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Retardation effects in spectroscopic measurements of the Casimir-Polder interaction
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Spectroscopy is a unique experimental tool for measuring the fundamental Casimir-Polder interaction
between excited-state atoms, or other polarizable quantum objects, and a macroscopic surface. Spectroscopic
measurements probe atoms at nanometric distances away from the surface where QED retardation is usually
negligible and the atom-surface interaction is proportional to the inverse cube of the separation distance, otherwise
known as the van der Waals regime. Here we focus on selective reflection, one of the main spectroscopic probes
of Casimir-Polder interactions. We calculate selective reflection spectra using the full, distance dependent,
Casimir-Polder energy shift and linewidth. We demonstrate that retardation can have significant effects, in
particular for experiments with low-lying energy states. We also show that the effective probing depth of selective
reflection spectroscopy depends on the transition linewidth. Our analysis allows us to calculate selective reflection
spectra with composite surfaces, such as metasurfaces, dielectric stacks, or even bidimensional materials.
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I. INTRODUCTION

The Casimir-Polder interaction of polarizable quantum
objects, such as atoms or molecules, with a macroscopic
surface is a fundamental problem of quantum electrodynamics.
Spectroscopic measurement of atomic energy-level shifts has
been one of the main experimental methods for probing atom-
surface interactions. Spectroscopy of Rydberg atoms flying
through metallic cavities was the first precision measurement
of the van der Waals law [1], demonstrating that atom-surface
potentials scale as z−3, where z is the atom-surface separation.
Selective reflection (SR), a technique used in conventional
vapor cells, is also sensitive to atom surface interaction in
the nanometric scale, probing atoms at distances on the order
of 100 nm away from dielectric windows [2,3]. Selective
reflection has been used to demonstrate atom-surface repul-
sion of excited-state atoms due to resonant coupling with
surface polaritons [4], as well as to demonstrate a strong
temperature dependence of the Casimir-Polder interaction
due to thermal excitation of polariton modes [5,6]. Thin cell
transmission and reflection have been used to measure atom-
surface interactions [7] and more recently evidence of van der
Waals interactions was also observed on thin cell fluorescence
spectra [8].

Spectroscopic probing of the Casimir-Polder interaction has
been so far seemingly faithful to the z−3, van der Waals law,
whereas retardation effects, that were famously first predicted
by Casimir and Polder [9], have been demonstrated only
with ground-state atoms. This was either done by measuring
the deflection of ground-state sodium atoms [10], or by
using cold atom trapping in the vicinity of surfaces [11–13].
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Nevertheless retardation effects for excited-state atoms have
remained elusive in most spectroscopic experiments, with a
notable exception of experiments performed with ions placed
extremely far away (on the order of 20 cm) from a surface
[14]. These experiments have shown QED oscillations of
the Casimir-Polder force, similar to the ones predicted for a
classical antenna, due to the influence of spontaneous emission.
The intermediate regime of interaction has not been studied
with excited-state atoms. In fact, analysis of spectroscopic
measurements, in particular selective reflection or thin cell
spectroscopy, has only been performed under the prism of a
pure van der Waals law [3]. However, recent experimental
and theoretical studies [15] suggest that retardation could
have measurable effects for spectroscopic experiments with
low-lying atomic energy states.

Here we theoretically investigate the effects of Casimir-
Polder retardation on selective reflection spectra. In Sec. II
we outline the principles of the calculation of selective
reflection spectra accounting for a fully retarded Casimir-
Polder potential. In Sec. III, we calculate the Casimir-Polder
potential of cesium low-lying energy states and we present the
theoretically predicted spectra of the corresponding selective
reflection experiments. We show that retardation effects have
an impact on predicted spectra and experimental measure-
ments of the van der Waals coefficient. Finally, in Sec. IV,
we discuss how our analysis is imperative for interpreting
spectroscopic measurements with more complex geometries
such as metasurfaces that now offer an attractive way for
tuning the Casimir-Polder interaction via tuning of surface
plasmon or polariton resonances [16]. Our approach allows
us to account for a distance dependent shift and linewidth.
This can be important in the quest for identifying more
delicate effects such as quantum friction [17] in spectroscopic
experiments.
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II. INFLUENCE OF CASIMIR-POLDER INTERACTION
ON SELECTIVE REFLECTION SPECTRUM

The Casimir-Polder interaction has been theoretically in-
vestigated in numerous studies. Here, we follow the formalism
introduced by Wylie and Sipe [18,19], since our emphasis will
be on excited-state atoms. The same formalism has been used
to analyze a temperature-dependent Casimir-Polder interaction
[20] and later to demonstrate that the temperature-dependent
Casimir-Polder interaction is equivalent to a shift induced by
near-field thermal emission [15].

For a given atomic state |a〉 the free-energy shift δFa due
to the atom-surface interaction can be expressed as the sum
of contributions resulting from all dipole allowed couplings,
δFa→b, (δFa = ∑

b δFa→b), which can in turn be decomposed
in a resonant δF r

a→b and nonresonant δF nr
a→b contribution. The

resonant term of the interaction is reminiscent of a classical
interaction between an oscillating dipole and its image [21].
The nonresonant term originates from the QED picture of
an atom interacting with the fluctuating vacuum at nonzero
temperature [19–21]. It can be viewed as a distance dependent
Lamb shift [18–20]. The resonant and nonresonant terms of
the Casimir-Polder interaction are given by the following
expressions:

δF nr
a→b = −2

kBT

h̄

∞∑
p=0

′
μab

α μba
β Gαβ (z,iξp)

ωab

ξ 2
p + ω2

ab

, (1)

δF r
a→b = n(ωab,T )μab

α μba
β Re[Gαβ(z,|ωab|)]. (2)

Here, ωab is the transition frequency that can be either positive
or negative depending on the coupling, ξp = 2π kBT

h̄
p are the

Matsubara frequencies, and n(ωab,T ) is the Bose-Einstein
factor. The prime symbol signifies that the first term of the
sum should be multiplied by 1/2. We use the Einstein notation,
implying a summation over the index variables α and β that
denote the Cartesian coordinate components. Finally, μab

α and
μba

β are the dipole moment matrix elements and Gαβ(z,iξp)
are the components of the linear susceptibility matrix of the
reflected field defined in [18,19]. The linear susceptibility
matrix gives the reflected displacement field at a point �r due
to a dipole �μ(ω), oscillating at a frequency ω, positioned at

�r ′, via the relation �D(�r,�r ′,ω) =↔
G (�r,�r ′,ω) �μ(ω). In our case

↔
G is evaluated for �r = �r ′, because we’re interested in dipoles
interacting with their own reflected field. Due to the cylindrical

symmetry
↔
G is only a function of frequency and distance z

of the dipole from the reflecting wall. More details on the
calculation of the elements of the linear susceptibility matrix
are given in [15,18–20].

The distance dependent linewidth, δγa(z), is also a summa-
tion of contributions, δγa→b, given by

δγa→b = 2n(ωab,T )μab
α μba

β Im[Gαβ(z,|ωab|)]. (3)

The far-field limit (z � λab

4π
) of the free-energy shift δFa→b

and linewidth δγa→b are given by

δFa→b = n(ωab,T )μab
α μba

β

k2
ab

z
|r(ωab)| cos (2kabz + φ(ωab)),

(4)

δγa→b = 2n(ωab,T )μab
α μba

β

k2
ab

z
|r(ωab)| sin (2kabz + φ(ωab)),

(5)

where λab, kab are the transition wavelength and wave vector
and r(ωab) = |r(ωab)|eiφ(ωab) is the surface reflection coeffi-
cient. In the near field (z 	 λab

4π
), the free-energy shift follows

the well-known van der Waals law that writes δFa→b =
−Re[C3]

z3 . In the case of a dissipative surface (nonzero imag-
inary part of the dielectric constant), the distance depen-
dent linewidth also follows the inverse cube law: δγa→b =
− 2 Im[C3]

z3 , where C3 is the complex van der Waals coefficient.
Using the above definitions we can proceed to the calcula-

tion of the selective reflection spectrum using a fully retarded
Casimir-Polder shift and linewidth. Selective reflection is a
linear spectroscopic technique that measures the reflection
of a laser beam, near resonant with an atomic transition,
at the interface of an atomic vapor and a dielectric surface
(transparent at the laser frequency). Due to collisions with the
dielectric surface the interaction of the atoms with the laser
field is interrupted. As such a correct description of selective
reflection takes into account the transient regime of atom-laser
interaction [3,22]. In its FM (frequency modulation) version
selective reflection is linear (with respect to laser power),
has a sub-Doppler resolution, and is essentially sensitive to
atoms that are at distances on the order of λ/2π away from
the dielectric surface, where λ is the wavelength of optical
excitation. The combination of high-frequency resolution and
detection of atoms at nanometric distances from the surface
makes selective reflection a major experimental method for
probing Casimir-Polder interactions of excited-state atoms.
Additionally selective reflection has been used for measuring
the collisional broadening (broadening due to interatomic
collisions) of atomic transitions [22,23]. The possibility of
measuring local-field corrections (Lorentz-Lorenz shift) at
high vapor densities with strong laser attenuation inside the
atomic vapor has also been considered [24].

In our study we usually consider transitions between the
fundamental electronic state of the atom |g〉 and an excited
state |e〉. The details of the calculation have been outlined in
[3]. Here we briefly recall that the calculation considers the
transient atomic response to correctly describe the effective
linear susceptibility of the atomic vapor. When a frequency
modulation (FM) is applied to the laser probe beam the
observable signal is in fact the derivative of the reflectivity
as a function of laser frequency ω, which according to [3] is
given by the following formula:

SFM = Im

[∫ ∞

0
dz

∫ ∞

0
dz′ (z

′ − z)eik(z+z′)

L(z′) − L(z)

]
. (6)

The integral inside the brackets will be denoted as I . Here,
k is the laser wave vector and L is defined as the following
indefinite integral:

L(z) =
∫ [

γ + δγ (z)

2
− i(ω − ωo − δF (z))

]
dz, (7)

where ω, ωo are the laser and transition frequencies and
δF (z) = δFe(z) − δFg(z) is the difference between the free
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energies between the probed states, which is the relevant
quantity in selective reflection spectroscopy. γ is the transition
linewidth in the volume (away from the surface), defined as the
natural linewidth plus any additional collisional broadening,
and δγ (z) = δγe(z) + δγg(z) is the distant dependent transition
linewidth that essentially contains all surface effects. We can
also write Eq. (7) as

L(z) = Loz − iξ (z), (8)

where Lo = γ

2 − i(ω − ωo). The effects of the surface on the
atomic properties are essentially contained in the indefinite
integral ξ (z) = ∫

(−δF (z) + i
δγ (z)

2 )dz. Here the shift −δF (z)
and the linewidth δγ (z)

2 appear as real and imaginary parts
of the Casimir-Polder potential, respectively. The integration
constant has been omitted as we are only interested in the
difference L(z′) − L(z).

In most spectroscopic experiments one fits the experimental
data with a theoretical model to extract information about the
Casimir-Polder interaction [1,2,4–8]. Here, however, ξ (z) is
a numerically calculated function that uses the theoretically
estimated Casimir-Polder potential, without accounting for any
adjustable parameters. For this purpose we rewrite Eq. (8)
using a dimensionless multiplicative constant, η, that is applied
equally to both the free-energy shift and linewidth:

L(z) = Loz − iηξ (z). (9)

η changes the strength of the potential and provides an ad-
justable parameter that can be used to fit the theoretical model
to experimental data. For the purposes of this manuscript,
selective reflection spectra are calculated using strictly the
theoretical predictions for atom-surface potential (i.e., η = 1).

After a change of variables and some tedious algebra the
selective reflection integral is written as

I = 2

(1 − i�)γok2

[
1

(−i + α)2

]
+ 2

(1 − i�)γok2

×
[∫ ∞

0
ds eise−αs

∫ s

0
dt

iA(s,t)

(1 − i�) − iA(s,t)

]
. (10)

The details of the calculation and the definition of (s,t)
are given in Appendix [see Eq. (A3)]. Here we define the
normalized frequency (detuning parameter) � = 2(ω−ωo)

γ
and

the parameter A = 2ηk

γ
. The parameter α is the attenuation

coefficient due to the exponential laser absorption inside the
resonant vapor (see also [3,24]). In normalized frequency units
the shape of the spectrum depends exclusively on the parameter
A, which is essentially the ratio of the strength of the potential
η over γ , that defines the resolution of the experiment.

The result of Eq. (10) displays many similarities with the
selective reflection spectrum assuming a pure van der Waals
potential [3]. However, here the curves are not universal,
since the distance dependence of the potential depends on the
probed transition. Additionally, the calculation of the integrals
is significantly more difficult.

It is also worth mentioning that, while in the near field the
distance dependent linewidth is usually significantly smaller
than the atomic energy shift and in most cases can be safely
ignored; this is not the case when one considers the complete
Casimir Polder potential. It can be seen from Eqs. (4) and (5)

that, in the far field, linewidth (δγ /2) and shift (δF ) oscillate
with the same amplitude and frequency and a phase shift of
π/2. As such, ignoring the distance dependent linewidth in a
fully retarded calculation has no realistic justification and can
lead to erroneous results or even, in some cases, to divergent
selective reflection integrals.

III. RESULTS

We now turn our attention to some specific cases, focusing
mainly on cesium, which is widely used in spectroscopic SR
experiments (see [5,6,16,25] and references therein). In par-
ticular we examine the low-lying excited states where dipole
moment fluctuations remain relatively small and comparable
to those of the ground state. Here we also take into account
the modification of the spontaneous emission rate near the
surface [26] due to the reflection of the emitted field on
the surface or due to emission in the forbidden cone of the
dielectric [27] and in evanescent plasmon-polariton modes.
Within the near-field approximation the transition linewidth
can be written as δγa→b ∝ 1

z3 Im[ ε(|ωab|)−1
ε(|ωab|)+1 ], which diverges

close to the surface, if the surface dissipation is nonzero at
the transition frequency (Im[ε(|ωab|)] �= 0). This represents
an increase in the spontaneous emission rate of the atom due
to the existence of evanescent, plasmon-polariton type, modes
[28]. In the cases considered here this contribution is small for
experimentally meaningful distances. Therefore, we consider
the surface dissipation equal to zero (Im[ε(|ωab|)] = 0), thus
avoiding any divergence of the atomic linewidth very close to
the surface (see also relevant discussion in [18]).

In Fig. 1(a) we show the energy-level shifts for the cesium
levels 6S1/2, 6P1/2, 6P3/2, and 5D5/2 against a sapphire
surface, multiplied by the cube of the atom-surface distance
z [−δF (z) z3]. For simplicity, we call the quantity −δF (z) z3

an effective van der Waals coefficient Ceff
3 . Our calculation

is performed for a sapphire surface whose dielectric constant
is given in [29,30]. From Fig. 1(a) we can see that, for the
excited states of cesium, the Ceff

3 (z) is practically constant
within a few hundred of nanometers from the surface, whereas
the ground state of cesium 6S1/2 decays much more rapidly,
towards an asymptotic z−4 regime. This is partly because
excited states present many dipole couplings at near and
midinfrared wavelengths but also because these couplings are
both in absorption (positive transition frequencies) as well
as in emission (negative transition frequencies). As such,
excited states are sensitive to the distance dependence of the
resonant term of the Casimir-Polder interaction whose distance
dependence is very different from that of the nonresonant term.

We will examine here in more detail the spectra of selective
reflection at the 6S1/2 → 6P1/2 and 6S1/2 → 5D5/2 transitions.
The difference of the effective van der Waals coefficients for
these experiments, representing the spectroscopically relevant
quantity, is shown as an inset of Fig. 1(a). The first transition,
the D1 line of cesium, was already investigated experimentally,
albeit with a cell containing significant quantities of buffer
gas impurities [31]. The D2 line of cesium (6S1/2 → 6P3/2),
experimentally investigated in [2,23], exhibits a very similar
behavior to the D1 line.

In the case of the 6S1/2 → 5D5/2 transition SR is almost
exclusively sensitive to retardation mostly because the van
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FIG. 1. (a) Effective van der Waals coefficient Ceff
3 (as defined

in the main text) for the cesium levels 6S1/2 (black dashed line),
6P1/2 and 6P3/2 (black and gray dash-dotted lines, respectively), as
well as 5D5/2 (black solid line) against a sapphire surface. The inset
shows the difference of the effective van der Waals coefficients for
the 6S1/2 → 5D5/2 (black solid line) and the 6S1/2 → 6P1/2 (red solid
line) transitions. (b) Distance dependent linewidth for three principal
transitions 6S1/2 → 6P1/2 (black dash-dotted line), 6S1/2 → 6P3/2

(gray dash-dotted line), and 6S1/2 → 5D5/2 (black solid line in the
main figure and the inset).

der Waals coefficients of the two levels are very similar
in magnitude. The 6S1/2 → 5D5/2 transition is an electric
quadrupole coupling, with small transition probability. Nev-
ertheless, it has been experimentally probed by reflection
spectroscopy of evanescent waves [32] and more lately with
high resolution pump-probe spectroscopy [33]. Additionally,
the 5D5/2 level can be reached with a two-photon or Raman-
type transition using two excitation lasers and appropriately
large detuning to minimize the influence of the intermediate
state. Therefore, the analysis that we will present here is
much more than a simple theoretical curiosity. In Fig. 1(b)
we show the distance dependent linewidths for the 6P1/2 and
5D5/2 transitions (starting from the cesium ground state). The

increase in linewidth (decrease in lifetime) observed close to
the wall is a well-known effect that depends on the orientation
of the atomic dipole [18,26], which is here considered to be
random. A few hundreds of nanometers away from the surface,
we observe QED oscillations of the linewidth [see Eq. (5)]
around its asymptotic value, which, for the purposes of Fig. 1,
is considered to be equal to the natural transition linewidth
assuming zero collisional broadening.

We now use the theory developed in the previous section
to calculate SR spectra of the electric quadrupole transition
6S1/2 → 5D5/2. In Fig. 2(a) we show the calculated SR spectra
as black solid lines for different values of the collisional
broadening. The gray lines show the expected SR spectra,
assuming a pure van der Waals nonretarded law C3z

−3. The
differences between spectra are significant, especially for γ =
120 kHz (natural transition linewidth) where differences are
indeed striking. This confirms that retardation effects can play
an important role in this experiment. To strengthen our analysis
we try to fit the fully retarded SR spectra using an ad hoc van der
Waals coefficient, Cfit

3 . The fitting methods have been detailed
in numerous works (see for example [23,25]). We briefly recall
that the fitting process optimizes a dimensionless parameter
A = 2C3k

3

γ
, the transition linewidth, and accounts for the

amplitude of the spectra as well as a small (pressure-induced)
shift of the transition frequency. The best fits are shown with
dashed lines in Fig. 2(a), whereas the values of Cfit

3 as a function
of transition linewidth are shown in Fig. 2(b). It is evident that
an ad hoc van der Waals model can in most cases satisfactorily
fit the fully retarded spectra. It should nevertheless be noted
that the quality of the fits clearly degrades as the linewidth
decreases (for γ = 120 kHz the fit cannot reproduce very well
the retarded SR spectrum). Most importantly, the Cfit

3 is not
constant but displays a clear dependence on the transition
linewidth γ , as can be seen in Fig. 2(b). As γ increases the
ad hoc van der Waals coefficient approaches its theoretical
value Ceff

3 (z → 0), whereas for narrow linewidths SR seems to
probe the Casimir-Polder interaction at a finite distance (more
than 100 nm away from the surface when γ = 120 kHz). This
phenomenon has a rather transparent interpretation: due to
big Casimir-Polder shifts, atoms that are very close to the
surface experience a large detuning parameter that reduces
their relative contribution to the SR spectrum. When the
transition linewidth increases due to collisional broadening,
� decreases, thus enhancing the contribution of atoms that are
closer to the surface. In the inset of Fig. 2(b) we plot the ratio
of amplitudes between the exact SR spectra and the van der
Waals fits. Here, also, we observe a dependence as a function of
linewidth. These variations (about 20%) are much smaller than
the Cfit

3 variations. We also stress that the actual experimental
amplitude of the spectra would also depend on the atomic vapor
density. As such an experimental study of amplitude effects is
more challenging.

The same analysis is repeated for the D1 transition of cesium
and the results are summarized in Fig. 3. Here, the retarded
SR line shapes (solid black lines) can be almost exactly
reproduced by an ad hoc van der Waals fit (dashed lines). As
previously, the values of Cfit

3 [Fig. 3(b)] also decrease with
increasing linewidth converging towards the value of Cfit

3 =
1.35 kHz μm3. For γ close to the natural linewidth (4.6 MHz),
Cfit

3 = 1.7 kHz μm3, a value that cannot be justified only by
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FIG. 2. (a) Black lines represent the simulated selective reflection
spectra (SFM ) on the 6S1/2 → 5D5/2 transition, using a fully retarded
Casimir-Polder potential (exact SR line shapes) with a transition
linewidth of γ = 120 kHz (natural linewidth), as well as γ = 1 MHz
andγ = 10 MHz (assuming a collisional broadening). The spectra are
given as a function of the normalized frequency �, as defined in the
text. The gray lines represent the expected SR line shapes assuming a
pure van der Waals atom-surface potential (i.e., using the theoretical
prediction of C3 = 0.15 kHz μm3). The dashed curves are the best fits
of the exact SR line shapes using an ad hoc van der Waals coefficient
Cfit

3 . (b) The ad hoc van der Waals coefficient Cfit
3 as a function of

the transition linewidth. As the transition linewidth increases SR is
more sensitive to atoms that are close to the surface and the values of
Cfit

3 approach the theoretical estimate of the van der Waals coefficient
(Fig. 1). The inset shows the amplitude ratio between the fully retarded
SR spectra and the corresponding fits.

the Casimir-Polder shift [see the inset in Fig. 1(a)]. In this case,
in order to account for the observed dependence of Cfit

3 as a
function of linewidth one has to consider both the distance
dependent shift and linewidth. This is corroborated by the fact
that the fitting process gives an ad hoc linewidth γ fit which
is slightly larger than the real values (by about 0.5 MHz), an
effect also linked to the distance dependent linewidth close to
the surface [see Fig. 1(b)]. Small variations of the amplitude

FIG. 3. (a) Same as in Fig. 2 but for the 6S1/2 → 6P1/2 transition.
Black lines are the exact SR spectra, gray lines are SR spectra with
a pure van der Waals potential, and dashed lines are fits of the exact
SR spectra using an ad hoc Cfit

3 coefficient. The linewidths investi-
gated are γ = 4.6 MHz (natural linewidth) as well as γ = 10 MHz
and γ = 20 MHz, giving a Cfit

3 of 1.7 kHz μm3, 1.5 kHz μm3, and
1.2 kHz μm3, respectively. The theoretical value of the van der Waals
coefficient is C3 = 1.1 kHz μm3. (b) Cfit

3 coefficient as a function of
linewidth. As in Fig. 2, the inset shows the amplitude ratio between
the exact SR spectra and the corresponding fits.

of the fitted curves are also observed and shown in the inset of
Fig. 3(b).

Contrary to the 6S1/2 → 5D5/2 transition, the D1 line of
cesium is a particularly strong line with a well-separated hyper-
fine structure, but the predicted retardation effects are smaller.
Previous experiments [31], conducted for large linewidths
(γ > 20 MHz), give a value of 1.4 kHz μm3, with error bars
of about 15%. These results are in good agreement with
the predictions of Fig. 3(b). A more conclusive experimental
demonstration of retardation requires measurements at small
linewidths and probably an improvement of the experimental
error bars. This regime was not attained in the experiment
presented in [31] mainly due to the existence of impurities in
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the cesium cell that limited the minimum observable linewidth.
When comparing experiment to theory it’s also worth keeping
in mind that the theoretical estimates of the Casimir-Polder
potential are sensitive to the exact knowledge of the transition
probabilities of all the relative dipole couplings as well as the
dielectric constant of sapphire (see [5] for a discussion on the
error bars of the theoretical predictions).

Our analysis also gives the possibility to fit experimental
data with a fully retarded library of curves (values of A),
which would depend on the specific transition and the specific
dielectric investigated. In this case the fitting process would
adjust for the transition linewidth (γ ) and the dimensionless
parameter (η) which measures the strength of the Casimir-
Polder potential (both shift and linewidth) with respect to its
theoretical values, assuming that distance dependence is fixed.

IV. CONCLUSIONS

Here we have focused our analysis in spectroscopic ex-
periments performed with atoms in front of infinite plane
surfaces. However, our methodology can be easily extended
to composite surfaces, assuming that the Casimir-Polder po-
tentials and propagation optics can be correctly evaluated
[34]. The simplest example of a composite surface is the case
where alkali-metal adsorbants are deposited on or even react
with the surface. This is a common phenomenon in vapor
cells filled with alkali-metal atoms that can strongly depend
on the nature of the surface [35]. In this respect sapphire
windows seem to be more favorable, with an additional benefit
of allowing much higher temperatures than glass or calcium
fluoride windows [6]. Although a theoretical analysis of the
problem is challenging it is probable that a simple van der
Waals approximation is not sufficient to analyze these effects.

A more interesting scenario includes the controlled deposi-
tion of bidimensional materials such as graphene on a dielectric
surface. Already, Casimir force measurements have been
performed on a composite dielectric-graphene surface [36] and
theoretical proposals exist for extending such measurements
to the Casimir-Polder domain (see for example [37,38]).
Casimir and Casimir-Polder type measurements allow us to
get useful information on the dielectric properties of bidimen-
sional materials. More importantly, stacking bidimensional
layers may eventually allow engineering an effective dielectric
constant and the plasmon-polariton modes of the surface.
Finally, nontrivial geometries, without cylindrical symmetry,
such as gratings [39] or metamaterials [40], have already been
experimentally explored. In the case of the atom-metamaterial
interaction, initial selective reflection measurements indicate
that retardation effects are important for a correct interpretation
of the experiment.

In conclusion, we have presented the theoretical back-
ground that allows us to take into account the effects of
Casmir-Polder retardation in spectroscopic experiments of the
atom-surface interaction. We have proposed specific experi-
ments, where retardation can have observable effects. Unlike
previous retardation measurements [10,11] the experiments
investigated here are sensitive to the difference of energy
shifts between ground- and excited-state atoms, and therefore
sensitive to both nonresonant and resonant components of
the atom-surface potential. Our analysis shows that although

experimental measurements can in most cases be fitted with
a simple van der Waals model, such an analysis will yield a
linewidth dependent van der Waals coefficient. This is because
the probing depth of the experiments increases with decreasing
linewidth. Finally, we show that our analysis will be useful
when dealing with composite, nontrivial surfaces.
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APPENDIX

By applying the transformation s = k(z + z′) and t = k(z −
z′) Eq. (6) can be written as

I = 1

k2

∫ ∞

0
ds

∫ s

0
dt

t
k
eis

L
(

s+t
2k

) − L
(

s−t
2k

) . (A1)

After some algebra the integral I can be written as

I = 2

γ k2

∫ ∞

0
ds eise−αs

∫ s

0
dt

1

(1 − i�) − iA(s,t)
,

(A2)

where (s,t) is defined as

(s,t) =
[
ξ
(

s+t
2k

) − ξ
(

s−t
2k

)
t

]
, (A3)

whereas A = 2ηk

γ
, � = 2(ω−ωo)

γ
, and α is an attenuation coef-

ficient already defined in the main text. Further algebra leads
to the following:

I = 2

(1 − i�)γ k2

[∫ ∞

0
s eise−αsds

]
+ 2

(1−i�)γ k2

×
[∫ ∞

0
ds eise−αs

∫ s

0
dt

iA(s,t)

(1−i�)−iA(s,t)

]
. (A4)

The first integration can be performed analytically giving
the final expression:

I = 2

(1 − i�)γ k2

[
1

(−i + α)2

]
+ 2

(1−i�)γ k2

×
[∫ ∞

0
ds eise−αs

∫ s

0
dt

iA(s,t)

(1−i�)−iA(s,t)

]
. (A5)

Solving Eq. (A5) numerically can be challenging. We find
that introducing the laser field attenuation parameter helps
convergence of the integrals without significantly influencing
the final results, so long as α 	 1 (typically α < 0.1 is
sufficient). Also, for large values of s (s → ∞) the last integral
in Eq. (A5) converges to∫ s

0
dt

iA(s,t)

(1 − i�) − iA(s,t)

→ Ao√
s

+ Bo

s
[cos (s + φ) + i sin (s + φ)] + B1 + iB2

s
,

(A6)
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where Ao, Bo, B1, B2 are constants that depend on the specific
problem in question. The approximation of Eq. (A6) greatly

simplifies calculation of the SR integral in the limiting case
α → 0.
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