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Floquet engineering of localized propagation of light in a waveguide array
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The light propagating in a waveguide array or photonic lattice has become an ideal platform to control light
and to mimic quantum behaviors in a classical system. We here investigate the propagation of light in a coupled
waveguide array with one of the waveguides periodically modulated in its geometric structure or refractive index.
Within the framework of Floquet theory, it is interesting to find that the light shows the localized propagation in
the modulated waveguide as long as bound quasistationary modes are formed in the band-gap area of the Floquet
eigenvalue spectrum. This mechanism gives a useful instruction to confine light via engineering the periodic
structure to form the bound modes. It also serves as a classical simulation of decoherence control via temporally
periodic driving in open quantum systems.
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I. INTRODUCTION

Dynamic localization, which generally involves electronic
motion in a tight-binding crystalline lattice, means the suppres-
sion of quantum diffusion by an external potential. It includes
Bloch oscillation induced by dc fields [1] and Anderson
localization induced by disorder [2] in the static case, and
dynamic localization induced by ac fields in the nonequilib-
rium case [3,4]. However, it is not easy to directly observe
the dynamic localization of electrons in solid systems due to
the severe decoherence effect of the electrons caused by the
thermal oscillation of the lattices and correlation effect between
electrons. It was found that the diverse quantum behaviors of
electrons moving in the lattice can be classically simulated
by the light tunneling in optical waveguide arrays [5–10].
Combined with the modern nanofabrication techniques of
optical waveguides and photonic lattices in a highly clean level,
this opens an avenue to directly visualize quantum behaviors
in classical optical systems [11–13].

The formal similarity of the propagation equation of light
in optical waveguide array to the Schrödinger equation of
electrons moving in a lattice builds the physical foundation to
mimic quantum hopping of electrons by the optical system.
Here the time evolution of the electron wave function is
mapped to the propagation of the optical wave in coordinate
space. The advantage of choosing lights instead of electrons
is the versatility in engineering artificial optical potentials
and its avoidance of the occurrence of decoherence and
correlation effects of electrons. It makes the waveguide-based
optical systems an ideal platform to simulate quantum effects
[14–18]. On the other hand, the controllability of light flowing
is interesting on its own due to the numerous applications
in optical engineering [19]. Tremendous progress has been
made in tailoring the light flowing in the spatially periodic
structure. The optical Bloch oscillation has been proposed in
the waveguide array by using linearly varying propagation
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constants to simulate the dc field [6,20–22]. It was observed in
waveguide arrays [8,23] even with periodic curvature along the
propagation direction [24]. By introducing the disorder to the
propagation constant, Anderson localization has been observed
in disordered photonic lattices [7,25,26]. The dynamic local-
ization induced by an ac field can also be optically simulated.
It was found that light propagating in a parallelly separated
waveguide array with all the waveguides periodically curved
shows the localization [5,10,27–30]. The dynamic localization
due to such periodic curvature was attributed to a resonance
effect that can only occur for certain discrete values of the
ratio between the amplitude and the frequency of the periodic
curvature to the waveguides [27,30]. It raises a high require-
ment to the fabrication technique to curve the waveguides.
Note that the resonance condition is obtained by neglecting
all higher-order terms of the Bessel function expansions to
the exponential of the periodic curvature function in the high-
frequency-modulation condition.

In this work, we study the propagation of light in a waveg-
uide array with only one waveguide periodically modulated
either to its geometric curvature or to its refractive index under
the framework of Floquet theory. A similar structure [31] was
used to simulate the control of quantum-mechanical decay
under the Markovian approximation in the weak-coupling
condition [32]. Due to the spatial dependence introduced by the
periodic modulation, the light propagating in such structure has
no well-defined propagation constants and stationary modes.
Thanks to Floquet theory, it can be well characterized by the
quasistationary modes determined by the Floquet eigenequa-
tion with the corresponding eigenvalues acting as the prop-
agation constant. A mechanism of the localized propagation
of light in the modulated waveguide is found from the point
of view of the Floquet eigenvalue spectrum. Going beyond
the weak-coupling condition, we find that the light in the
principal waveguide during the propagation tends to vanish if
only a continuous band is present in the eigenvalue spectrum;
whereas, it tends to be preserved if isolated Floquet bound
modes (FBMs) are formed in the gap area of the eigenvalue
spectrum. Different from the Markovian approximate result in
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Ref. [31], where the decay of the light strength in the waveguide
with the periodic modulation can only be slowed down or sped
up, our result indicates that the light spreading can be totally
suppressed. Compared with the resonance mechanism of the
dynamic localization in Refs. [27,30], it is several wide bands
of the modulation parameters where the light shows the local-
ized propagation. This implies that our mechanism is robust to
the inevitable fluctuation of the modulation parameters, which
hopefully could simplify the fabrication technique in designing
the modulation structure.

This paper is organized as follows. In Sec. II, we give the
model of the light propagating in a coupled waveguide array
based on the coupled mode theory. Section III focuses on the
localized propagation of light when one of the waveguides
is periodically modulated. The mechanism of the localized
propagation is attributed to the formation of the FBMs. Finally,
a summary is given in Sec. IV.

II. LIGHT PROPAGATING IN A COUPLED
WAVEGUIDE ARRAY

We consider the physical setting in which a single-mode
optical field polarized in the x direction propagates along the
z direction in L + 1 optical waveguides arrayed in a one-
dimensional configuration. The light is initially injected into
the first waveguide acting as the principal waveguide by a fo-
cused laser beam. The overlap between the optical evanescent
modes in the waveguides allows the propagating light to tunnel
into its neighboring waveguides and consequently the light
spreads throughout the array. In the paraxial approximation,
the propagation equation of the field in the waveguide array is
governed by [13,23,33,34]

iλ
dA(z)

dz
= MA(z), (1)

where λ = λ/2π with λ the wavelength of the light, A(z) =
[A1(z) A2(z) A3(z) · · · AL+1(z)]T under the condi-

tion A(0) = (1 0 · · · 0 )T denote the light amplitudes
in the waveguides, and

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

λβ1 κ12 0 · · · 0

κ21 λβ κ · · · 0

0 κ λβ · · · 0
...

...
...

. . .
...

0 0 0 . . . λβ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Here we have assumed the propagation constants and the
nearest-neighboring coupling strength of the light in the
waveguide array are identical, i.e., β2 = · · · = βL+1 ≡ β and
κ32 = · · · = κL+1,L ≡ κ , under the condition that the L waveg-
uides in the array are identical and equally separated. The
nearest-neighboring coupling in the waveguide array defines
a dispersion relation βk = β + 2κ cos(k)/λ with k the Bloch
wave vectors, which results in a single continuous band with
width 4κ/λ to the propagation constants of the light in the
waveguide array. It resembles the tight-binding model in
describing quantum transport of electrons in crystalline lattices
[8,35]. Such resemblance makes the classical optical field

propagating in a waveguide array an ideal system to simulate
the diverse quantum effects of electrons in crystalline lattices.

III. LOCALIZED PROPAGATION OF LIGHT
BY PERIODIC MODULATION

Further consider that the principal waveguide is periodically
modulated in its structure such that its propagation constant
β1 or coupling strength κ12 is z dependent with period Z

(see Fig. 1). Then the coefficient matrix in Eq. (2) changes
into z dependent, too. Besides directly solving via numerical
calculation, the solution of Eq. (1) with M(z) = M(z + Z) can
be determined by the Floquet theorem [36–38]

A(z) =
∑

α

cαe−iεαzuα(z), (3)

where cα = uα(0)T · A(0) only depends on the initial condi-
tion, εα and uα(z) = uα(z + Z) satisfy

[M(z) − iλ∂z]uα(z) = λεαuα(z). (4)

The independence of cα on z means that uα(z) and εα play
the same role as the optical stationary modes and propagation
constants in the static system without the periodic modulation,
respectively. Thus they are called quasistationary modes and
quasipropagation constants. By a Fourier transform uα(z) =∑

m eimωzũα(m) with ω = 2π/Z, Eq. (4) is recast into
∑
m

[M̃n−m + mλωδm,n]ũα(m) = λεαũα(n), (5)

where M̃n−m = Z−1
∫ Z

0 M(z)e−i(n−m)ωzdz. Then expanding
each M̃n−m in the complete basis of the L + 1 waveguides,
we get an infinite-rank matrix equation. The quasistationary
modes are obtained by truncating the basis to the rank such
that the obtained magnitudes converge. Note that e−inωzuα(z)
is also the eigenstate of the Floquet eigenequation (4) with the
eigenvalue λ(εα + nω). Thus the eigenvalues are periodic with
period ω and one generally chooses them within [−ω/2,ω/2]
called the first Brillouin zone.

x

z

x

z(a) (b)

FIG. 1. Schematic diagram of light prorogating in a waveguide
periodically modulated in its geometric structure (a) and composite
materials (b) coupled to a waveguide array. κ12 is the coupling strength
of light between the principal waveguide and the first one of the array,
κ is the nearest-neighbor coupling strength of the light in the array,
and Z is the modulation period.
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FIG. 2. (a) Propagation of the light strength |A1(z)|2 in the
principal waveguide in different modulation amplitude a obtained
by numerically solving Eq. (1) with the periodic κ12 (6). (b) Spectrum
of Floquet eigenvalues in different modulation amplitude a obtained
by numerically solving Eq. (5). The parameters are b = 0.6κ , β1 =
6.5λ−1, β = 0.2λ−1, ω = 8.0λ−1, and L = 200.

First, we study that the principal waveguide is harmonically
modulated in its geometric structure [see Fig. 1(a)]. It is
based on a curved waveguide in which the curvature varies
periodically with propagation distance z. This structure and its
extension to a two-dimensional configuration have been used
to simulate quantum Zeno effects [15], decoherence control
[31], and photonic Floquet topological insulator [34,39]. Such
required periodic bending profile can be realized via the laser
direct-writing method in fused-silica glass [30]. The distance
between the adjacent sites of waveguides in the x direction
characterizes the coupling strength. Thus, the modulation
causes

κ12(z) = a cos(ωz) + b, (6)

where a and ω are the amplitude and frequency of the periodic
modulation, respectively, and b is a constant shift.

Solving the propagation equation (1) with the z-dependent
κ12 in Eq. (6) numerically, we can obtain the evolution of
the amplitude of light in the whole waveguides with the
propagation distance z. Figure 2(a) shows the propagation of
the light strength |A1(z)|2 = |A(0)T · A(z)|2 of the principal
waveguide in different modulation amplitude a. It can be found
that |A1(z)|2 decays monotonically to zero and the light in the
principal waveguide spreads completely to the waveguide array
for small modulation amplitude a. With the increase of a, the
light in the principal waveguide tends to lossless oscillation and
its decay is efficiently suppressed. In Appendix A, we make a
detailed comparison of our exact result with the one obtained
using the Markovian approximation under the weak-coupling
limit [31], which shows the substantial difference. Our exact
result reveals the localized propagation of light induced by
the periodic modulation, while the approximate one indicates
that the decay of the light is only slowed down or sped up. It
demonstrates that the periodic modulation not only can change
quantitatively the propagation behavior of light, but also can

change qualitatively its steady-state behavior. This supplies
a constructive idea to control the tunneling of light in the
waveguides.

To understand the physical mechanism of the localized
propagation induced by the periodic modulation, we resort
to the Floquet theorem. Figure 2(b) plots the spectrum of
the Floquet eigenvalues with the change of the modulation
amplitudea via numerically solving Eq. (5). It indicates that the
region where the light shows the localized propagation matches
well with the one where isolated bound quasistationary modes
are formed in the gap area of the spectrum. We call such
isolated bound quasistationary modes FBMs. Different from
the widely studied bound mode in the continuum [40–43], our
FBM is an optical bound quasistationary mode residing within
the gap area in the periodically modulated waveguide system.
It is interesting to see that the light strength in the principal
waveguide tends to lossless oscillation as long as the FBMs
are formed. To illustrate this behavior, we, according to the
Floquet theorem (3), can construct the solution of Eq. (1) with
the z-dependent M(z) as

A(z) =
M∑
l=1

d0,le
−iε0,l zu0,l(z) +

∑
α∈Band

cαe−iεαzuα(z), (7)

where d0,l = u0,l(0)T · A(0) and M is the number of the formed
FBMs. The two terms in Eq. (7) correspond to the con-
tributions from the M potentially formed FBMs and the
modes in the continuous band of the spectrum, respectively.
To our nearest-neighboring tight-binding model, only a single
continuous band can be formed. Therefore, at most two FBMs
can be formed. Oscillating with z in continuously changing
frequencies εα , the second term in Eq. (7) behaves as a decay
and tends to zero due to out-of-phase interference of the terms
in the continuous bands. Then the asymptotic solution of the
principal waveguide reads

|A1(∞)|2 =

⎧⎪⎨
⎪⎩

0, M = 0

|d0A(0)T · u0(z)|2, M = 1∑2
l=1 |d0,lA(0)T · u0,l(z)|2 + D, M = 2

(8)

with D = 2 cos[(ε0,1 − ε0,2)z] ⊗l d0lA(0)T · u0,l(z) denoting
the interference between the two FBMs.

Figure 3 depicts the comparison of |A1(z)|2 obtained by
numerically solving Eq. (1) and by evaluating the analytical
solution (8). It shows that the numerical result, after a small
jolt in the small-z regime, coincides exactly with the analytical
result in Eq. (8) in the large-z limit. When only one FBM
is formed, |A1(∞)|2 shows the perfect oscillation with the
same frequency ω as the FBM u0(z) [see Fig. 3(a)]. It demon-
strates that the light coherently synchronizes with the periodic
modulation in this single FBM case. When two FBMs are
formed, |A1(∞)|2 shows the lossless oscillation with multiple
frequencies jointly determined by ω and ε0,1 − ε0,2 due to
the interference between the two FBMs [see Fig. 3(b)]. The
comparison unambiguously validates the FBM mechanism in
governing the optical localized propagation induced by the
periodic modulation.

The above result reveals that we can manipulate the spec-
trum of the Floquet eigenvalues forming the FBM to suppress
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FIG. 3. |A1(z)|2 calculated by numerically solving Eq. (1) (red
dashed lines) and by evaluating the analytical solution (8) (blue solid
lines) in one FBM case when a/κ = 3 (a) and in two FBM case when
a/κ = 6.5 (b). Other parameters are the same as Fig. 2.

the spread of light in the waveguide array. A prerequisite for
forming the FBM is the existence of a finite gap in the spectrum.
We plot in Fig. 4 |A1(z)|2 and the Floquet eigenvalue spectrum
with the change of the modulation frequency ω. Once again
it confirms the firm correspondence between the formation
of the FBM and the localized propagation of light. Different
from Fig. 2, the width of the band gap is not constant with the
change of the modulation frequency in this case. This can be
understood in the following way. Periodic in ω, the Floquet
spectrum has a full width ω. The width of the continuous
band of the propagation constant is 4κ/λ. Therefore, a band
gap with width ω − 4κ/λ can be present in the spectrum only
in the high-frequency (i.e., ω > 4κ/λ) modulation case. This
is indeed verified by Fig. 4(b) where the band gap vanishes

FIG. 4. (a) Propagation of the light strength |A1(z)|2 in the
principal waveguide in different modulation frequency ω obtained by
numerically solving Eq. (1) with the periodic κ12 (6). (b) Spectrum of
Floquet eigenvalues in different modulation frequency ω obtained by
numerically solving Eq. (5). The parameters are a = 1.0κ , b = 0.5κ ,
β1 = 3.0λ−1, β = 0.1λ−1, and L = 200.

FIG. 5. Propagation of the light strength |A1(z)|2 in the principal
waveguide (a) and spectrum of Floquet eigenvalues (b) in different
modulation amplitude δ to the propagation constant β1. The param-
eters are Z = 0.25πλ, Z′ = 0.1πλ, κ12 = 0.5κ , β = β0 = 0.5λ−1,
and L = 200.

whenever ω < 4κ/λ = 4.0/λ. It leads to the continuous band
of the waveguide filling up the whole Floquet spectrum. Thus
no room would be left for forming the FBM here. Reflecting
on |A1(z)|2 in Fig. 4(a), |A1(z)|2 approaches zero eventually in
the low-frequency case. Therefore, we conclude that the FBM
can be present only when the modulation frequency satisfies
ω > 4κ/λ, which supplies a necessary condition to realize
the localized propagation of light. It is a very useful criterion
on designing a modulation scheme for controlling the optical
tunneling in the waveguide array.

Second, we consider that the linear refractive index of
the principal waveguide along the propagation direction is
periodically modulated in step function [see Fig. 1(b)]. This
can be readily realized by the periodic fabrication with different
composite materials in the waveguide. It causes

β1(z) =
{
β0, z ∈ [nZ,nZ + Z′]
β0 + δ, z ∈ [nZ + Z′,(n + 1)Z].

(9)

Different from Refs. [27,30], which focused on deriving the
resonance mechanism of the dynamic localization by neglect-
ing the higher-order terms of Bessel function expansion to the
exponential of the periodic modulation, we here give an exact
study to the propagation dynamics of the light in such modu-
lated waveguide structure. Figure 5 shows the propagation of
light strength |A1(z)|2 and the spectrum of Floquet eigenvalues
with the change of the modulation amplitude δ. It reveals again
that the tunneling of light is suppressed whenever the FBM
is formed in the spectrum of Floquet eigenvalues. Another
interesting conclusion that can be drawn is that it is a wide band
instead of isolated points [27,30] of the modulation amplitude δ

that can cause the localized propagation. This makes our FBM
mechanism to realize light localization robust to the imperfect
fluctuation of the modulation parameters. To illustrate the
difference between our FBM mechanism and the conventional
dynamic localization [27,30], we make a detailed comparison
to the results obtained by the two methods in Appendix B.
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IV. CONCLUSION

In summary, within the framework of Floquet theory, we
have studied the propagation of light in the coupled waveguide
array under the periodic modulation either to the geometric
structure or to the refractive index on one of the waveguides.
It is revealed that the mechanism of the localized propagation
of light induced by the periodic modulation is the formation
of isolated bound quasistationary modes in the band-gap area
of the Floquet eigenvalue spectrum. Our finding supplies a
way to control the light propagation in the waveguide array via
well-tailored material fabrication to engineer the formation of
the bound quasistationary modes. The mechanism can also be
seen as a classical analog of the Floquet-bound-state-induced
decoherence suppression in a quantum spin system [44]. Given
the wide application of a modulated waveguide array or pho-
tonic crystal in optical engineering and in classical simulation
of quantum effects, our result may supply instructive insight
to control and bend light in a structured medium. Note that
other modulation structures to the waveguide array may be
considered, but the main results remain qualitatively similar. It
is also noted that our mechanism of the light localization does
not incorporate with the optical Kerr nonlinearity [45], which
deserves further exploration.
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APPENDIX A: COMPARISON WITH THE SPECTRAL
FILTERING METHOD

The spectral filtering method was originally put forward in
controlling the quantum-mechanical decay via time-dependent
modulation [32]. It has been simulated in a classical optical
system [31]. However, this method was established on the
Markovian approximation under the weak-coupling condition.
To demonstrate the difference between this method and ours,
in the following we study our system using the spectral filtering
method.

From Eq. (1) with z-dependent κ12(z), we can derive the
propagation equation of the light amplitude in the principal
waveguide as

dA1(z)

dz
+ iβ1A1(z)

+
∫ z

0
dz′κ12(z)κ12(z′)f (z − z′)A1(z′)dz′ = 0, (A1)

where f (z − z′) = ∫
dβG(β)e−iβ(z−z′), G(β) = ∑

k |gk|2
δ(β − βk) with gk = e−ik/(λ

√
N ). Under the weak -coupling

condition, we can make the Markovian approximation to
Eq. (A1) and obtain

α̇(z) ≈ −α(z)
∫ z

0
dz′κ12(z)κ12(z′)f (z − z′)eiβ1(z−z′)dz′,

(A2)

FIG. 6. (a) Damping rates of the light strength in the principal
waveguide calculated from the spectral filtering method. Comparison
of P (z) calculated from the spectral filtering method [i.e., P (z) =
|α(z)|2] (the red dotted lines) and from our exact method (the solid
blue lines) when a/κ = 1.0 in (b), 3.0 in (c), and 6.0 in (d). Other
parameters are the same as those in Fig. 2(a).

with α(z) = eiβ1zA1(z). Its solution can be readily obtained as
[31,32]

|α(z)| = exp
[− 1

2R(z)Q(z)
]
, (A3)

where R(z) = 2π
∫ ∞
−∞ dβG(β + β1)|Dz(β)|2/Q(z) with

Dz(β) = 1√
2π

∫ z

0 eiβz′
κ12(z′)dz′ and Q(z) = ∫ z

0 |κ12(z′)|2 acts
as a damping rate. Thus, under the Markovian approximation,
the damping of the light amplitude in the principal waveguide
is determined by the overlap integral between the noise
spectrum and the spectrum of the periodic modulation. This is
the physical meaning of the spectral filtering method.

We plot in Fig. 6 the comparison of our exact result with
the one obtained from the spectral filtering method using the
parameters in Fig. 2. Figure 6(a) indicates that in all three
cases the noise spectrum and the spectrum of the periodic
modulation have a notable overlap and thus the damping rates
have nonzero values. Consequently, the light in the principal
waveguide decays to zero without exception [see the red dashed
lines in Figs. 6(b)–6(d)]. However, our exact result shows that
this is the truth only when the FBM is absent in the small
modulation amplitude case. With the formation of the FBMs in
the large modulation amplitude region, a qualitative difference
of our exact result from the one obtained by the spectral
filtering method can be observed [see Figs. 6(c) and 6(d)].
Therefore, it is the formed FBMs which is the physical reason
for localized propagation of light in the periodically modulated
waveguide array. The comparison reveals that, although the
Markovian approximation used in the spectral filtering method
could capture some propagation behavior of light, it might miss
the correct physics in certain parameter regimes.
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FIG. 7. Renormalized factor |F0|2 (a) and propagation of |A1(z)|2
(b) in different modulation period Z calculated from the method of the
conventional dynamic localization. Spectrum of Floquet eigenvalues
(c) and exact propagation of |A1(z)|2 (d) in different modulation period
Z calculated from our exact treatment. The parameters are Z′ = 0.4Z,
β0 = β = 0.5λ−1, δ = 1.0λ−1, andκ12 = 0.5κ . The result ofZ/λ > 6
in (c) is not shown because it is the same as that of 1.5 � Z/λ < 6.

APPENDIX B: COMPARISON WITH THE
CONVENTIONAL DYNAMIC LOCALIZATION

The difference of our result from the conventional dynamic
localization is reflected not only from the system, where only
one waveguide is modulated in ours, while all the waveguides
are modulated in the conventional one, but also from the
physical mechanism. The conventional dynamic localization
of light is attributed to the resonant localization due to a
periodic modulation of the system [27,30]. This is reminiscent
of the coherent destruction of tunneling [46,47] and dynamical
decoupling [48] in a quantum system induced by periodic
driving. Such resonance and decoupling are obtained by
neglecting the higher-order terms of the Bessel function ex-
pansions to the exponential of the periodic curvature function
in the high-frequency-modulation condition. To demonstrate
the difference between our mechanism and the conventional
one, we here compare our result with that obtained from the
conventional method by taking the modulation scheme (9) as
an example.

Expanding uα(z) in Eq. (4) in the basis of a rotating frame as
uα(z) = ∑

m Uze
imωzũα(m) wit Uz = exp[−iM0

∫ z

0 (β1(z′) −
β̄1)dz′],

M0 =

⎛
⎜⎜⎝

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 0 0

⎞
⎟⎟⎠,

and β̄1 = Z−1
∫ Z

0 β1(z)dz, we can obtain a similar form as
Eq. (5) with

M̃n−m = δn,m

⎛
⎜⎜⎜⎜⎜⎜⎝

λ(β̄1 + β0) 0 0 · · · 0

0 λβ κ · · · 0

0 κ λβ · · · 0
...

...
...

. . .
...

0 0 0 . . . λβ

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 κ12Fn−m 0 · · · 0

κ12Fn−m 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(B1)

with Fn−m = Z−1
∫ Z

0 exp[−i
∫ z

0 (β1(z′) − β̄1)dz′ − i(n −
m)ωz]dz. In the high-frequency modulation condition, we
neglect all the fast oscillating terms with n 	= m in Fn−m

and only keep F0 in the same sprit of the rotating-wave
approximation in quantum optics. Then the system is reduced
to a static one with the coupling strength between the
principal waveguide and its nearest-neighboring waveguide
renormalized by a factor F0 and the propagation constant
shifted by a constant β̄1. Therefore, the light localization can
be readily realized by manipulating the periodic modulation
such that F0 = 0.

From Fig. 7(a), we can see that we really can realize F0 = 0
at certain resonance points of the modulation parameter Z.
This makes the light in the principal waveguide effectively
decoupled to the waveguide array. As expected, the light
shows the dynamic localization at the points with F0 = 0 [see
Fig. 7(b)]. However, our exact calculation indicates that no
localized propagation of light is present at these resonance
points [see Fig. 7(d)] because no FBM is formed in the
whole parameter regime [see Fig. 7(c)]. It demonstrates that
the approximation used in obtaining resonance decoupling
in the conventional dynamic localization cannot govern all
the physics of our studied model. It also differentiates our
mechanism on the light localization from the conventional
dynamic localization.
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