
PHYSICAL REVIEW A 97, 023810 (2018)

Waveguide quantum electrodynamics in squeezed vacuum
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We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive
a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the
effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory
to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable.
We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation,
the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to
the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED
in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that
the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state
when the center-of-mass position of the emitters satisfies certain conditions.
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I. INTRODUCTION

Due to the well-known Purcell effect [1], the spontaneous
decay rate of an emitter can be modified by engineering the
electromagnetic bath environment with which the emitters
interact. One example of bath engineering is the squeezed
vacuum. Although the squeezed vacuum does not change the
density of the electromagnetic modes, it can still modify the
decay rate of the emitter [2–4]. A single emitter interacting with
the squeezed vacuum has been widely studied [5–7]. However,
there are only a few publications dealing with multiple emitters
interacting with squeezed vacuum. Among these works, most
are considering the case where emitters are separated by much
less than an optical wavelength which is the well-known Dicke
model [8]. It is shown that in a broadband squeezed vacuum, the
emitter system evolves into a state whose properties are similar
to those of the squeezed vacuum. Only a very few papers study
the case when the separation between the emitters becomes
important [9–11]. It is found that the dipole-dipole interaction
induced by ordinary vacuum depends on the relative emitter
separation, while the interaction induced by the squeezed vac-
uum depends on the center-of-mass coordinate of the emitters.
Since it depends on the position of the center of mass, the
choice of the coordinate system should be no longer arbitrary.
However, it is not yet clearly illustrated in this literature how to
choose the coordinate system. Actually, the dependence on the
absolute position comes from the fact that the squeezed vacuum
is not vacuum but generated by a coherent light source. The
phase of a coherent source is important for the dynamics of the
emitter system [12] and it is seldom considered in the previous
literature [9–11]. People usually thought this phase could be
included in the phase of the correlation function. However,
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the phase in the correlation function is usually treated as a
constant, while it can be a function of position. In addition, the
previous calculations mainly consider a broadband squeezing
in all directions of the three-dimensional (3D) space, which is
difficult to be experimentally realized.

Recently, photon transport in a one-dimensional (1D)
waveguide coupled to quantum emitters (well known as
“waveguide-QED”) has attracted much attention due to its
possible applications in quantum device and quantum infor-
mation [13–25]. In these previous studies, the photon modes
in the waveguide are usually considered to be ordinary vacuum
modes. The case when the waveguide modes are squeezed is
seldom studied. In contrast to the 3D case, squeezing in 1D
is more experimentally feasible. Suppression of the radiative
decay of atomic coherence and the linewidth of the resonance
fluorescence have been experimentally demonstrated in a 1D
microwave transmission line coupled to a single artificial atom
[26–29]. However, many-body interaction in a 1D waveguide-
QED system coupled to squeezed vacuum has not yet been
studied.

In this paper we consider the phase of the squeezing source
and rederive the master equation for multiatom dynamics
in the squeezed vacuum based on the Weisskopf-Wigner
approximation. We show that while the collective dipole-
dipole interaction due to the ordinary vacuum depends on the
emitter separation, the collective two-photon decay rate due to
the squeezed vacuum largely depends on the center-of-mass
position of the emitters relative to the squeezing source. We
then apply this theory to the 1D waveguide-QED system with
squeezing reservoir. Contrary to the traditional result that the
dephasing rate of a single atom in the squeezed vacuum is a
constant [4,30], our calculation shows that the dephasing rate
is actually position dependent. As dipole-dipole interaction is
involved, both emitter separation and center-of-mass coordi-
nate can affect the decay rate, dephasing rate, and the emitted
resonance fluorescence spectrum. In addition, we also show
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that stationary quantum entanglement can be prepared in this
system by the squeezing reservoir. The stationary maximum
entangled NOON state can be approached if the center of mass
of the emitters is at a certain position.

This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of the system and the modified mode function
for the squeezed vacuum. In Sec. III, we derive the master
equation for the emitter system in a 3D case based on the
Weisskopf-Wigner approximations. In Sec. IV, we consider
the squeezing in a 1D waveguide-QED system where we
show how the dephasing rate depends on the position of the
atoms and we also show that stationary quantum entangled
state can be prepared. Then, we analyze the properties of
power spectrum under the effects of squeezed vacuum and
dipole-dipole interaction. Finally, we summarize our results.

II. HAMILTONIAN AND MODE FUNCTION

We here consider Na identical two-level atoms located at r i

(i = 1, . . . ,Na). Suppose that all the transition dipole moments
μi have the same amplitude and direction. The atom-field
system is described by the Hamiltonian

H = HA + HF + HAF, (1)

where HA =∑Na

i=1 h̄ωi |ei〉〈ei | is the atomic Hamiltonian and
|ei〉 is the excited state of the ith atom with transition
frequency ωi . Here, for simplicity, we assume that all the
atoms have the same transition frequency, i.e., ωi ≡ ω0. The
Hamiltonian of the EM field is HF =∑ks h̄ωks(â

†
ks âks + 1

2 ),

where âks and â
†
ks are the annihilation and creation operators

of the field mode with wave vector k, polarization s, and
frequency ωk,s . The interaction Hamiltonian in electric-dipole
approximation is HAF = −ih̄

∑
ks

∑2
i=1[μi · uks(r i)S

+
i âks +

μ∗
i · uks(r i)S

−
i âks − H.c.], where μi is the electric dipole

moment and S+
i and S−

i are the raising and lowering operator
for the ith atom. The mode function of the squeezed vacuum
is given by

uks(r i) =
√

ωks

2ε0h̄V
ekse

ik·(r i−oks ), (2)

where oks includes the effects of the initial phase and the
position of the squeezing source with wave vector ks. Here
we need to make two assumptions: first, one specific mode is
generated from a single source, i.e., mode ks is only generated
from the source located at oks ; second, the phases of all modes
can be well defined by k · (r − oks). In the ordinary vacuum
or thermal reservoir, there is no source and we can set oks = 0,
so the mode function shown in Eq. (2) is reduced to the
normal cases [30]. However, when the reservoir is produced
by different sources with nonvanishing correlation function
〈â†

ks â
†
k′s ′ 〉 and 〈âks âk′s ′ 〉, for example, the squeezed vacuum

reservoir, the spatial distribution of the source is important.
Neglecting oks in the mode function will lead to an ambiguity
of physics where the emitters’ coordinates are not well defined
[11]. Therefore, the position of the source should be included
in the mode function when the squeezed vacuum is considered.
One can also add an additional global phase eiφ to the mode
function Eq. (2), but for simplicity[12], we can set φ = 0.

III. MASTER EQUATION

In this section, we first derive the master equation of a
multiemitter system in a general 3D squeezed vacuum with
the Hamiltonian shown in Eq. (1) and mode function shown
in Eq. (2). The Hamiltonian in the interaction picture without
rotating-wave approximation is given by

V (t) = −ih̄
∑

ks

∑
i

[μi · uks(r i)S
+
i (t)âks(t)

+μ∗
i · uks(r i)S

−
i (t)âks(t) − H.c.], (3)

where S±
i (t) = S±

i e±iω0t , âks(t) = âkse
−iωks t , and â

†
ks(t) =

â
†
kse

iωks t . Different from Ref. [11], no rotating-wave approxi-
mation is made at this stage. The equation of motion for the
reduced density matrix of the system is given by [30]

ρ̇S = − i

h̄
TrR[V (t),ρS(0) ⊗ ρF (0)]

− 1

h̄2 TrR

∫ t

0
[V (t),[V (t − τ ),ρS(t − τ ) ⊗ ρF (0)]]dτ,

(4)

where ρF is the density matrix for the squeezed vacuum
reservoir and is defined by ρF =∏k,sSk,s |0k0±k〉〈0k0±k|S†

k,s .
The squeezed operator Sk,s(ζ ) = exp(ζ ∗ak0+kak0−k −
ζa

†
k0+ka

†
k0−k), where ζ = r eiθ is the squeezing parameter

with the degree of squeezing r and the squeezing phase θ . For
simplicity, we can also assume that ck0 = ω0, i.e., the center
frequency of the squeezing field is equal to the transition
frequency of the atom.

For a squeezed vacuum reservoir, it can be shown that [30]

〈ak,s〉 = 〈a†
k,s〉 = 0, (5a)

〈a†
k,sak′,s ′ 〉 = sinh2 rδk′kδss ′ , (5b)

〈ak,sa
†
k′,s ′ 〉 = cosh2 rδk′kδss ′ , (5c)

〈a†
k,sa

†
k′,s ′ 〉 = −e−iθ cosh(r) sinh(r)δk′,2k0−kδss ′ , (5d)

〈ak,sak′,s ′ 〉 = −eiθ cosh(r) sinh(r)δk′,2k0−kδss ′ . (5e)

For simplicity, we can set the squeezing phase θ = 0. On
inserting these correlation functions into Eq. (4), we can obtain
the master equation (see Appendix A for the derivation):

dρS

dt
= −i

∑
i �=j


ij [S+
i S−

j ,ρS]ei(ωi−ωj )t

− 1

2

∑
i,j

γ ij (1 + N )(ρSS+
i S−

j + S+
i S−

j ρS

− 2S−
j ρSS+

i )ei(ωi−ωj )t

− 1

2

∑
i,j

γ ijN (ρSS−
i S+

j + S−
i S+

j ρS

− 2S+
j ρSS−

i )e−i(ωi−ωj )t − 1

2

∑
α=±

∑
i,j

γ ′
ijM e2αik0zR

× (ρSSα
i Sα

j + Sα
i Sα

j ρS − 2Sα
j ρSSα

i

)
, (6)
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where the first three terms are the same as in the thermal
reservoir and the last term is the collective decay due to the
squeezed vacuum. We have M = sinh(r)cosh(r) and average
photon number N = sinh2(r). The collective energy shifts 
ij

and decay rates γij due to the ordinary vacuum are given by
[31,32]


ij = 3

4
√

γiγj

{
− (1 − cos2 α)

cos(k0rij )

k0rij

+ (1 − 3 cos2 α)

[
sin(k0rij )

(k0rij )2
+ cos(k0rij )

(k0rij )3

]}
, (7)

γij = √
γiγjF (k0rij ), (8)

where γ = ω3
0μ

2

3πε0 h̄c3 is the spontaneous decay rate of the atom

in ordinary vacuum and F (x) = 3
2 {(1 − cos2 α) sin x

x
+ (1 −

3 cos2 α)[ cos x
x2 − sin x

x3 ]}. Different from the thermal reservoir
terms, the squeezed vacuum can contribute to the additional
collective two-photon decay rate of the system which is given
by

γ ′
ij = γ e2ik0RF (k0|r i + rj |). (9)

Thus the collective decay due to the squeezed vacuum depends
on the position of the center of mass of the emitters instead of
their separation. One may think this result is identical to the
previous work [9,10] except the phase e2ik0R , but that is not
true. No matter how the coordinate system is built, to reach
the neat form of Eq. (9), r i must still be interpreted as the
displacement from the center of squeezing sources to the ith
atom. When their center of mass is at equal distances from
all squeezing sources (i.e., ri + rj = 0), the decay induced by
the squeezing is the strongest due to the perfectly constructive
interference of the two-photon excitation from all directions.
It decreases when it deviates from the center due to the
destructive interference. The master equation shown in Eq. (6)
can be transformed to the Lindblad form [33] and the density
matrix is positive definite, which is proven in Appendix B.
The phase factor e2ik0zR can be effectively regarded as an
controllable phase of M , which can be incorporated into θ .

IV. WAVEGUIDE-QED IN THE SQUEEZED VACUUM

In practice, it is very difficult to squeeze all photon modes
in 3D case. Since squeezing in 1D is experimentally achiev-
able [28,29], in this section we discuss the dynamics of the
waveguide-QED in the squeezed vacuum. Here, we consider a
perfect rectangular waveguide with negligible loss out of the
waveguide as is shown in Fig. 1(a). We assume that the cross
section of the waveguide is a square with dimensions a × b.
The origin of the coordinate system is chosen to be at the center
of the two squeezing sources with the positions of the sources to
be (0,0, ± R). The emitters are located along the longitudinal
centerline of the waveguide at (0,0,ri) (i = 1,2, . . . ,Na) with
the squeezed vacuum injected from both ends by the parametric
process. Compared with the 3D case, the master equation in
the 1D case is the same as Eq. (6) except that the values of
γij ,γ

′
ij ,
ij are different.

Different from the free-space case, the square waveguide
can only support certain photon modes. The allowed TE and
TM modes are shown in Appendix C and their dispersion

FIG. 1. (a) Schematic setup for waveguide-QED in a 1D squeezed
vacuum where the vacuum is squeezed from both directions. (b) The
dispersion relations inside the waveguide. Here the atomic transition
frequency is 1.2cπ

a
, which is below the cutoff frequency of TE11 mode.

Considering the fact that the atomic dipole moment is along y axis
and Ey �= 0 only for TE10, we only need to consider TE10 mode in
our calculation.

relations are shown in Fig. 1(b). To simplify the problem, we
assume that the transition dipole moment of the emitter is along
the y direction and the size of the waveguide satisfies λ0/2 <

a < λ0/
√

2, where λ0 = 2πc/ω0 with ω0 being the transition
frequency of the emitter. In this case, the emitter is mainly
coupled to the TE10 mode [Fig. 1(b)]. The density of states
of the EM field in the waveguide is D(ν) = L

πc2
ν√

( ν
c

)2−( π
a

)2
.

The coupling strength between the emitter and the TE10 mode
is therefore given by g ≡ μ · E/h̄ = μ

√
ν/ε0LSh̄ [34]. The

single emitter decay rate due to the waveguide modes is

γ1d = 2π
∑

ν

|g(ν)|2δ(ω0 − ν) = 2μ2ω2
0

h̄ε0Sc2k0z

≡ ηγ0, (10)

where η = 3λ0λ0z/(2πa2) is the enhancement factor, λ0z =
2π/k0z is the effective longitudinal wavelength, and γ0 is the
spontaneous decay rate in the free space. Around the cutoff
frequency, we have k0z → 0 and therefore η → ∞, i.e., the
spontaneous decay rate can be greatly enhanced.

The master equation in the 1D waveguide is also given by
Eq. (6), but the coefficients are replaced by (see Appendix C
for detail calculations)

γij = γ1d cos(k0zrij ),


ij = γ1d

2
sin(k0zrij ),

γ ′
ij = γ1d cos[k0z(ri + rj )], (11)

where k0z =
√

( ω0
c

)2 − ( cπ
a

)2 is the wave vector along the waveg-
uide direction and rij = |ri − rj | is the separation between
two emitters. It is worth noting that Eq. (6) is valid not only
for the rectangular waveguide, but also for an arbitrary type
of waveguide with arbitrary atomic transition frequency. The
only difference for different types of waveguide and different
transition frequency is the value of γ1d in Eq. (10).

Similar to the 3D case, the two-photon decay rate induced
by the squeezed vacuum depends on the center of mass of
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FIG. 2. (a) Dephasing dynamics of a single emitter in the squeezed vacuum. The black and red solid curves are the results of σx and σy ,
respectively. The blue dotted line is the result when there is no squeezing (thermal reservoir). (b) The dephasing rates of σx and σy as a function
of the emitter position. For (a) and (b), the squeezing parameters are chosen to be r = 0.5.

the emitters. This can be explained by the interference shown
in Fig. 1(b). The emitters can absorb two photons from the
squeezing sources either from the left or the right. These
two processes can interfere with each other and we have
γ

′
ij ∝ S1

LS2
L + S1

RS2
R = 2 e2ik0zR cos[k0z(ri + rj )], which is a

periodic function with period λ0z. Thus, when the center of
mass happens to be at the antinodes (nodes) of the standing
wave, the two-photon decay rate is maximized (minimized).

A. One emitter

Our theory can be used to calculate the dynamics of an
arbitrary number of emitters. Let us first see the one-emitter
case. We still assume that the emitter is located at (0,0,δ), with
the transition dipole moment along the y axis. By eliminating
the terms with i �= j , the master equation shown in Eq. (6) is
reduced to the single-atom case which is given by

dρS

dt
= sinh(r) cosh(r)γ ′(e2ik0zRS+ρSS+ + H.c.)

− 1

2
γ cosh2(r)(ρSS+S− + S+S−ρS − 2S−ρSS+)

− 1

2
γ sinh2(r)(ρSS−S+ + S−S+ρS − 2S+ρSS−),

(12)

with γ = γ1d and γ ′ = γ1d cos(2k0δ). It is worth noting that
the squeezing terms like S+ρSS+ and S−ρSS− in Eq. (12) only
affect the nondiagonal terms but not the diagonal terms. Thus,
for single emitter, the squeezing can only modify the dephasing
rate rather than the population decay rate. We also notice that
the dephasing rate due to the squeezed vacuum is dependent
on the emitter position because the interference between the
two squeezing sources generates a standing wave.

The dynamical equations for the expectation value of σ+
and σ− are given by

d

dt

(〈σ+〉
〈σ−〉

)
= U

(〈σ+〉
〈σ−〉

)
, (13)

where

U = γ1d

(
−(N + 1

2 ) M e−2ik0zR cos(2k0zδ)

M e2ik0zR cos(2k0zδ) −(N + 1
2 )

)
.

(14)

The eigenvalues of U are γdp,± = [N + 1
2 ±

M cos(2k0zδ)]γ1d , which are the dephasing rate. In fact,
such a position-dependent property of the dephasing rate
can be associated with the variance in the quadrature phases
of the squeezed field at the site of the atom. Considering
the operator X(δ,α,β) = 1

2
√

2
(ei(k0z+kz)δak0z+kz

eiα +
ei(k0z−kz)δak0z−kz

eiβ + H.c.), which describes the entangled
modes of the two-mode squeezing, we can find its
variance �X(δ,α,β) = 1

2 [N + 1
2 − M cos(2k0zδ + α + β)].

Therefore, we have the relation that γdp,+ = 2�X(δ,α + β =
0) and γdp,− = 2�X(δ,α + β = π ).

We can see that when there is no squeezing, i.e., M = 0,
both σx and σy have the same dephasing rate cosh2(r)γ1d/2
[blue dotted line in Fig. 2(a)]. However, if there is squeezing,
i.e., M �= 0, σx and σy have different dephasing rates with one
being enhanced and the other one being suppressed [solid lines
in Fig. 2(a)]. The dephasing rate can be tuned by changing
the position of the emitter. In Fig. 2(b), it is shown that the
dephasing rates of σx and σy vary periodically as the emitter
position changes. At some regions, σx decays faster than σy ,
while at other regions, σx decays slower than σy . This result
challenges the traditional conclusion where the dephasing rate
is a position-independent constant [4,30].

The power spectrum of the resonance fluorescence can also
be calculated and the result is similar to Ref. [35] with the
simple replacements of M by Mγ ′ and the phase of M by
e2ik0zR .

B. Two emitters

Next, we consider the two-emitter case where dipole-dipole
interaction can occur and the two-photon process is allowed. In
Fig. 3(a), we show the dynamics of the transverse polarization
σx and σy . Here, we compare two different emitter separations
r12 = 0.5λ0z and r12 = 1.0λ0z. In both cases, the x and y
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FIG. 3. Two-emitter case: transverse polarization decay of the first emitter as a function of time. (a) r12 = 0.5λ0z for superscript (1) and
r12 = 1.0λ0z for superscript (2), r = 0.5, and rc = 0; (b) population decay as a function of time when r12 = 0.5λ0z, r = 0.5, and rc = 0. Solid
lines are the results in squeezed vacuum and the dotted lines are the results in the thermal reservoir with N = sinh2(r). Here the dynamics of
ρ++ and ρ−− are highly identical. (c) Dephasing rate as a function of atom separation with the center of mass fixed at rc = 0. (d) Dephasing
rate as a function of center-of-mass position with atom separation fixed at rij = λ0z, where the two-atom case is plotted in solid lines and the
five-atom case is plotted in dashed lines.

polarizations have the same decay dynamics in the thermal
reservoir. However, in the squeezed vacuum, the two orthog-
onal polarizations have different decay rates with one being
enhanced and the other being suppressed. When r12 = 0.5λ0z,
σx decays faster than that in the thermal reservoir, but σy

decays much slower than that in the thermal reservoir, while
the opposite result occurs when r12 = 1.0λ0z. This is similar
to the one-emitter case.

Different from the one-emitter case, as is shown in Fig. 3(b),
the squeezed vacuum can affect the population decay of the
two-emitter system. This is because the two-photon process
is allowed in the two-emitter system. Without the squeezed
vacuum, the system is finally in the thermal equilibrium state
(dotted lines). However, the squeezed vacuum can deplete the
populations on | + +〉 and | − −〉 with |±〉 = 1√

2
(|e1〉|g2〉 ±

|g1〉|e2〉). In fact, the atomic pair evolves into an entanglement
state in this case and we will discuss it later.

We also study the dephasing rate as a function of emitter
separation and position of the center of mass which are shown
in Figs. 3(c) and 3(d), respectively. Here the dephasing rate is
defined to be the inverse of time for σx(σy) to damp to 1/e of
its initial value. Similar to the one-emitter case, the dephasing
rate is a periodic function of both r12 and rc. However, due to
the dipole-dipole interaction, the dephasing rate is no longer a
constant even in the thermal reservoir [dotted line in Fig. 3(c)]

so that the value ranges of σx and σy are no longer the same in
the squeezed vacuum [solid lines in Fig. 3(c)]. It is noted that
when r12 = 0.5nλ0z (n is any integer) σy does not decay to 1/e

of its initial value due to the subradiance effect. When we fix
the atom separation and change the center of mass [Fig. 3(d)],
the dephasing rate changes periodically and harmonically
like the one-emitter case. Therefore, the dephasing rate is
tunable by changing the atom separation or position of center of
mass. Usually, the positions of the atoms are not easily tuned.
However, we can easily tune the position of the squeezing
sources to effectively change the center of mass of the atoms.
Figure 3(d) also shows the result when there are five emitters
(dashed lines). The dephasing rate is significantly increased
when Na increases due to the collective effect, which depends
on the number of atoms but not its parity.

C. Quantum entanglement

Quantum entanglement is an important resource of the
quantum information and quantum metrology [36,37]. Prepa-
ration of the maximum entangled state is still a central topic
of interest. It has been shown that stationary quantum entan-
glement can be dissipatively prepared by engineering the bath
environment [38–41]. By squeezing the environment, quantum
entanglement between emitters can be also created [42–44].
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FIG. 4. (a) Concurrence evolution of different initial states in squeezed vacuum, where r = 1, rc = 0, and r12 = 0.25λ0z. (b) Fidelity
evolution of different initial states in the same environment.

However, it is shown in Ref. [43] that stationary maximum
entanglement cannot be reached by the squeezed vacuum
for identical emitters. Here, we show that identical emitters
coupled to the 1D waveguide can also be driven to a stationary
maximum entangled NOON state by the squeezed vacuum as
long as the center of mass is put at the proper position.

The quantum entanglement can be measured
by the concurrence which is defined as [45] C ≡
max{0,λ1 − λ2 − λ3 − λ4} in which λ1,λ2,λ3,λ4 are
eigenvalues, in decreasing order, of the Hermitian matrix
R = √√

ρρ̃
√

ρ with ρ̃ = (σy

⊗
σy)ρ∗(σy

⊗
σy). For a pure

two-qubit state |�〉 = α|ee〉 + β|eg〉 + γ |ge〉 + |gg〉 with
|α|2 + |β|2 + |γ |2 + |δ|2 = 1, the concurrence is given by
C = max{0,2|αδ − βγ |}. The concurrence as a function of

time for different initial states is shown in Fig. 4(a), where
r = 1, rc = 0, and r12 = 0.25λ0z. Different curves correspond
to different initial states. We can see that no matter what the
initial state is, the two-emitter state will be driven to a very
high entangled state. To see what the stationary state is, we
also show the fidelity of the emitter state with respect to the
maximum entangled state 1√

2
(|gg〉 − |ee〉), which is shown in

Fig. 4(b). We can see that the stationary state is very close
to it. Therefore, under these parameters the two emitters can
be driven to the maximum entangled state which may find
important applications in quantum information and quantum
computation.

To find the stationary state analytically, we rewrite the
master equation in Eq. (6) as

ρ̇gg = −2Nγρgg + (N + 1)γ+ρ++ + (N + 1)γ−ρ−− + Mγ
′
12ρu, (15)

ρ̇ee = −2(N + 1)γρee + Nγ+ρ++ + Nγ−ρ−− + Mγ
′
12ρu, (16)

ρ̇++ = −(2N + 1)γ+ρ++ + (N + 1)γ+ρee + Nγ+ρgg − Mγ
′
+ρu, (17)

ρ̇−− = −(2N + 1)γ−ρ−− + (N + 1)γ−ρee + Nγ−ρgg − Mγ
′
−ρu. (18)

ρ̇u = −(2N + 1)γ11ρu − 2Mγ
′
+ρ++ − 2Mγ

′
−ρ−− + 2Mγ

′
12(ρee + ρgg), (19)

where ρee = 〈ee|ρ|ee〉, ρgg = 〈gg|ρ|gg〉, ρ±± = 〈±|ρ|±〉 with |±〉 = 1√
2
(|e1〉|g2〉 ± |g1〉|e2〉), ρu = e−2ik0zR〈ee|ρ|gg〉 +

e2ik0zR〈gg|ρ|ee〉, and γ = γ1d , γ± = γ1d [1 ± cos(k0zr12)], γ
′
12 = γ1d cos(2k0zrc), γ

′
± = γ1d{cos[2k0zrc] ± 1

2 [cos(2k0zr1) +
cos(2k0zr2)]}, with rc = (r1+r2)

2 . Then the steady-state solutions are given by

ρee = N [−1 − N − 2N2 + (−1 + N + 2N2) cos(4k0zrc)]

2(1 + 2N )[−1 − 2N − 2N2 + 2N (1 + N ) cos(4k0zrc)]
,

ρ++ =− N (1 + N )sin2(2k0zrc)

−1 − 2N − 2N2 + 2N (1 + N ) cos(4k0zrc)
,

ρ−− =− N (1 + N )sin2(2k0zrc)

−1 − 2N − 2N2 + 2N (1 + N ) cos(4k0zrc)
,

ρu = −2
√

N (1 + N ) cos(2k0zrc)

(1 + 2N )[−1 − 2N − 2N2 + 2N (1 + N ) cos(4k0zrc)]
, (20)
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where we have used the relation M2 = N (N + 1). Obvi-
ously, the population given by Eq. (20) differs from that
given by thermal reservoir: ρee(gg) = ρth

ee(gg) + �ρ,ρ++(−−) =
ρth

++(−−) − �ρ with �ρ = N(N+1) cos2(2k0zrc)
(1+2N)2[1+2N+2N2−2N(1+N) cos(4k0zrc)]

and ρth
ee = N2

(1+2N)2 , ρth
++ = ρth

−− = N(N+1)
(1+2N)2 , and ρth

gg = (1+N)2

(1+2N)2 ,
which obey the Boltzmann distribution. It is interesting that
the steady state depends only on the center of mass but not
on the separation between the two emitters. Meanwhile, it is
worth noting that the dark state cannot always be reached since
the ergodicity cannot be guaranteed under every condition.
For example, when cos(k0zr12) = 1, |+〉 becomes a dark state,
while it is |−〉 when cos(k0zr12) = −1.

Equation (20) shows that, as rc gets closer to n
4 λ0z, the mag-

nitude of γ ′
± gets closer to ±1 which leads to smaller population

on |+〉 and |−〉 as well as bigger concurrence. When the posi-
tion of the center mass rc = n

4 λ0z, the steady states are given by

ρgg = N + 1

(1 + 2N )
,

ρee = N

(1 + 2N )
,

ρ++ = ρ−− = 0,

ρu = (−1)n+1 2
√

N (1 + N )

(1 + 2N )
, (21)

which corresponds to the state |�s〉 = 1√
2N+1

(
√

N + 1|gg〉 +
(−1)n+1

√
N |ee〉). The concurrence of this state is given by

C = |ρu| − (ρ++ + ρ−−) = 2
√

N(N+1)
(2N+1) , which monotonically

increases with the average photon number N . When N → ∞,
C → 1, which is a maximum-entangled state 1√

2
(|gg〉 − |ee〉)

[ 1√
2
(|gg〉 + |ee〉)] with even (odd) n.

Figure 5(a) shows the dependence of the stationary quantum
entanglement on the photon number and the center-of-mass
position. It is clearly seen that when rc is close to n

4 λ0z

the system can be prepared in a high entangled state, while the
entanglement can never be formed when rc = 2n+1

8 λ0z because
the dipole-dipole interaction γ ′

12 vanishes. In experiments, the
center-of-mass position of emitters may be hard to control,
but it can be effectively controllable by setting the positions’
squeezing sources. Thus, as long as the pump beam in SPDC
is strong enough to guarantee the average photon number of
the squeezed vacuum, the emitters can definitely evolve into a
NOON state. While the dephasing rate is not very sensitive to
the fluctuations of the emitter positions, the stationary quantum
entanglement significantly depends on their center of mass.
Only when the center-of-mass position is around nλ/4, the
quantum entanglement is nonzero. In Fig. 5(b), we show half
the range of center of mass where the quantum entanglement
is nonzero. The larger the squeezing is, the more sensitive the
quantum entanglement is to the fluctuation of center of mass.
For example, when N = 1, a deviation of about 0.04λ from
nλ/4 will make the entanglement vanish.

D. Resonance fluorescence

In this subsection, we study how the squeezing can affect the
resonance fluorescence of the waveguide-QED system. In the

(a)

(b)

FIG. 5. (a) Concurrence of the steady state as a function of average
photon number N = sinh(r)2 and the position of the center mass
rc = r1+r2

2 . (b) The impact of rc’s fluctuations on concurrence for
different average photon number N . �rc is the distance from n

4 λ0z to
the position where the entanglement vanishes.

following we study how the collective interaction, squeezing
phase, squeezing degree, emitter separation, and the center of
mass affect the resonance fluorescence of this system.

The power spectrum of the resonance fluorescence is given
by [30,46,47]

S(ω) ∝ Re
∫ ∞

0
dτ Tr[σ−(τ )σ+(0)]eiωτ , (22)

where we assume that the detector is perpendicular to the
waveguide and σ± = σ±

1 + σ±
2 for the two-emitter exam-

ple. The two-time correlation function in the integration can
be calculated by the quantum regression theorem. Usually, the
analytical result of Eq. (22) is difficult to get. However, we
can resort to the numerical method to calculate the resonance
fluorescence [48].

To observe the resonance fluorescence, we need to apply an
external coherent driving field. The master equation is given
by

dρ

dt
= −i[V,ρ] + Lρ, (23)

where Lρ is the right-hand side of Eq. (6) and V =
�R

2 e−iα(e−ik0zr1σ−
1 + e−ik0zr2σ−

2 ) + H.c. is the interaction be-
tween the driving field and the emitters with Rabi frequency
�R = d·E

h̄
. From Eq. (23) we can evolve and obtain the steady
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FIG. 6. Resonance fluorescence spectrum of the two-emitter system inside a 1D waveguide. For better comparison, the spectra are normalized
to the intensity at ω = ω0 with the coherent elastic scattering singularity removed. Coherent driving Rabi frequency is �R = 4γ . In (a) and (b),
the solid curves are the spectra for the coupled emitters, while the dashed curves are the spectra without emitter-emitter coupling. Parameters:
(a) r1 = 0, r2 = 0.01λ0z, and squeezing parameter r = 0.5. (b) r1 = 0, r2 = 0.25λ0z, and r = 0.5. (c) r1 = 0, r2 = λ0z, φ = π/2, r = 0.5
for black line, and r = 1 for red line. (d) r1 = −0.125λ0z, r2 = 0.125λ0z for the red line; r1 = −0.25λ0z, r2 = 0.25λ0z for the black line.
φ = 0, r = 0.5.

state of the system ρss . Next we use (σ−
1 + σ−

2 )ρss as the initial
condition to solve a density matrix c(t), which obeys the same
equation of motion asρ in Eq. (23). The resonance fluorescence
spectrum is then given by [48]

S(ω) ∝ Re
∫ ∞

0
dτ Tr[c(τ )(σ+

1 + σ+
2 )]eiωτ . (24)

In Figs. 6(a) and 6(b) we compare the resonance fluores-
cence spectrum with and without the dipole-dipole interaction
for different squeezing phases and emitter separations. When
r12 = 0.01λ0z and φ = 0 we can see that the spectrum is very
different with and without dipole-dipole interaction. Without
dipole-dipole interaction, the spectrum is very similar to the
typical Mollow triplet (red dashed line). However, with dipole-
dipole interaction, there is a very narrow peak around the
center frequency (red solid line). This is due to the subradiant
state induced by the dipole-dipole interaction. On the contrary,
whenφ = π/2 the spectrum with and without the dipole-dipole
interaction is very similar (black solid and dashed lines).
From Fig. 6(b) we see that with dipole-dipole interaction, the

spectrum can be asymmetric, i.e., the positive and negative
sidebands are different.

In Fig. 6(c) we compare the spectrum with different squeez-
ing degrees. We can see that greater squeezing parameter leads
to the power spectrum in weak-driving-field limit (sidebands
disappear). Figure 6(d) shows that different emitter separation
has different spectrum. This is not only due to atomic interac-
tion which is described by γ12,γ

′
12,
12, but also due to their

positions which determine the values of γ ′
ii , i.e., the effective

phase and magnitude of M . Comparing the red solid curve in
Fig. 6(b) and the red dashed curve in Fig. 6(d) we can see
that different center-of-mass positions can also have different
resonance fluorescence.

V. SUMMARY

We modify the usual squeezed vacuum mode function to
include the position information of the squeezing source and
derive a master equation of the atom dynamics based on
the Weisskopf-Wigner approximation. In our formalism, the
density matrix is positive definite. We then apply this theory
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to the 1D waveguide-QED system where the squeezing in one
direction is experimentally achievable. We show that the en-
hancement and suppression of the dephasing rate caused by the
squeezed vacuum is actually position dependent. In the single-
atom case, the squeezing does not affect its population dynam-
ics. However, in the multiatom case, the squeezing can strongly
affect the population dynamics of the system because two-
photon absorption and emission are allowed in the multiatom
system. We also show that dipole-dipole interaction influences
dephasing rate and we can tune the position of the squeezing
source to tune the dephasing rate of the system. Moreover, we
show that a stationary entangled state can be achieved in this

system independent of the initial state and the emitter separa-
tion. Particularly, when the center of mass is close to nλ0z/4
and the squeezing is large, the system can be prepared in a GHZ
state. Moreover, we study the power spectrum of the resonance
fluorescence. It is demonstrated that the phase of the squeezed
vacuum, emitter separation, and the center-of-mass position
can affect the bandwidth and the intensity of the sidebands.
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APPENDIX A: DERIVATION OF EQ. (6)

Here we show how to derive the master equation (6). We start from a more general case where atoms are not identical but
ωi ≈ ωj , and we make the squeezing center frequency ω0 =∑

i

ωi/ l. Then we can rewrite the interaction Hamiltonian in Eq. (3)

as

V (t) = −ih̄
∑

ks

[D(t)aks(t) − D+(t)a†
ks(t)], (A1)

where

D(t) =∑
i

[μi · uk,s(ri)S
†
i (t) + μ∗

i · uk,s(ri)S
−
i (t)]. (A2)

Since 〈ak,s〉 = 〈a†
k,s〉 = 0, the first term in Eq. (4) vanishes. Therefore, we have

dρS

dt
= − 1

h̄2

∫ t

0
dτ TrF {[V (t),[V (t − τ ),ρS(t − τ )ρF }

= − 1

h̄2

∫ t

0
dτ TrF {V (t)V (t − τ )ρS(t − τ )ρF + ρS(t − τ )ρF V (t − τ )V (t)

−V (t)ρS(t − τ )ρF V (t − τ ) − V (t − τ )ρS(t − τ )ρF V (t)}. (A3)

Here we just show how to deal with the first term in Eq. (A3); the remaining terms can be calculated in the same way. For the
first term, we have

− 1

h̄2

∫ t

0
dτ TrF {V (t)V (t − τ )ρS(t − τ )ρF }

=
∫ t

0
dτ
∑

ks,k′s ′
{D(t)D(t − τ )TrF [ρF aks(t)ak′s ′ (t − τ )] − D(t)D+(t − τ )TrF [ρF aks(t)a

†
k′s ′ (t − τ )]

−D+(t)D(t − τ )TrF [ρF a
†
ks(t)ak′s ′ (t − τ )] + D+(t)D+(t − τ )TrF [ρF a

†
ks(t)a

†
k′s ′ (t − τ )]ρS(t − τ )}. (A4)

Using Eq. (A2) and the correlation function Eqs. (5a)–(5e), under the rotating wave approximation (RWA), we have

− 1

h̄2

∫ t

0
dτ TrF {V (t)V (t − τ )ρS(t − τ )ρF }

=
∑
ij

∑
ks,k′s ′

∫ t

0
dτ {μi · uks(ri)S

+
i eiωi tμj · uk′s ′ (rj )S+

j eiωj (t−τ )e−i(ωks+ωk′s′ )t+iωk′s′ τ [− sinh(r) cosh(r)δk′,2k0−kδss ′ ]

−μi · uks(ri)S
+
i eiωi tμ∗

j · u∗
k′s ′ (rj )S−

j e−iωj (t−τ )e−iωk′s′ τ cosh2 rδkk′δss ′

−μ∗
i · uks(ri)S

−
i e−iωi tμj · u∗

k′s ′ (rj )S+
j eiωj (t−τ )e−iωk′s′ τ cosh2 rδkk′δss ′

−μ∗
i · u∗

ks(ri)S
−
i e−iωi tμj · uk′s ′ (rj )S+

j eiωj (t−τ )eiωk′s′ τ sinh2 rδkk′δss ′

−μi · u∗
ks(ri)S

+
i eiωi tμ∗

j · uk′s ′ (rj )S−
j e−iωj (t−τ )eiωk′s′ τ sinh2 rδkk′δss ′

+μ∗
i · u∗

ks(ri)S
−
i e−iωi tμ∗

j · u∗
k′s ′ (rj )S−

j e−iωj (t−τ )ei(ωks+ωk′s′ )t−iωk′s′ τ [− sinh(r) cosh(r)δk′,2k0−kδss ′ ]}ρS(t − τ ), (A5)
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where we have the relationship
∑

k
→ L3

(2π)3

∫
k2dk

∫
�k

. In Ref. [30], it has been shown that

L3

(2π )3

∫
k2dk

∫
�k

∑
s

μi · uks(ri)μ
∗
j · u∗

ks(rj ) ≈
√

γiγj

2πω3
0

∫ ∞

0
dω ω3F (krij ), (A6)

with

F (krij ) = 3

2

{
[1 − cos2 α]

sin(krij )

krij

+ [1 − 3 cos2 α]

[
cos(krij )

(krij )2
− sin(krij )

(krij )3

]}
,

γi = ω3
i μ

2
i

3πε0h̄c3
, (A7)

where r ij = r i − rj , rij = |r ij |, α is the angle between r ij and μi , and the approximation in Eq. (A6) becomes equality when
ω1 = ω2. We can also show that

L3

(2π )3

∫
k2dk

∫
�k

∑
s

μi · uks(ri)μj · u2k0−k,s(rj ) ≈
√

γiγj

2πω3
0

∫ ∞

0
dω ω2

√
ω(2ω0 − ω)F

(
k0

∣∣∣∣ k

k0
r ij + 2rj

∣∣∣∣)e2ik0R, (A8)

where R is the distance from the sources to the center mass of two atoms and the approximation becomes equality when ω1 = ω2.
Next, we will show how to calculate the first and the second terms in Eq. (A5) and the remaining terms can be approached in the
same way. Using Eq. (A6), the second term in Eq. (A5) can be simplified as∑

ks

∫ t

0
dτ μi · uks(ri)S

+
i eiωi tμ∗

j · u∗
ks(rj )S−

j e−iωj (t−τ )e−iωks τ cosh2 rρS(t − τ )

= cosh2 r

√
γiγj

2πω3
0

∫ t

0
dτ

∫ ∞

0
dω ω3F (krij )ei(ωi−ωj )t ei(ωj −ωk)τ S+

i S−
j ρS(t − τ ), (A10)

with F (krij ) given in Eq. (A7). We calculate here the integral of the first term in F (krij ) (i �= j ) and the other terms can be
calculated similarly:

cosh2 r

√
γiγj c

4

2πω3
0

3

2

∫ t

0
dτ

∫ ∞

0
dk k3 sinkrij

krij

ei(ωj −ωk)τ S+
i S−

j ρS(t − τ )ei(ωi−ωj )t

= cosh2 r

√
γiγj c

4

2πω3
0

3

2

∫ t

0
dτ

∫ ∞

−∞
dk k2 1

2irij

(ei(k−kj )rij +ikj rij − e−i(k−kj )rij −ikj rij )e−i(k−kj )cτ S+
i S−

j ρS(t − τ )ei(ωi−ωj )t

≈ cosh2 r

√
γiγj c

4

2πω3
0

3

2

∫ t

0
dτ k2

j

1

irij

[δ(rij − cτ )eikj rij − δ(rij + cτ )e−ikj rij ]S+
i S−

j ρS(t − τ )ei(ωi−ωj )t

≈ cosh2 r

√
γiγj c

4

2πω3
0

3

2
k2
j

π

icrij

eikj rij S+
i S−

j ρS(t)ei(ωi−ωj )t

≈ 3

4
√

γiγj cosh2 r
eik0rij

ik0rij

S+
i S−

j ρS(t)ei(ωi−ωj )t . (A11)

In the second line of the equations, we replace
∫∞

0 dk by
∫∞
−∞ dk since the main contribution comes from the frequency around

ω0 and the negative frequency part leads to a fast-oscillating term such that its integration
∫ t

0 dτ vanishes. From the second line
to the third line, the Weisskopf-Wigner approximation [30] is applied and k is replaced by kj because the contribution comes
mainly from the resonant frequency. From the third line to the fourth line, we assume that the two atoms are very close that the
time-retarded effect can be neglected. In the last line, we use the fact that ωi ≈ ω0.

The other terms in Eq. (A10) can be calculated in a similar way and the result is given by
√

γiγj

2πω3
0

∫ t

0
dτ

∫ ∞

0
dk k3F (krij )ei(ωi−ωj )t ei(ωj −ωk)τ S+

i S−
j ρS(t − τ ) =

(
1

2
γij + i
ij

)
S+

i S−
j ρS(t)ei(ωi−ωj )t , (A12)

where


ij = 3

4
√

γiγj

{
−(1 − cos2 α)

cos(k0rij )

k0rij

+ (1 − 3 cos2 α)

[
sin(k0rij )

(k0rij )2
+ cos(k0rij )

(k0rij )3

]}
,

γij = √
γiγjF (k0rij ).

(A13)
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All the other terms with the combination of S+
i and S−

i can also be calculated in the same way. Thus all the thermal terms and
oscillation terms in Eq. (6) can be given.

Next we need to calculate the squeezed vacuum terms including S+
i S+

j or S−
i S−

j . Here we show the calculation of the first
term in Eq. (A5) as an example. By inserting Eq. (A8), the first term of Eq. (A5) yields

∑
ks,k′s ′

∫ t

0
dτ

∫
d3k μi · u2k0−k,s(ri)μj · uks(rj )ei(ωks−ωj )τ S+

i S+
j ρS(t − τ )

=
√

γiγj c
4

2πω3
0

∫ t

0
dτ

∫ 2k0

0
dk k2

√
k(2k0 − k)F

(
k0

∣∣∣∣ k

k0
r ij + 2rj

∣∣∣∣)ei(ωk−ωj )τ S+
i S+

j ρS(t − τ )e2ik0R

≈
√

γiγj c

2π

∫ t

0
dτ

∫ ∞

−∞
dk F

(
k0

∣∣∣∣ k

k0
r ij + 2rj

∣∣∣∣)ei(ωk−ω0)τ S+
i S+

j ρS(t − τ )e2ik0R. (A14)

From the second line to the third line, the integral limit is extended to ±∞ and k2√k(2k0 − k) is pulled out as k3
0 according

to the Weisskopf-Wigner approximation. To calculate one term with fixed i,j , we need to rebuild the coordinate system where
r i + rj = 0 for i �= j (we need to build different coordinate systems for different pairs of i,j ). For example, we consider here
the first two atoms, i,j = 1,2. When i = j , this term directly gives 1

2γ cosh2 rF (2k0|rj |)S+
i S+

i ρS(t). When i �= j , since there
is a singular point at k = k0, the calculation is a little bit more complicated but can still be calculated. We have the following
integrals: ∫ ∞

−∞
dk

sin krij

krij

e−ikcτ = π

rij

θ1(rij − cτ ),∫ ∞

−∞
dk
[cos krij

(krij )2
− sin krij

(krij )3

]
e−ikcτ = π (cτ − rij )(cτ + rij )

2r3
ij

θ2(rij − cτ ), (A15)

where θ1,2(x) are step functions: θ1,2(x) = 0 when x < 0, θ1,2(x) = 1 when x > 0, and θ1(0) = 1/2 and θ2(0) = 0. Since
F (k0| k

k0
r ij + 2rj |) = F [(k − k0)r12], we have

∫ t

0
dτ

∫ ∞

−∞
dk F [(k − k0)r12]ei(ω0−ωk)τ ρS(t − τ )

=
∫ rij

c

0
dτ

3

2

[
(1 − cos2 α)

π

rij

+ (1 − 3 cos2 α)
π (cτ − rij )(cτ + rij )

2r3
ij

]
ρS(t − τ )

≈ π

c
ρS(t).

(A16)

In Eq. (A16), the emitter separation is assumed to be small and the Markovian approximation is applied such that ρS(t − τ ) ≈
ρS(t). Hence Eq. (A14) gives sinh r cosh r

γ ′
ij

2 S+
i S+

j ρS(t) with γ ′
ij = e2ik0RγF (k0|r i + rj |) after transforming the above results

to the original coordinate system [although replacing k by k0 in Eq. (A14)’s last line yields the same result, it is not always safe
to do so since F (x) is an oscillating function]. Having dealt with all the squeezed vacuum terms, we can get

dρS

dt
= − 1

2

∑
α=±

∑
i,j

γ ′
ijM
(
ρSSα

i Sα
j + Sα

i Sα
j ρS − 2Sα

j ρSSα
i

)
− 1

2

∑
i,j

γ ij (1 + N )(ρSS+
i S−

j + S+
i S−

j ρS − 2S−
j ρSS+

i )ei(ωi−ωj )t

− 1

2

∑
i,j

γ ijN (ρSS−
i S+

j + S−
i S+

j ρS − 2S+
j ρSS−

i )e−i(ωi−ωj )t

− i
∑
i �=j


ij [S+
i S−

j ,ρS]ei(ωi−ωj )t

(A17)

and Eq. (6) is the special case when ωi = ω0.
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APPENDIX B: POSITIVE DEFINITENESS OF DENSITY MATRIX

In the following we will show that Eq. (6) can be written in the Lindblad equation and it is positive definite:

dρS

dt
= −i

∑
i

[H,ρS] +∑
m,n

hnm

(
LnρL

†
m − 1

2 (ρL
†
mLn + L

†
mLnρ)

)
, (B1)

where

H =
∑
i �=j


ijS
+
i S−

j ,

L1 = S+
1 , L2 = S+

2 , L3 = S−
3 , L4 = S−

4 ,

h =

⎡⎢⎢⎢⎣
γ11 sinh2 r γ12 sinh2 r γ ′

11 sinh r cosh r γ ′
12 sinh r cosh r

γ12 sinh2 r γ11 sinh2 r γ ′
12 sinh r cosh r γ ′

11 sinh r cosh r

γ ′
11 sinh r cosh r γ ′

12 sinh r cosh r γ11 cosh2 r γ12 cosh2 r

γ ′
12 sinh r cosh r γ ′

11 sinh r cosh r γ12 cosh2 r γ11 cosh2 r

⎤⎥⎥⎥⎦. (B2)

Here, for simplicity, we have already used the relations γ ′
12 = γ ′

21, γ12 = γ21, γ11 = γ22, and γ ′
11 = γ ′

22. The last relation γ ′
11 = γ ′

22
is not always satisfied, but without it we cannot diagonalize matrix h analytically. Hence we set ri + rj = 0. Now matrix h can
be diagonalized:

h = u†

⎡⎢⎢⎢⎣
ζ1

ζ2

ζ3

ζ4

⎤⎥⎥⎥⎦u, (B3)

where u is a unitary matrix, and

ζ1 = 1

2

[
(γ11 − γ12)(1 + 2 sinh2 r) −

√
(γ11 − γ12)2 + 4 sinh2 r cosh2 r(γ ′

11 − γ ′
12)2

]
,

ζ2 = 1

2

[
(γ11 − γ12)(1 + 2 sinh2 r) +

√
(γ11 − γ12)2 + 4 sinh2 r cosh2 r(γ ′

11 − γ ′
12)2

]
,

ζ3 = 1

2

[
(γ11 + γ12)(1 + 2 sinh2 r) −

√
(γ11 + γ12)2 + 4 sinh2 r cosh2 r(γ ′

11 + γ ′
12)2

]
,

ζ4 = 1

2

[
(γ11 + γ12)(1 + 2 sinh2 r) +

√
(γ11 + γ12)2 + 4 sinh2 r cosh2 r(γ ′

11 + γ ′
12)2

]
.

(B4)

We noticed that since |γ11 − γ12| = |γ ′
11 − γ ′

12| for ri + rj = 0, none of the eigenvalues is negative, so the density matrix is
completely positive for any initial condition. For arbitrary ri,rj , we can only get the positive eigenvalues numerically.

APPENDIX C: DERIVATION OF EQ. (11)

Now let’s consider the perfect rectangular waveguide with cross section a × b. The rectangular waveguide can support both
TE and TM electric-field modes and they are given as follows (to get a neat expression of field equation, we set the origin of our
coordinate system at the corner of the waveguide):

ETM
z = E0sin

mπx

a
sin

nπy

b
eikzz, H TE

z = H0 cos
mπx

a
cos

nπy

b
eikzz,

ETM
x = E0

ikz

h2
mn

mπ

a
cos

mπx

a
sin

nπy

b
eikzz, ETE

x = H0
iωkμ

h2
mn

nπ

a
cos

mπx

a
sin

nπy

b
eikzz,

ETM
y = E0

ikz

h2
mn

nπ

a
sin

mπx

a
cos

nπy

b
eikzz, ETE

y = −H0
iωkμ

h2
mn

mπ

a
sin

mπx

a
cos

nπy

b
eikzz,

H TM
x = E0

iωkε

h2
mn

nπ

a
sin

mπx

a
cos

nπy

b
eikzz, H TE

x = −H0
ikz

h2
mn

mπ

a
sin

mπx

a
cos

nπy

b
eikzz,

H TM
y = −E0

iωkε

h2
mn

mπ

a
cos

mπx

a
sin

nπy

b
eikzz, H TE

y = −H0
ikz

h2
mn

nπ

a
cos

mπx

a
sin

nπy

b
eikzz, (C1)
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where hmn =
√

( mπ
a

)2 + ( nπ
b

)2, ε(μ) is the permittivity (permeability), and H0,E0 are arbitrary constants. For quantized modes,

we have E0 = √4h̄h2
mn/ε

2μνLS and H0 = √4h̄h2
mn/εμ

2νLS [34]. The dispersion relation inside the waveguide is given by
ω2

k/c
2 = (mπ/a)2 + (nπ/b)2 + k2

z . For simplicity, we consider here the waveguide with square cross section, i.e., a = b, and the
dispersion curves of different modes are shown in Fig. 1(b). For square waveguide, TEmn(TMmn) and TEnm(TMnm) modes are
degenerate and TE10 and TE01 have the lowest energy.

We assume that all emitters’ transition frequencies are the same and they are below the cutoff frequency of TE11 and TM11

modes. Since the rectangular waveguide cannot support the TM10 and TM01 mode, the emitter can only couple to the TE01 or
TE10 modes. Here, without loss of generality we assume that the transition dipole moment of the emitter is in the y direction.
Thus it can only couple to the TE10 mode. The emitters are assumed to be located at the center of the waveguide cross section,

i.e., ( a
2 , a

2 ,ri) and ( a
2 , a

2 ,rj ). In this case, the mode function for TE10 mode is given by ukz
(r i) =

√
ωkz h̄

ε0LS
ŷ eikz(r−okz ) with S = a2.

By reducing the cross section, we can increase the amplitude of the mode function and therefore the coupling strength.
Compared with the free-space case shown in Appendix A, the only modification to the calculation for the waveguide is∑
ks →∑

kz
in Eq. (A5). We calculate here the first and the second term in Eq. (A5) to show how to get Eq. (6) and Eq. (11).

For the second term, we have

−
∑
kz

∫ t

0
dτ μi · uks(ri)S

+
i eiω0tμ∗

j · u∗
k′s ′ (rj )S−

j e−iω0(t−τ )e−iωk′s′ τ cosh2 rρS(t − τ )δkk′δss ′

= − L

2π

∫ ∞

−∞
dkz

∫ t

0
dτ eiω0τ e−iωkz τ

ωkμ
2

ε0LSh̄
eikz(ri−rj ) cosh2 rS+

i S−
j ρS(t − τ )

≈ − L

2π

∫ ∞

0
dkz

∫ t

0
dτ eiω0τ e−i[ω0+c2k0z(kz−k0z)/ω0]τ ωkμ

2

ε0LSh̄
[eikz(ri−rj ) + e−ikz(ri−rj )] cosh2 rS+

i S−
j ρS(t − τ )

≈ − L

2π

∫ ∞

−k0z

dδ kz

∫ t

0
dτ e−iτc2k0zδkz/ω0

ωkμ
2

ε0LSh̄
[ei(k0z+δkz)(ri−rj ) + e−i(k0z+δkz)(ri−rj )] cosh2 rS+

i S−
j ρS(t − τ )

≈ − L

2π

∫ ∞

−∞
dδ kz

∫ t

0
dτ e−i(c2k0zδkz/ω0)τ ωkμ

2

ε0LSh̄
[ei(k0z+δkz)(ri−rj ) + e−i(k0z+δkz)(ri−rj )] cosh2 rS+

i S−
j ρS(t − τ )

≈ − L

2π

∫ t

0
dτ

ω0μ
2

ε0LSh̄
2π

[
eik0z(ri−rj )δ

(
(ri − rj ) − c2k0z

ω0
τ

)
+ e−ik0z(ri−rj )δ

(
(ri − rj ) + c2k0z

ω0
τ

)]
cosh2 rS+

i S−
j ρS(t − τ )

≈ − L

2π
eik0zrij

ω0μ
2

ε0LSh̄
2π

ω0

c2k0z

cosh2 rS+
i S−

j ρS(t)

≈ −
[γ1d

2
cos(k0zrij ) + i

γ1d

2
sin(k0zrij )

]
cosh2 rS+

i S−
j ρS(t)

≡ −
(γij

2
+ i
ij

)
cosh2 rS+

i S−
j ρS(t), (C2)

where emitter separation rij = |ri − rj |, γ1d = 2μ2ω2
0/h̄ε0Sc2k0z is the spontaneous decay rate in the waveguide as is shown in

Eq. (10), γij = γ1d cos(k0zrij ) is the collective decay rate, and 
ij = γ1d sin(k0zrij )/2 is the collective energy shift. In the third

line we expand ωk = c
√

( π
a

)2 + (kz)2 around kz = k0z, since resonant modes provide dominant contributions. In the fifth line we

extend the integration
∫∞
−k0z

dkz → ∫∞
−∞ dkz because the main contribution comes from the components around δkz = 0. In the

next line, the Weisskopf-Wigner approximation is used. Thus we have obtained γij and 
ij as is shown in Eq. (11).
Next we need to calculate the first term (squeezing term) in Eq. (A5):

∑
kz

∫ t

0
dτ μi · u2k0−k(ri)S

+
i μj · uk(rj )S+

j ei(ωk−ω0)τ [− sinh(r) cosh(r)]ρS(t − τ )

= − L

2π

∫ 2k0z

0
dkz

∫ t

0
dτ ei(ωkz −ω0)τ ei(2k0z−kz)(ri−o1)eikz(rj −o1)

√
ωkz

ω2k0z−kz
μ2

ε0LSh̄
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

− L

2π

∫ 0

−2k0z

dkz

∫ t

0
dτ ei(ωkz −ω0)τ ei(−2k0z−kz)(ri−o2)eikz(rj −o2)

√
ωkz

ω−2k0z−kz
μ2

ε0LSh̄
sinh(r) cosh(r)S+

i S+
j ρS(t − τ ).

(C3)
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For i = j , Eq. (C3) reduces to∑
kz

∫ t

0
dτ μi · u2k0−k(ri)S

+
i μj · uk(rj )S+

j ei(ωk−ω0)τ [− sinh(r) cosh(r)]ρS(t − τ )

= − L

2π

∫ 2k0z

0
dkz

∫ t

0
dτ e

i
c2k0z

ω0
(kz−k0z)τ

ei2k0z(ri−o1)
√

ωkz
ω2k0z−kz

μ2

ε0LSh̄
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

− L

2π

∫ 0

−2k0z

dkz

∫ t

0
dτ e

i
c2k0z

ω0
(kz−k0z)τ

e−i2k0z(ri−o2)
√

ωkz
ω−2k0z−kz

μ2

ε0LSh̄
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

= − L

2π
[ei2k0z(ri−o1) + e−i2k0z(ri−o2)]

ωk0z
μ2

ε0LSh̄

∫ t

0
dτ 2πδ

(
c2k0z

ω0
τ

)
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

= − L

2π
[ei2k0z(ri−o1) + e−i2k0z(ri−o2)]

ωk0z
μ2

ε0LSh̄

∫ t

0
dτ 2πδ

(
c2k0z

ω0
τ

)
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

= −ei2k0zR
ω2

0μ
2

ε0h̄Sc2k0z

cos(2k0zri) sinh(r) cosh(r)S+
i S+

j ρS(t)

= −ei2k0zR
γ1d

2
cos(2k0zri) sinh(r) cosh(r)S+

i S+
j ρS(t),

(C4)

where we have used the fact that the origin of coordinate system is at equal distance from two sources (i.e., o2 = −o1 = R) in
the second to last line. Thus we have γ ′

ii = γ1d cos(2k0zri). For i �= j , Eq. (C3) reduces to∑
kz

∫ t

0
dτ μi · u2k0−k(ri)S

+
i μj · uk(rj )S+

j ei(ωk−ω0)τ [− sinh(r) cosh(r)]ρS(t − τ )

= − L

2π

∫ 2k0z

0
dkz

∫ t

0
dτ e

i
c2k0z

ω0
(kz−k0z)τ

ei2k0z(rc−o1)e−i(kz−k0z)(ri−rj )
√

ωkz
ω2k0z−kz

μ2

ε0LSh̄
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

− L

2π

∫ 0

−2k0z

dkz

∫ t

0
dτ e

i
c2k0z

ω0
(−kz−k0z)τ

e−i2k0z(rc−o2)e−i(kz+k0z)(ri−rj )
√

ωkz
ω−2k0z−kz

μ2

ε0LSh̄
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

= − L

2π

∫ 2k0z

0
dkz

∫ t

0
dτ e

i
c2k0z

ω0
(kz−k0z)τ

ei2k0z(rc−o1)e−i(kz−k0z)(ri−rj )
√

ωkz
ω2k0z−kz

μ2

ε0LSh̄
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

− L

2π

∫ 2k0z

0
dkz

∫ t

0
dτ e

i
c2k0z

ω0
(kz−k0z)τ

e−i2k0z(rc−o2)e−i(−kz+k0z)(ri−rj )
√

ω−kz
ω−2k0z+kz

μ2

ε0LSh̄
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

= − L

2π
ei2k0z(rc−o1) ωk0z

μ2

ε0LSh̄

∫ ∞

−∞
dkz

∫ t

0
dτ e

i
c2k0z

ω0
(kz−k0z)τ

e−i(kz−k0z)(ri−rj ) sinh(r) cosh(r)S+
i S+

j ρS(t − τ )

− L

2π
e−i2k0z(rc−o2) ωk0z

μ2

ε0LSh̄

∫ ∞

−∞
dkz

∫ t

0
dτ e

i
c2k0z

ω0
(kz−k0z)τ

ei(kz−k0z)(ri−rj ) sinh(r) cosh(r)S+
i S+

j ρS(t − τ )

= − L

2π
ei2k0zR

ω0μ
2

ε0LSh̄

∫ t

0
dτ 2π

[
ei2k0zrc δ

(
ri − rj − c2k0z

ω0

τ

)
+ e−i2k0zrc δ

(
ri − rj + c2k0z

ω0

τ

)]
sinh(r) cosh(r)S+

i S+
j ρS(t − τ )

= −ei2k0zR
ω2

0μ
2

ε0h̄Sc2k0z

ei2k0zrcsgn(i−j )S+
i S+

j ρS(t) → −γ1d

2
ei2k0zR cos[k0z(ri + rj )]S+

i S+
j ρS(t),

(C5)

where sgn(i − j ) is the sign function. The last arrow is because we need to sum over i,j , so the imaginary part of ei2k0zrcsgn(i−j )

vanishes and the neat result is that γ ′
ij = ei2k0zRγ1d cos[k0z(ri + rj )]. As for S+

i ρS(t)S+
j terms, the combination of the last two

terms in Eq. (A3) will make the imaginary part of ei2k0zrcsgn(i−j ) vanish. Thus we have γ ′
ij = ei2k0zRγ1d cos[k0z(ri + rj )]. If one

needs to get γij , γ ′
ij , and 
ij in the unidirectional waveguide case, we just need to discard the second terms in the parentheses of

Eq. (C2) and Eq. (C5).
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