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The Dicke model describes the coherent interaction of a laser-driven ensemble of two-level atoms with a
quantized light field. It is realized within cavity QED experiments, which in addition to the coherent Dicke
dynamics feature dissipation due to, e.g., atomic spontaneous emission and cavity photon loss. Spontaneous
emission supports the uncorrelated decay of individual atomic excitations as well as the enhanced collective
decay of an excitation that is shared by N atoms and whose strength is determined by the cavity geometry.
We derive a many-body master equation for the dissipative Dicke model including both spontaneous emission
channels and analyze its dynamics on the basis of Heisenberg-Langevin and stochastic Bloch equations. We find
that the collective loss channel leads to a region of bistability between the empty and the superradiant state.
Transitions between these states are driven by nonthermal Markovian noise. The interplay between dissipative
and coherent elements leads to a genuine nonequilibrium dynamics in the bistable regime, which is expressed via
anonconservative force and a multiplicative noise kernel appearing in the stochastic Bloch equations. We present
a semiclassical approach, based on stochastic nonlinear optical Bloch equations, which for the infinite-range
Dicke model become exact in the large-N-limit. The absence of an effective free-energy functional, however,
necessitates the inclusion of fluctuation corrections with O(1/N) for finite N < 0o to locate the nonthermal

first-order phase transition between the superradiant and the empty cavity.
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I. INTRODUCTION

Bistable interacting quantum systems are prime examples
for which fluctuation-induced many-body effects beyond the
mean-field picture dominate the long-time dynamics. Quantum
fluctuations induce rare transitions between the mean-field
steady states, rendering them metastable and introducing
macroscopic effects beyond small perturbations [1,2].

Adding the concepts of drive and dissipation introduces
an additional competition between unitary and dissipative
dynamics, which has a pronounced impact on the fluctuation-
induced asymptotic dynamics. This was observed earlier for
a driven cavity with an optical Kerr nonlinearity [3]. On
the level of single-operator expectation values, the system
shows a coexistence regime of two stable states with different
photon numbers for the same driving strength. However, a
full quantum treatment [4,5] reveals that quantum fluctuations
induce a driven-dissipative first-order phase transition in the
thermodynamic limit of large intracavity photon numbers [6],
recently observed in a semiconductor microcavity [7].

This growing experimental access and realization of driven-
dissipative nonlinear systems out of equilibrium that dis-
play bistable dynamics [8—10], including recently detected
bistability regions in cavity QED [11] and circuit QED [12]
experiments, has led to a surge of interest in theoretical descrip-
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tions for out-of-equilibrium systems [13—18]. This includes
signatures of first-order dissipative phase transitions [19-22]
and the crucial role played by fluctuations [23]. Here we extend
the simple yet paradigmatic Dicke model [24], describing light-
matter interactions of N atoms coupled to a single quantized
photon mode, to the dissipative regime. By considering both
dissipative single-particle and cooperative effects, we devise
a quite generic extension of the model, which respects (i)
the Z, Ising symmetry, (ii) the steady-state manifold of a
superradiant and a dark atomic ensemble, and (iii) locality
in time. This generic and in this sense universal modification
opens up a novel dynamical regime, which we demonstrate
to be dominated by macroscopic atomic fluctuations and the
absence of detailed balance.

In the context of cavity QED, the dissipative Dicke model
emerges when single-atom and collective decay of excitations
into the electromagnetic vacuum are considered beyond a
single-excitation framework. It extends recent works on super-
and subradiant cavity states [25] and the resonance fluores-
cence model [26] to the experimentally relevant many-body
regime with strong atom-light coupling [11,27].

The driven-dissipative Dicke model is, through its simplic-
ity, exceptionally well suited to study universal nonequilibrium
behavior close to a first-order phase transition. Through the
presence of a large number of cavity emitters, the large-N
limit is well controlled theoretically for both mean-field and
fluctuation dynamics. The model is therefore a prime candidate
to study nonthermal noise activation, the fate of hysteresis, and
bistability for experimentally relevant conditions.
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If the cooperative dissipation exceeds a critical value, we
find that the conventional second-order phase transition from
the empty to the superradiant state is replaced by a bistable
regime for the dark and the bright cavity, which is absent
for weak losses [28]. Mapping the quantum dynamics to
semiclassical stochastic optical Bloch equations, we show
that the bistable regime features noise-activated transitions
between the metastable states. The activation rates are, how-
ever, suppressed exponentially with the number of atoms such
that in the thermodynamic limit one of the metastable states
becomes stable and thus the true steady state. This leads to
a collapse of the bistable regime towards a sharp first-order
transition. Due to the absence of detailed balance, the dynamics
in this regime can neither be derived from the gradient of
a potential, as is the case in dissipative equilibrium, nor are
fluctuations uniformly distributed in phase space but strongly
state dependent. We give a brief discussion of the difference
between effective equilibrium and nonequilibrium systems on
the basis of the Martin—Siggia—Rose-Janssen—de Dominicis
(MSRID) path-integral framework below.

II. QUANTUM MASTER EQUATION

The state of the cavity ensemble of N atoms and a single-
photon mode is expressed via the density matrix p, whose time
evolution is given by the Markovian quantum master equation
0p =—i[H,pl + L,[p] + L[p]. The coherent evolution, in-
cluding the cavity photon-atom coupling, is given by the Dicke
Hamiltonian [24,29]

i

Here wy and w, are the photon energy and the atomic
level splitting, respectively, and g is the atom-light coupling
strength. Equation (1) implicitly contains an external drive
laser, whose time dependence has been eliminated in a rotating
frame [30].

The decay into the weakly coupled and thermodynamically
large photon vacuum is treated well in the Born-Markov
approximation (see Appendix D), leading to the time-local
Lindblad superoperator
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The two-level atoms are modeled by a local spin algebra o;" =
le); (gl oF = le); (el — 1g); (gl and §* = Y}, 0. Here e
and g refer to the excited and the ground state of an atom,
respectively, and a' (a) creates (annihilates) a cavity photon.
Photon loss through the cavity mirrors with rate « is described
by the Lindblad operator £,. Atomic spontaneous emission
into the electromagnetic vacuum outside the cavity is captured
by L, .

The atoms can decay either individually and uncorrelated
[first line of (2)] or through a collective channel, resulting

from the electromagnetic bath being commonly shared by
all the atoms. In the context of the Dicke model, the most
important collective decay channel is the spontaneous decay
of a superradiant state [second line of (2)]. Intuitively, the
photon rate of dissipation x and the single-atom-loss rate
y shift the critical atom-light coupling for the superradiant
phase transition towards higher pump strength to compensate
for the losses [28,30-32]. The collective noise, however,
introduces an additional nonlinearity, leading to a drastic
modification of the phase transition in the thermodynamic limit
N — oo.

When the atomic emitters radiate collectively, the decay rate
is actually enhanced by the number of emitters y — y N. This
can occur even for a single photonic excitation that is shared
among N atoms and is known as single-photon superradiance
[33]. Collective emission of radiation is relevant for many-body
states such as atomic, collective angular momentum or Dicke
states where the atomic ensemble can behave like one giant
atom. Geometrically, this behavior is typically expected when
the atoms are closer together than the wavelength of radiation.
However, even for larger atomic samples the radiation rate can
be enhanced [25,34]. In the present case the relevant geometric
factor (@ < 1) depends on the size of the atomic cloud and the
cavity parameters (see Appendix D). The collective excitation
rate is then modifiedas y N — ya N = yS. However, both the
average energy and loss rate per particle have to remain finite in
the thermodynamic limit, which implies that for N — oo, 8 =
const and is set by the fixed number of atoms in an experiment.
Both the collective and the individual loss channel are derived
from the same Hamiltonian that couples the system degrees of
freedom with the electromagnetic vacuum (see Appendix D).
The collective atomic loss channel therefore does not introduce
any new characteristic time scales that would call the time-local
Lindblad structure and thus the Born-Markov approximations
into question, which are valid when system-bath couplings are
small y < (wg,w;,8).

III. HEISENBERG-LANGEVIN ANALYSIS

In order to derive the semiclassical optical Bloch equations
for the dissipative Dicke model [Egs. (1)—(3)], which can
be addressed numerically, we start with the computation of
the Heisenberg-Langevin equations (HLEs) for the individual
spin and photon operators. Although the Dicke Hamiltonian in
Eq. (1) preserves the total spin quantum number of the system,
the single-atom-loss components mix sectors of different total
spin 82 and the HLEs have to be expressed in the local spin
basis.

The HLEs are obtained from a conjugate master equation

30; = —i[O; H1 + L0 + L0+ 80, (D)

where in £* compared to £ the order of operators in the quan-
tum jump term has been inverted, e.g., L[] = k(2a'---a —
{a'a,- }). The quantum noise operators éio ensure the correct
time evolution of fluctuations O;O; and preserve the exact
operator commutation relations [35] (for the explicit derivation
see Appendix C). Applying Eq. (4) to the photon field and the
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individual spin components at site i yields
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Eliminating the gapped photon field by setting 9,a = 0 in (5)
and solving for a adds a nonlinear ferromagnetic coupling
~—J/NY ,of, with J = 4g%w/(k? + w}), and the photon
noise £¢ + & @' to the atomic HLE. The collective decay leads
to another, competing nonlinearity ~y 8 to the HLE, which
introduces a bistable regime for the parameters yg ~ J =
J., where J. is the critical coupling for the superradiance
transition. We analyze the remaining set of equations for the
atoms in a large-N framework, which has been shown to
be in good agreement with experimental measurements (see,
e.g., [11,27,36,37]). The operators in the HLE are replaced
by the quantum mechanical average over all atoms, i.e.,
we analyze the equations of motion for % =3, (0/)/N,
o = x,y,z. Approximating the average of the double sums
>, lofal)/N? by the product 6o is correct up to O(1/N)
corrections and becomes exact in the thermodynamic limit.
This is due to the infinite range of both the Dicke nonlinearity
~g and the collective loss ~y 3.

Disregarding the noise yields the deterministic optical
Bloch equations d,0% = D* with the deterministic force

—yo'(1 - fo%) — 0w,
w0 + Jo*o* — yo¥(l — Bo?)
—2y(0* + 1) = yBl(c*)* + (6¥)*] = Jo*a”

D= )

including the additional nonlinearities ~J,8y in compar-
ison to the conventional Bloch equations [35]. We stress
here that V, x D # 0 and V, - D # 0, which results from
the presence of unitary and dissipative dynamics and pro-
hibits the interpretation of D as a conservative force D #
V.,V for some potential V. Here unitary and dissipative
dynamics cannot be generated by the same Hamiltonian,
which excludes a dissipative equilibrium, where steady states
coincide with minima in a generalized energy landscape
(see Sec. VI).

Solving D = 0 yields the mean-field stationary states and
determines the steady-state values for the 0. For the popula-
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FIG. 1. (a) Mean-field bistability region delimited by the spinodal
(dashed and dotted) lines and fluctuation-induced first-order transition
(solid) line at g(B). The vertical line cuts through the phase diagram
as shown in (b) and (c). (b) Mean-field hysteresis inside the bistable
regime obtained by adiabatically following the increasing (red)
and decreasing (black) atom-light coupling. (c) Average amount of
time spent in the superradiant state obtained from stochastic Bloch
equations for different atom numbers N [see Eq. (12)]. For N — oo
it approaches a step function, revealing a first-order transition at g
(intersection), as shown in (a). The parameters are wy = 1.4w, and
k =2y =0.2w,, with 8 = 40.

tion imbalance, one finds (considering only real solutions)

O 11— 4y o,

o’ =max{—l,W

4%y 1 IHYE — 11+ %} (10)

For collective loss strengths 8 < 8. = /1 + (w,/y)?, 0% isa

continuous function of the Dicke coupling g. For coupling
strengths above a critical value g > g.; [Eq. (11)], 0% ~
|lg — gc.11™ — 1 deviates from its empty cavity value of o* =
—1. This is associated with a macroscopic occupation of the
cavity mode (afa) ~ N|g — gc.1|"", 1.e., the continuous phase
transition from the empty cavity to the superradiant state. Here
v, = 1 is the finite-temperature photon flux critical exponent
[17].

Above the critical loss strength § > B, the continuous
transition into the superradiant state is replaced by a discon-
tinuous jump of % at g = g.; with magnitude proportional to
1 — B./B. A closer look at the optical Bloch equations reveals
that for g.» < g < gc.1 [Eq. (11)] both the empty and the
superradiant state appear as attractive stationary mean-field
solutions. This indicates classical bistability, where steady
states are sensitive to the initial configuration leading to the
appearance of hysteresis [Fig. 1(b)]. The critical couplings are

et = y[('{2+w3)(ﬁ3+ﬂ2+2ﬂ)}1/2

4w, wg

1/2
8o Z[ 26(1 + Be) } | an

8el B2+ B> +28
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FIG. 2. Steady-state landscape of the Bloch equations (12) in the
bistable regime. Red lines (with arrows) departing from repulsive
fixed points show deterministic motion and blue lines (no arrows)
show noise-induced dynamics. There are three attractive (black
sphere) and two repulsive (gray sphere) fixed points, interrelated by
the Ising symmetry (0*,0",0°) - (—0*, —0?,0%). Dotted points
map out the surface of the unit Bloch sphere and serve as a guide to
the eye.

The bistable regime is delimited by the spinodal lines
[gc.1(B) and g.»(B)] that continuously connect at the bicritical
point B, as shown in Fig. 1(a). Inside this regime, the steady
states, corresponding to the empty and the superradiant cavity,
appear as attractive fixed points of D. A two-dimensional
separatrix divides the Bloch sphere into the two corresponding
basins of attraction and hosts a further, unstable fixed point, as
illustrated in Fig. 2. At a spinodal line, the separatrix encloses
one of the attractive fixed points and forces it to vanish.

Exactly at the bicritical point 8 = 8., the superradiance
transition remains continuous, but the critical exponents are
different comparedto 8 < B, which defines a different univer-
sality class for the bicritical point. The photon flux exponent,
for instance, can be inferred from Eq. (10) and reads v, = % as
for the quantum phase transition in the coherent Dicke model
[38]. A full classification of the bicritical point is left to future
work.

IV. STOCHASTIC BLOCH EQUATIONS

Within the bistable regime, the deterministic optical Bloch
equations split the Bloch sphere into two basins of attraction,
separated by a repulsive manifold, which cannot be crossed by
any deterministic path. They thus fail to capture the dynamics
of the initial quantum master equation even on the qualitative
level since the latter is predicted to have a unique stationary
state for any finite N.

This separation, as well as the enforced lack of ergodicity,
is overcome by translating the quantum noise terms in the HLE
to a classical noise, which adds to the deterministic part and
yields stochastic optical Bloch equations

9,0% = D* + EXN~/2, (12)

According to the definition 0% = )_,(of")/N, the classical

noise £§* =), (&7)/ V'N. This average must be taken with
care. It indicates only the quantum mechanical average of

system operators and not the noise average, which corresponds
to the expectation value of bath operators. The first and
second moments of the noise are (£%)poise = 0 and ({-)noise
indicating noise average, (-)sys+bath the average of system and
bath operators)

<§a§ﬂ>n0ise = N_1<ng%_;§> =68(r — t/)Xaﬂ(U)~
L,m

sys+bath

13)
In the large- N limit, the covariance matrix is (see Appendix C)

yIB(o?) +1]
X =2 0
o*(1—po)y

& + B0 +y A P
o’ly — (kK +yB)o’l  x33(0)
(14)

where x33(0) = #(0”)* + y{Bl(6*)* + (07)°] +2(c* + 1)},
R =«J/wy, and x = xT is symmetric, real, and positive
semidefinite for Za (69)? < 1, ie., as long as o represents a
state within the Bloch sphere. For a continuous time evolution,
neither the deterministic force D nor the noise drives the
system out of the Bloch sphere. The latter is ensured by
X1 ~ |lléa|l, where yx, is the (local) perpendicular noise
strength and do the distance to the Bloch sphere. For the
long-range interacting Dicke system the local noise terms do
not break translational invariance and the description in terms
of the collective variable o* is correct up to O(1/N). Locally
induced, noise-driven spin flips cause energetic corrections of
O(J/N) such that for any finite N < oo the two fixed points
can only be connected via a concatenation of O(N) subsequent
noise kicks. Such collective events of noise kicks drive the
system from the basin of attraction of one fixed point to the
basin of attraction of the other. They occur on time scales set
by TN, where t~! is the state-dependent rate of a single spin
flip set by the noise profile x (o).

V. REAL-TIME DYNAMICS OF THE BLOCH EQUATIONS

In contrast to a bistable system in equilibrium, where the
occupation of the states in the long-time and large-system-
size limit is entirely determined by a mean-field analysis
of the minimum of a free energy potential, the occupation
times of the metastable states out of equilibrium can only
be determined beyond mean field by including fluctuations
of O(1/N) in a numerical simulation for finite N < oo [39].
Simulation of Eq. (12) requires a careful implementation of
the thermodynamic limit. Taking N — oo first leads the noise
~1/+/N to vanish and one ends up with the deterministic
equations, i.e., two disconnected steady states. On the other
hand, taking + — oo first and then N — oo, for any finite N
the long-time behavior is characterized by an admixture of
the empty and the superradiant state. The dynamics of the spin
vector o is obtained by interpreting Eq. (12) in an It6 sense and
numerically simulating the time evolution with a three-stage
stochastic Runge-Kutta algorithm [40,41]. The corresponding
dynamics of ¢ including rare fluctuations between the dark
and the bright cavity are visualized in Fig. 2 and, with
temporal resolution, in Fig. 3(a). Similar fluctuation-induced
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FIG. 3. (a) Noise-induced transitions from the empty (shaded) to
the superradiant state. Each line is a moving average over a time
window (¢t £ 4)w,. (b) Logarithmic plot of mean times spent in the
superradiant (ts,) and in the empty cavity state (z)) corresponding
to vertical line in Fig. 1(a). Circular shapes are mean transition
frequencies (V) = Njumps/ 15 obtained from counting the total number
of jumps normalized to the total simulation time #5. (c) Exponential
sensitivity of mean occupation times to the number of atoms N.

switching dynamics have been measured experimentally in
bistable semiconductor microcavities [7].

Tuning the atom-light coupling g through the bistable
regime at fixed collective loss rate 8 [Fig. 1(a)], we obtain
a histogram for the distribution of time intervals spent in the
empty (f) and in the superradiant state (fi;). The mean occu-
pation times (f,) in Fig. 3(b) are obtained by summing over
all intervals (t,) = Y, tio/ D _; With & = {a,sr} as shown in
Fig. 3(a). We observe an exponential dependence of log (z;) ~
g in the superradiant state and a strongly stretched exponential
log (o) ~ g~ '% in the empty state [Fig. 3(b)].

For any N < oo, the steady state is a statistical mixture
of the empty and the superradiant state and the degree of
mixing is expressed via the superradiance occupation ratio
o = (tsr) /({ts) + (t0)). It interpolates continuously between
Psr(ge.2) = 0 and pg(g..1) = 1 as a function of the atom-light
coupling g and varies on a scale Ag ~ 1/N [see Fig. 1(c)].
In the thermodynamic limit N — oo, py — ©O(g — &) ap-
proaches a step function, indicating a discontinuous jump and a
first-order phase transition from the empty to the superradiant
state at a critical coupling g(8) [Fig. 1(a)]. The exponential
increase of the occupation times log(t, o) ~ N is depicted
in Fig. 3(c). This suggests a typical Arrhenius law (g o) =
Ag.0exp(N g 0), which is confirmed by the classical action
[42—-44] associated with the stochastic optical Bloch equations
(12) (see Sec. VI). Here ¢, is the nonequilibrium potential,
which depends both on the path and on the relative noise
strength between the two stable solutions and lacks the inter-
pretation of a free-energy functional [39]. The Ising symmetry
reduces the long-time dynamics to that of an effective two-level
system, which always fulfills detailed balance, and makes the
nonequilibrium nature of the bistability hardly observable on
the level of the transition rates. Instead of minimizing an

effective free energy [45-47], however, the escape trajectories
follow the most probable path from one stable fixed point to
the other and do not pass the repulsive fixed point, in contrast
to equilibrium.

VI. NONEQUILIBRIUM ASPECTS FOR
NOISE-ACTIVATED TRAJECTORIES IN THE MSRJD
PATH INTEGRAL

In this section we want to confirm, without being exhaustive,
three statements that we made in the previous sections on
the nonequilibrium nature of the bistability. The analysis is
based on Freidlin-Wentzell theory [39] for weak noise systems,
therefore applicable in the limit N — oo and performed in
a MSRIJD path-integral framework [42-44]. Additionally, we
comment on the structure of the noise-induced trajectories as
observed in Fig. 2.

First, the mean occupation times (fy) and (z) of the empty
and the superradiant state obey an Arrhenius law of the type
(ter.0) ~ Agr0 €Xp(N Vg 0), With Y 0(0) as a nonequilibrium
potential that measures the cost of fluctuations. Second, the
deterministic force D [Eq. (10)] and the noise kernel x [Eq.
(17)] do not satisfy the necessary condition for microscopic
reversibility and violate detailed balance. Third, we comment
that the combination of VX D #0 and V-D #0 is a
necessary but not a sufficient criterion for out-of-equilibrium
dynamics, which do not relax towards an effective thermal
equilibrium.

We start with the MSRJD action (see, e.g., [42-44])
associated with the stochastic optical Bloch equations (15)
(a =X 7y 7Z)

S = Nf[a“a,a“ — DY — 16 x*P5"] (15)

= N/[&“B,G“ —Hl, Z= fD[{aa,aa}]e*S. (16)

Here D and x are given by Eqs. (10) and (17) and
H=6"D"+15"x*F5" (17)

is the Freidlin-Wentzell Hamiltonian, Z is the partition func-
tion, and the fields &¢ are the so-called MSRID response fields.
In the limit of N — oo only the saddle points of S contribute
to Z. The associated equations of motion demonstrate that 5¢
and o are canonically conjugate variables

1 68 oH
0= ——=0,0"— —, (18)

N 66¢ 06%

1 88 oH
= — = —0,6% — , 19
N do0¢ 1o 0% a9

showing that the Hamiltonian itself is an integral of motion
o;H = 0. All saddle-point trajectories starting from a deter-
ministic field configuration ¢ = 0 fulfill 4 = 0. The explicit
form of Eq. (18) is

8Dﬁ 1 5)( §
P ® _ po oz/‘3~7 a~a:_~ o~ y 5
Ne +x"0p Nos ag Y zoy ( Y (o)

(20)

The solution of H = 0 with 6% = 0 recovers indeed the noise-
less deterministic Bloch equations d,0% = D® and 9,6* = 0.
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Noise-activated trajectories, in turn, correspond to solutions
with 6% # 0. After some algebra one finds that the second
equation in (20) requires  to be of the form 6 = V,I"(0). The
scalar potential I" is defined by the Hamilton-Jacobi equation

H(o, VD) = 3,T(D* + §x*P9,T)
=(VI,D+ 3xVI) =0, (21)

which is solved implicitly by decomposing the deterministic
force D into the two orthogonal fields VI" and r as

D* = —1x*P9gT +r°. (22)

The orthogonality condition r*9,I" = 0 demands that r en-
codes dynamics on equipotential surfaces of I'. The first term
(—% x*P9gT) is responsible for the stability of the fixed points
of the deterministic force D. The transversal decomposition
implies that VI" £ —2x ~!' D, such that in general it is an im-
possible task to obtain nonperturbative analytical expressions
for the nonequilibrium potential I" in systems lacking detailed
balance [48]. The saddle-point trajectories (20) describing
noise activation are

d0% = D* + x*PgT = Ly“PouT" + r* = —D* +2r°,
(23)

5% = 9,T. 4)

A comparison with the deterministic dynamics 9,0% = D%

shows that in general the noise-activated trajectories are not the
time-reversed partners of the deterministic dynamics and visit
different regions in the Bloch sphere, as can be seen in Fig.
2. Both deterministic and noise-activated trajectories share,
however, the same set of fixed points {ao} with D({g¢}) = 0.
Since all fixed points are hyperbolic, there exists one stable
(M) and one unstable (M,,) three-dimensional manifold for
the zero-energy Hamilton that intersect at the set of fixed points
{o0}. The stable manifold M is characterized by 6 = 0 and
0,0 = D and the unstable manifold M, is characterized by
6(0) = VI'(6)and 9,06 = —D + 2r. The cost for a fluctuation
is then measured by the action

t o2
sty = Nf G 30 = N/ G do. (25)
I oo

In the weak noise limit N — oo one can define a nonequilib-
rium potential or cost function as the minimal action acquired
for a path connecting a fixed point o to any given point ¢ on
the manifold M, as

¥ (00,0) = min{ S

lo.11.0,(0) 1 0(f0) = 00,0 (1) = 0,t) < t}.

(26)

The result of the integration is independent of the path
(o(),6(¢)) in M, when M, is locally defined by ¢ = VI'. To
exponential accuracy, the probability p for a noise-induced
trajectory is then given by p ~ exp[—Nv(g¢,0)]. This
explains the first point that the mean occupation times (ty o)
~ Ag 0 exp(N Y ). For weak but finite noise, the instanton
trajectory is given by 0,0 = —D + 2r + \/Lﬁg and spreads
around the deterministic instanton path, as observed in Fig. 2.

We turn our attention to the second point and check violation
of detailed balance. Under microscopic reversibility [49,50]

the deterministic force D and diffusive contribution x in
general obey a relation fixed by [51]

rot[x '2D — Vx)] =0, (27)

which is not satisfied for the stochastic optical Bloch equations
(15). We conclude the absence of detailed balance for the
dynamics studied that we present in this work.

Regarding the third point, for out-of-equilibrium systems
in general D itself is not a gradient field and has both a
nonconservative (V x D # 0) and a conservative contribution
(V - D # 0). Whenever the generators for conservative and
nonconservative dynamics do not commute, i.e., when the
corresponding trajectories are not orthogonal, both fields
—% x*P3gT" and r* contribute to both conservative and non-
conservative parts of D. Thus, having nonconservative and
conservative dynamics is necessary to reach a nonequilibrium
steady state but not sufficient, the counterexample being a
spin subject to a magnetic field B = uBe, and spontaneous
emission. The presence of nonconservative and conservative
forces together with the absence of detailed balance allows the
conclusion that the steady state for the stochastic optical Bloch
equations in this work is firmly out of equilibrium.

VII. OUTLOOK

Extending the Dicke model to the dissipative regime by
adding cooperative losses drastically enriches the dynamics,
introducing a bicritical point as well as a bistable fluctuation-
dominated regime for the superradiance transition. This de-
fines a framework to study a whole set of dissipative phase
transitions in both theory and experiment and should motivate
current experiments to explore the dissipative Dicke realm
[27,52]. While a brief calculation with current experimental
parameters shows that the cooperative loss rate typically is
too weak to set it in competition with the effective atom-atom
coupling strength J, it reveals that short effective distances,
i.e., large densities of atoms, will be able to access this regime,
which might encourage experimental progress in this direction.

Possible experimental observations include fluctuation-
induced lasing and dynamical hysteresis when the atom-
light coupling is swept between the two spinodal lines [7].
Slightly lifting the symmetry protected degeneracy between
the two superradiant states introduces three genuinely different
metastable states. This configuration enables the study of
dynamics in the absence of detailed balance on macroscopic
scales that are exclusive to nonequilibrium systems, e.g., exper-
imentally accessible via circulating currents in the stationary
state.
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APPENDIX A: DERIVATION OF NOISE OPERATORS
AND NOISE CORRELATIONS IN A
HEISENBERG-LANGEVIN FRAMEWORK

The appearance of the noise operator £ in the Heisenberg-

Heisenberg equation of motion for ;. The noise kernel
xie(o) = (£Qi g0 Ybath 1 then computed by evaluating the bath
operators in the Born-Markov approximation. We apply the
standard Heisenberg-Langevin theory where the interaction
of the system with the external bath is specified in terms of

Langevin equation for the operator O; results from the
fluctuation-dissipation relations of the eliminated bath. It
ensures the correct time evolution of fluctuations O; O, and
preserves operator commutation relations for open systems
in time [35]. Their explicit form is derived from the unitary

a Hamiltonian Hgypan that couples the bath modes linearly
to the system operators (see, e.g., [35]). The two statistically
independent baths for the photons and for the atoms are the
continuum of radiation modes outside the cavity. We consider
the system-bath Hamiltonians in the interaction picture

J

N
HES™S (1) =Y (er,e0] bpe' @™ +ce), (Al)
k=1
HE;E[_(;;:U) = Z(EkaTCkei(w‘“”“’ +c.c.), (A2)

k

where we have coupled all emitters o;* in Hiireys(7) to one set of bath modes bibk which also allows for collective emission of
excitations outside of the cavity that become relevant in the superradiant regime. Here wy and w, refer to effective frequencies
for the photons and the atoms in a frame rotating at a frequency set by the external laser drive (see, e.g., [30]). The Heisenberg
equations of motion for the system and the bath operators can be written as

da, = —ilag, H) = —i Y oy e @, (A3)
k
N
dibis = —ilbis Hil = —i ) e} o e @), (A4)
=1
N
drces = —ilbis Hl = —i Y & e @), (A5)
(=1
do,, = —iloy H1=1iY of b ey, (A6)
k
d0j,, = —ilof . H| =Y (<2i0] bise' ey — cc). (A7)
k

Here we haveused H, = HZG™ (1) + Hiy e (t). We eliminate the bath degree of freedom by formal integration of their equations
of motion

t N
by =bro—i / dr'y " ep o e O (A8)
0 =1
: N
Cht = Cro— i f dr'y & ape @) (A9)
0
=1

and insert Eq. (A8) and the conjugates into the equations of motion for the system operators given by Eqgs. (A3)-(A7),

t
22
da, = " — / Aty BT s (A10)
0 k
t .
8to’2jl = s;:t + / dl/ Z |8k|2el(k_k0)(”_”,)‘Fk,w;,f,f/aZz’a(ZZ’,[7 (All)
0 tk
t
— — 2 —i(k—k —ry b4 —
doy, =&, + / L I P L . /e (A12)
0 Lk
t .
ala[’,,t = EZ’,t ) / df/UZt Z |Sk|2ez(k—kn)(r«fru)fk!wz,t.[,g[’t, +c.c. . (A13)
0
¢
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Equations (A10)—(A13) now contain only the dissipative and
fluctuating components that arise from the interaction of the
system with the external reservoir. The explicit form of the
noise operators can be read

E' = =iy Ber(O)e T, (Al4)
k

£5, =—i Y bl (e @l kRore o (Al5)
k

E@T,t - Z O,lz/,tbk(O)ei(a)zka)fgkefi(kfkg)rl/ ,
k

£, =Y _[2ibf (0o, efe @l hRore L ce] (A17)
k

(A16)

Within the Born-Markov approximation, the frequency-
independent damping constants are parametrized by the re-
lations

y8t —1) =Y ek Frs = 27|60, D)8t — 1),
k

(A18)
k8t — 1) =Y |8l Frrr = 2|80, "Dl@0)d(t — 1),
k
Frwr = expl—i(@ — v)(t —1)]. (A19)

Here we have taken g; ¢ = ee 'k ~k0re a5 the cavity-shifted,
spatially dependent atom-photon coupling to the bath modes
by outside of the cavity, where kj is the cavity wave vector.
In addition, D(wp) and D(w,) are the density of states of the
bath modes and ¢, and &, are the microscopic system-bath
coupling constants evaluated at the effective photon frequency
wy and the effective atom frequency w,.

APPENDIX B: ELIMINATION OF CAVITY PHOTONS
IN THE PRESENCE OF NOISE

We detail the elimination of the cavity photons in the
presence of photonic noise functions (§¢ and & 'y As aresult,
the local atomic components (o;', o7, and ¢;) at site i inherit

additional noise from the photons with strength proportional to
2
za’i—oj,where J =452

Wi
coupling of the atoms for the deterministic dynamics, the
noise inherited from the photons adds to the collective loss
term of the atoms ~yf in the 0¥ and o* channels. However,
since both co- and counterrotating terms ~(a + ah >, 07 are
present in the Dicke Hamiltonian, the o* channel does not
inherit a photonic noise component. We start by considering
the Heisenberg-Langevin equations given in Egs. (6)—(9),

Since the photons mediate an all-to-all

N
. . 8
0a = —(k +iwp)a —i—— o) + &4, (B1)
t 0 \/N; l s

y _ B 2g(aT+a)
S =wof — | ——— —

VB, -
} = oo N P A LA

O£

0,0

(B2)

_u@ia)

00" = — 2)/(1 + Oiz) + &

1 \/N 1
yB TR
~aN ; [Gixaf + ai}og + l(oivaé‘ — oixoey)
+c.c]. (B3)

On the level of single-operator expectation values for the
system variables (-) = (-)s one can define a collective
variable as of = Z?/:l (Uf ) /N, the collective atom noise
£h = > (Sf )/ N, the noise function of the photons as n =

(£7) /N, and the expectation value of the photon operator
o = (a) /+/N (noise operators vanish only for bath averaging),

o = —(k +iwg)a —igo™ + 1, (B4)
80" = w,0" — [28(a + o) — ypa’lo —ya’ + &,
(BS)
z Y5 ¥ z VB i _x Yy
0;0° =2g(ax + a™)o —2y(l—|—o)—7[ao +o0Y0”]
+&°. (B6)

We eliminate the gapped photon degrees of freedom (d;«¢ = 0)
to obtain their steady-state value as

@ tat = —n+igo +—r) —z'go ' (B7)
—K +iwg

Plugging Eq. (B7) in Egs. (B5) and (B6) leads to a redefined
noise function in the o>@ channel

Zy : 28 . o s
s}(z) — E)(Z) ¥ ﬁd”(”[K(n + 1) —iwo(n — ],

K+ wj
(B3)
8,0Y = w, 0" + Jo'o* + yBo’ct —yo? + &, (BY)
Z __ X .y z )/,3 X __X y .y £z
o =—-Jo'o? =2y(1+o )—7[0 o +aoc7]+ E°.
(B10)

The covariances of the atoms now contain a noise contribu-
tion from the photon field

<§y(z)§y(z)>noise — (Ey(z)éy(z))noise 4 oM gz

X — <r’*n+nn*)noise7 (Bll)
wo
S ? A
<§y€")noise = (E}%-Z)noise - OzayaTO (n'n + 777’*>noise .
B12)

Taking the bath for the photons to be in a zero-temperature
vacuum state, the noise correlation function is, according to
Eq. (A14),

(" n+nn*) =2« /NSt —1').

We remark that the so-obtained variances for the atoms and
photons are equivalent to the variances that would be obtained
in the associated MSRDIJ path integral [42—44] for the complex
fields (a, and a}) and for the real fields (0;", o', and 0;7) where

(B13)
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the photon degrees of freedom are then integrated out exactly
for the zero-frequency sector.

APPENDIX C: DERIVATION OF THE CLASSICAL
NOISE KERNEL y FOR STOCHASTIC OPTICAL
BLOCH EQUATIONS

The classical noise kernel x (o) [see Eq. (17)] contains the
noise correlations for the collective atomic variables (o% =
Z?’zl o/ /N) in the stochastic optical Bloch equations. It is
derived by mapping the corresponding operator-valued noise
correlations of the atomic and photonic noise functions to
correlations of the associated classical noise functions through
the process of symmetrization. We detail the derivation of
the classical noise kernel and start by explicitly evaluating

J

the operator-valued atomic and photonic noise functions in
Egs. (A15)-(A17).

1. Evaluation of operator-valued noise correlations
in the atomic channel

The evaluation of noise correlation functions is now per-
formed as an average over the bath degrees of freedom
denoted by (-)p,, Where the expectation value is a ther-
mal average over a zero-temperature bath. Since the exter-
nal bath is described by the vacuum and only terms pro-
portional to bk(O)b,t(O) contribute, correlations of the form
(ET(t)---) =0 and (---& (t)) = 0 vanish. In particular that
means (£ (1) (1)) = 0, whereas (§ (1)1 (¢)) £ 0.

The noise correlations for the atomic degrees of freedom
can be expressed by using Eqgs. (A15)-(A17) as

(&l v&] Dy = V8 — B + (1 = Se.e)e) Ry (C1)
0 0 0
=\ oi0f, 0 =205,0,,| . (C2)
_zaz’r,tozz,z 0 40€fr6(37,t

where the mdlces (i,j) e+, —

ij

,z) refer to the atomic variables. The entries of the matrix )Zéﬁ are still dependent on the system

operators o] at site £. With the relations & = &, + &, and &} = —i(§,” — &,7) we rotate from (4, — ,z) into the (x,y,z) basis
oiof —iojo;  —op(of —ia))
Xe”e = iojo} o0} —ioj (o} —iop) | (C3)
oY ; ) o 2 52z
—(op +iop)of i(o) +iop)o; b i

Y Y oY
with g7 = lojo) + o050, + l(UZ:O'Z
correlation matrix for the local noise components as

0,0, 7)]. For the components with £ = £’ the local spin algebra can be used to write the

1 —i (of —io})
q = i i(of —io}) | - (C4)
(of +io}) —ilo" +ioy)  2(1+07) ),

Equations (C3) and (C4) together with Eq. (B8) are the starting point to obtain the corresponding classical noise kernel x (o).

2. Mapping the photonic and atomic noise correlations to a classical noise kernel

The general correlation matrix x in Eq. (C3) was obtained by averaging over the bath degrees of freedom and still depends
on the system operators o} with o = (x,y,z) and £ as the local site index. For a mapping to a classical noise correlation matrix

it is necessary to erase the information on commutation relations. This is achieved by symmetrizing the matrix entries x,},

which amounts to taking their real part Re[x,},]. As described in the main text, this procedure leads to a symmetric, real, and
positive-definite noise kernel and is thus well defined.

We are interested in the noise strength for the equations of motion of the collective variable o* =}, (o7') /N with the
averaged noise £% = Yo Se sys /~/N, where ( “)sys 18 @ quantum mechanical average over the system Varlables Here £ is
the modified noise function of the atoms that contalns both an atomic and photomc contribution for « = (y,z) stemming from
the elimination of the cavity degrees of freedom and is defined in Eq. (B8). The o* channel is free of a photonic contribution as
discussed previously. The noise average (-),.;. t0 obtain the classical correlation matrix x is then defined by averaging over both
the bath and system degrees of freedom

(éag. nome—N <Z$g §ﬁ> =N718(I—t,)2
sys+bath

Lm tm

= 8(t —t)x"(0),

(V[5e,m + (1= 8emalRe[ (77)

12]/(
]+ N
sys wo

ezt )

(C5)
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where the contributions from the photons are specified as

(M), = o) o5} (M), = (o)), (€6)
<Mi§Z)sys = <Mi})Z>sy$ = <Giz>(afy) : (C7)

The noise correlation matrix x“#(¢) is specified in Eq. (17) and contains now a noise component from the local, uncorrelated loss
processes ~y as well as from the collective loss processes ~y = ya(N — 1), where B = const in the thermodynamic limit and
a contribution from the photons ~2Jk /wy. From Eq. (C5) one can see that the variance of the sum of the random noise functions
> (éé")sys scales with the number of atoms N as expected, for instance, from the central limit theorem.

APPENDIX D: APPENDIX D: NONLOCAL LINDBLAD CONTRIBUTION IN THE BORN-MARKOV APPROXIMATION

For the derivation of the collective decay contribution, we will briefly review the textbook approach (see, e.g., [53]) of how the
external reservoir influences the evolution of the system in a Born-Markov approximation. This leads, in general, to a nonlocal
density-matrix equation [see (D4)]. Collective decay contributions that add to the single-atom decay rates have been derived in
the context of single-photon sub- and superradiant states [25] in a wave-function formalism. Here we carry these considerations
over to a density-matrix formalism and show that a description in terms of Lindblad operators reproduces the results obtained
from the wave-function picture. The collective loss contribution emerges by allowing all spins to interact with one shared bath.
In the interaction picture, the system-bath Hamiltonian in the rotating-wave approximation can be written as

N
H]j;?}?lsyg(t) — Z Z(Sk’zaz—bkei(w:*\)k)f + S]X;Eb;io.{—e*i(wz*w)t). (Dl)
k=1

Here the coupling to the bath is given by &, , = g;e k"¢, with g, taking into account the frequency dependence of the kth radiation
mode that is given by v; = ck. The time evolution of the full system and bath density matrix reads (& = 1)

t
dyp(t) = —i [Hsg?,;‘_‘:ys(r),p(0> —i / dr’[Hggﬁ;‘f:ys(r’xp(t’)ﬂ. (D2)
0
For weak system-reservoir coupling in the Born-Markov approximation, the density matrix is written as

:O(t/) = pbath—sys(t/) ~ psys(t/) ® pbath(o) + (Spbath-sys(t,)’ (D3)

where the last term is of O(ey). This is justified for a large reservoir, which is unaffected by the system dynamics and for which
the bath-system coupling is memoryless, i.e., p(') — p(¢) in Eq. (D2).
Tracing out the bath degrees of freedom in the Born-Markov approximation, the time evolution for the system is found to be

t
01 Pys(1) = / A’ Y lelPe  ER 00 po (g + 6 — piog oy ¢ — ooy pidid, (D4)
0 [N

where we have made explicit that in the Dicke model all momenta are expressed with respect to the cavity wave vector k( and
we have collected temporal phase factors as ¢ (1" — t) = exp[—i(w; — v¢)(t' — t)]. For a large number of atoms, the sum over
all atoms and momenta is only nonvanishing for two different contributions: either for £ = ¢’, which describes the uncorrelated
single-atom decay, or for |k — k| ~ 0, which describes correlated decay into modes near the cavity wave vector. We note that
contributions with ¢ # ¢’ are generally suppressed by the volume factor proportional to 1/V, which is implicit in the atom-light
coupling constant &;. We single out the uncorrelated single-atom loss, which has been treated in many previous works (see, e.g.,
[35]) and find

N t
0 psys(t) =y Z (o7 pio — Hotoy o)) + / dr’ Z e kRO e 2oy pro (G + ) — progioy o — ooy pegl.
=1 0 kO£
(D5)

For the second contribution to Eq. (D5), we focus only on the collective part that arises from wave vectors |k — ky| ~ 0. We
proceed by calculating the weight of the associated § function

t t 3
ko) — (2 )
dr’y ey e ke =0 aef dr'y el 8(k — ko). (D6)
/0 d ? Sk | d = 0)%k
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We assume that the bath modes lie densely and work in the continuum limit to use the replacements

1 R 1
Sk — ko) = — ik=kor 50, — 6, )8( — i, Vdr ———, D7
( 0) e /_Re Ok — Ok)S (P — Py) F T sin(@0) (D7)
\% 00 5 T ] 2
Z - - dk k sin(6)d 6y dox., (D8)
P 2n) Jo 0 0
which leads to the integral
00 R
/tdt/z ey |2emik—ko)ro—ro g ~ /ldt’/ dkleklz[L/ e_i(k_ko)’dr:|ei(Ck_‘“z)(’_")
0 k 0 0 27T —R
t o) 1 R
= / dt’/ dkley|*— / explictk — ko)(t —t' —r/c) +iclko — k)t — t')]dr
0 0 2w J_g
_ |8 2 ! / R LZ_T[ o . _ Y
= |é&g, | dt dr 8(t —t' —r/c)expliclky — k,)(t — t')]
0 —R 21 ¢
et AR exolicthn
= &k, | dr2 lek, |~ explic(ko — k)r/c]
—R C C
in[(ky — k,)R
- |8k0|2M (DY)

c(ko — kz)

Here R is the radius of the atomic cloud in the cavity which is much larger than the cavity wavelength. In the last line we have
used that |g;|> does not vary significantly around k ~ ko and pull it out of the integral

oo 2 . / 2n / 2
dkler|"explictk — ko)t —t' —r/c)] = —8(t —t —r/c)lex, |
0 C

As a result, one obtains

! ) in[(ko — k;)R 27 D(k;) sin[(kg — k)R 2
/ dt/ Z |8k|261(k—k0)(rz—n’)§k — M|8k0|2 o T ( Z) Sln[( 0 &) ] |8k0| |8 Z|2
0

- ctho — ko)

sin[(ko — k;)R] ek,

c(ko — k)

(D10)
C2nD(k;)  clko — k) ek |2
3 22 2 sin[(kg — k)R
— (2 |5k0|2 sin[(ko — k)R] _ ve. (DI
27 D(k;)|ex,| 8w \4n R° / |er. | (ko — k;)

Here the volume of the atomic sample is taken to be V =4/37 R* and the density of states D(k.) = ka /m?c and y =
27|, |>D(k.). If the difference between the two wave numbers ko and k. is small, one can expand the sin function to first
order to reproduce the result for the strength of the collective decay in [25] obtained from a wave-function picture, i.e.,

. 3( A
Iim ¢« = — .
ke—ko 8 \ 47 R2

Equations (D11) and (D12) determine the strength of collective losses in a large sample limit R > A¢. Using Eq. (D11) in Eq. (D5)

(D12)

leads to

=z

3 psys() =Ly [pl =y Y (07 pio]" —
(=1

The established decay rates for a single excitation are re-
produced by L, [25], i.e., one finds the single-atom decay
rate y, the decay rate of a superradiant state of N atoms, to
be Y[l + «(N — 1)] and the decay rate of a subradiant state
(see, e.g., [25]) to be y(1 — «). The prefactor « is bounded,
0 < o < 1, and depends on the cavity geometry as shown in
Eq. (D12).

In order to define a sensible thermodynamic limit N —
00, both the average energy and loss rate per particle have to
remain finite. The collective loss rate, however, scales as a N
and thus we define « = 8/N where limy_, o, § = const has

%{UZFO‘[’)OI}) +ya Z (0'571010’; -

sl .o)). (D13)

£

(

to remain constant in the thermodynamic limit. This leads to
the Lindblad superoperator £, as given in Eqs. (2) and (3).
In an experimental setup, B is then determined by the cavity
geometry factor o and the experimentally relevant number of
atoms N = Nep. This is equivalent to the Dicke atom-photon
coupling, which is set to scale ~g/v/N Y0, o (a + a®).
From the above derivation it can be seen that the collective
atomic loss channel and the individual atomic loss channel are
derived from the same Hamiltonian that couples the system
degrees of freedom with the electromagnetic vacuum. The
collective atomic loss channel therefore does not introduce any

023807-11



JAN GELHAUSEN AND MICHAEL BUCHHOLD

PHYSICAL REVIEW A 97, 023807 (2018)

new characteristic time scales that would call the time-local
Lindblad structure and thus the Born-Markov approximations
into question.

Below we quote the experimental values for the parame-
ter set (wo,w;,k,y) = [100(5),77(2),100,0.075 — 0.3] kHz as
obtained for a quantum optical realization of the Dicke model
(see [27] for details). Here « is the half-width at half maximum
linewidth of the cavity, y is the effective rate of spontaneous
emission per atom, wq is an effective frequency for cavity
photons, and w; is an effective frequency for the level splitting
of the atoms. In this experiment, the typical number of atoms

N loaded into the trap is around N ~ 10°. An estimation of
the cavity coupling constant o ~ 6 x 10~ from experimental
values in [27] and in [54] leads to a collective loss rate of
about B = yaN ~ 0.0045-0.018 kHz. The cooperative loss
rate for the current experimental setup is not yet large enough
to lead to a competition with the effective atom-atom coupling
strength J thatis on the order of the atom and cavity frequencies
yB K J ~ wy. Future experiments into the dissipative Dicke
model might be able to access the regime where y8 ~ J that
is necessary to experimentally measure the bistability regime
and the fluctuation-induced dynamics.
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