃41

ρ̃51

]
→ K

[
ρ̃41

ρ̃51

]
,

[
ρ̃61

ρ̃71

]
→ K

[
ρ̃61

ρ̃71

]
.

(C5)

Essentially, Eqs. (C4) and (C5) summarize a special Morris-
Shore transform acting on the m = +1 and m = −1 states.
The fact that the EOM remains invariant under such unitary
transforms is a direct consequence of the symmetry in the
polarization degree of freedom within the system being consid-
ered here. Practically it ensures that there exists no particular
polarization orientation for the probe and reference optical
fields. All the dynamics associated with the polarization degree
of freedom are only up to the relative polarization difference
of the incident probe and reference lights.

With the above preparations in mind, we proceed to the
formal solutions of Eq. (C2), where the situation with Eq. (C3)
is identical. From the last three equations of Eq. (C2), the
relation between �̃p+,�̃r+ and ρ̃21,ρ̃41 is readily computed
as the following equation:

[
�̃p+
�̃r+

]
=

[
i
2

|�c|2
iδ−γ /2 − 2(�c + δ) − i�c

i
2

�c�
∗
d

iδ−γ /2
i
2

�∗
c�d

iδ−γ /2
i
2

|�d |2
iδ−γ /2 − 2(�d + δ) − i�d

]
︸ ︷︷ ︸

C(δ)

[
ρ̃21

ρ̃41

]
. (C6)

Then substituting ρ̃21,ρ̃41 in Eq. (C2) with Eq. (C6) leads to

∂

∂z

[
�̃p+
�̃r+

]
=

⎛⎝ i

2
nσp

[
�c 0
0 ar�d

][
i
2

|�c|2
iδ−γ /2 − 2(�c + δ) − i�c

i
2

�c�
∗
d

iδ−γ /2
i
2

�∗
c�d

iδ−γ /2
i
2

|�d |2
iδ−γ /2 − 2(�d + δ) − i�d

]−1

− i

[
δ/c 0
0 δ/c

]⎞⎠
︸ ︷︷ ︸

M0(δ)

[
�̃p+
�̃r+

]
,

(C7)

which is what we are seeking: the basic equation governing
the dynamics on Fourier domain. Also it is worth noting that
the quintessence of this system, M0(δ), is independent of the
properties of incident probe and reference optical fields.

The solution to Eq. (C7) can be formally presented, which
applies to the handling of both Eqs. (C2) and (C3):[

�̃p+(z,δ)

�̃r+(z,δ)

]
= eM0(δ)z

[
�̃p+(0,δ)
�̃r+(0,δ)

]
,

(C8)[
�̃p−(z,δ)
�̃r−(z,δ)

]
= eM0(δ)z

[
�̃p−(0,δ)

�̃r−(0,δ)

]
,

with the understanding that the incidences to the atomic
medium occur at z = 0. For the purpose of numerical sim-
ulation, evaluation of the inverse Fourier transform at this
point yields the result. See Fig. 16 for an example of the case
δ = 0, which can also be recognized as the situation where
the incident pulse duration is very long such that an effective
single-frequency description is adequate.

More specifically, M0(δ) can be decomposed via its eigen-
values:

M0(δ) = T

[
χ1(δ) 0

0 χ2(δ)

]
T †, with T = T (δ), T T † = I,

then eM0(δ)z = T

[
eχ1(δ)z 0

0 eχ2(δ)z

]
T †, (C9)

where χ1(δ) and χ2(δ) correspond to the two modes, respec-
tively. Generally, d

dδ
Im(χ1)|δ=0 �= d

dδ
Im(χ2)|δ=0; therefore, the

group velocities of those two modes are different for narrow-
band incident pulses.

For a specific Fourier component δ, at any position z, the
probe and reference fields can be decomposed into the two
modes,[

�̃p+(z,δ)

�̃r+(z,δ)

]
= l+1e

χ1(δ)z

[
T11

T21

]
+ l+2e

χ2(δ)z

[
T12

T22

]
, (C10)

with the projection coefficients l+1,l+2 as

l+1 = T ∗
11�̃p+(0,δ) + T ∗

21�̃r+(0,δ),

l+2 = T ∗
12�̃p+(0,δ) + T ∗

22�̃r+(0,δ). (C11)

The same thing holds for �̃p−(z,δ),�̃r−(z,δ) as well:[
�̃p−(z,δ)

�̃r−(z,δ)

]
= l−1e

χ1(δ)z

[
T11

T21

]
+ l−2e

χ2(δ)z

[
T12

T22

]
, (C12)

with the projection coefficients l−1,l−2 as

l−1 = T ∗
11�̃p−(0,δ) + T ∗

21�̃r−(0,δ),

l−2 = T ∗
12�̃p−(0,δ) + T ∗

22�̃r−(0,δ). (C13)

From Eqs. (C10) and (C12) it is clear that at any Fourier
component δ the polarization states for the two modes corre-
sponding to χ1,χ2 are well defined, and this is independent of
the particular polarization basis by the virtue of the symmetry
discussed earlier in Eqs. (C4) and (C4). Meanwhile, we observe
that, for each mode of a specific Fourier component δ, the
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FIG. 16. Numerical simulation for the polarization properties of the dynamics during propagation, where the cold atom ensemble
is assumed to be uniformly distributed, of length z0 = 1 cm and OD = 80. The polarization indicator ζ is defined in the same
way as Eq. (B6), and the intensities of the probe and reference optical fields are also plotted. The simulation is based upon
Eqs. (C2) and (C3) for the exact on-resonance Fourier component with δ = 0. All four plots share the same atomic parameters
of � = 2π × 6.07 MHz associated with 87Rb D2 transition, γ = 0.01 × �, and the optical parameters of �c = �d = 2π × 5 MHz,
�c = �d = 5 MHz. The incidences are configured differently: (a) �̃p+(0,0) = �1, �̃p−(0,0) = i�1, �̃r+(0,0) = �1, �̃r−(0,0) = −i�1;
(b) �̃p+(0,0) = �1, �̃p−(0,0) = i�1, �̃r+(0,0) = i�1, �̃r−(0,0) = �1; (c) �̃p+(0,0) = �1, �̃p−(0,0) = i�1, �̃r+(0,0) = �1, �̃r−(0,0) =
−�1; (d) �̃p+(0,0) = �1, �̃p−(0,0) = i�1, �̃r+(0,0) = i�1, �̃r−(0,0) = −i�1; where �1 is a common constant amplitude factor.

polarization states of the probe and reference optical fields
are the same. Namely, for χ1, the polarization indicator ζ1 =
l−1/l+1 and, for χ2, the polarization indicator ζ2 = l−2/l+2.
This observation implies that if the waveform of the probe
and reference incidences completely match, which is equiv-

alent to the condition on the Fourier domain that �̃p+(0,δ1)
�̃r+(0,δ1)

=
�̃p+(0,δ2)
�̃r+(0,δ2)

,
�̃p−(0,δ1)
�̃r−(0,δ1)

= �̃p−(0,δ2)
�̃r−(0,δ2)

for any δ1,δ2, then within each
mode, the polarization status of the probe and reference optical
fields are identical. From this point of view, the asymptotic
behavior of Fig. 16 is straightforward to interpret.

In order to gain direct insight into the underlying physics
of the system, we now switch gears to derive an analytical
solution. For the sake of a simple and succinct expression, we
make the assumption that �c = �d = �, ar = 1, and |�c| =
|�d | = �0, which means �c = eiφc�0, �d = eiφd �0. Then
the eigenvalues of the matrix C(δ) are

λ1,2 = i

2

�2
0

iδ − γ /2
− (�c + �d ) − 2δ − i�

±
√(

i

2

�2
0

iδ − γ /2

)2

+ (�c − �d )2, (C14)

where we fix the eigenvector for λ1 as e = [e1
e2] and the

eigenvector for λ2 as q = [q1
q2

]. e,q are orthogonal to each other
〈e,q〉 = e∗

1q1 + e∗
2q2 = 0 with |e| = 1,|q| = 1.

Furthermore, when the coupling and driving lasers are
strong, the following approximation can be invoked: �0 �
|(iδ − γ /2)(�c − �d )|, which leads to

λ1 ≈ �2
0

δ + iγ /2
− (�c + �d ) − 2δ − i�,

λ2 ≈ −(�c + �d ) − 2δ − i�, (C15)

where the eigenvectors are also simplified under this approxi-
mation:

e ≈ 1√
2

[
1

ei(φd−φc)

]
, q ≈ 1√

2

[
1

−ei(φd−φc)

]
. (C16)

Therefore, we may name λ1 as the EIT-like branch and λ2

as the TLA-like branch with respect to the convention, when
there is no confusion. Next, proceeding according to Eq. (C7),
while neglecting the relatively much smaller contributions
from δ/c,[

�̃p+(z,δ)
�̃r+(z,δ)

]
= 1√

2
l+1e

i
2

nσp�z

λ1

[
1

ei(φd−φc)

]
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+ 1√
2
l+2e

i
2

nσp�z

λ2

[
1

−ei(φd−φc)

]
, (C17a)[

�̃p−(z,δ)
�̃r−(z,δ)

]
= 1√

2
l−1e

i
2

nσp�z

λ1

[
1

ei(φd−φc)

]
+ 1√

2
l−2e

i
2

nσp�z

λ2

[
1

−ei(φd−φc)

]
, (C17b)

with the projection coefficients l±1,l±2 from initial values:

l±1(δ) = 1√
2

[�̃p±(0,δ) + e−i(φd−φc)�̃r±(0,δ)],

l±2(δ) = 1√
2

[�̃p±(0,δ) − e−i(φd−φc)�̃r±(0,δ)]. (C18)
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