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Geometric parametric instability in periodically modulated graded-index multimode fibers
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We present a theoretical and numerical study of light propagation in graded-index (GRIN) multimode fibers
where the core diameter has been periodically modulated along the propagation direction. The additional degree
of freedom represented by the modulation permits us to modify the intrinsic spatiotemporal dynamics which
appears in multimode fibers. More precisely, we show that modulating the core diameter at a periodicity close
to the self-imaging distance allows us to induce a moiré-like pattern, whereas a longer periodicity induces an
adiabatic modulation or the self-imaging pattern. This complex dynamics modifies the geometric parametric
instability gain observed in homogeneous GRIN fibers by generating new spectral peaks.
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I. INTRODUCTION

Parametric resonance (PR) is a well-known instability
phenomenon which occurs in systems whose parameters vary
in a periodic fashion. A classical example is a pendulum
whose length changes harmonically with time. Depending
on the system parameters, the pendulum may be unstable
and the amplitude of its oscillations may become unbounded.
Another example is the formation of standing waves on the
surface of a liquid enclosed by a vibrating receptacle, a process
known as Faraday instability [1]. Faraday instability manifests
as pattern formation in several extended systems [2] and it
has been studied in Bose-Einstein condensates (BECs) [3–6],
granular systems [7], and chemical processes [8]. In these
cases, the periodic modulation of the parameters is produced
by an external forcing. However, the periodic variation may
be self-induced by natural oscillations of the system as well.
The emerging dynamics has been termed geometric para-
metric instability (GPI) [9] in the field of nonlinear optics
or self-parametric instability in Bose-Einstein condensates
[10]. Faraday instabilities and GPI can both be observed
in fiber optics, which is a particularly interesting physical
system for their study due to its simplicity. In nonlinear fiber
optics, a continuous wave (cw) may be unstable, leading to
the amplification of spectral sidebands. This effect is called
modulation instability (MI) and is commonly associated with
the anomalous dispersion regime [11], although it is also
observed in the normal dispersion regime in the presence
of higher-order dispersion [12], fiber birefringence [13], and
multiple spatial modes [14,15]. A cw may also be unstable
whatever the dispersion regime if a parameter of the system is
varied periodically (an external periodic forcing is applied),
leading to the observation of PR, which can coexist with
standard MI in the same system [16–19]. This external forcing
can result from periodic amplification [20], dispersion [21–25],
or nonlinearity [26,27]. The periodic evolution of nonlinearity
can be self-induced in highly multimode graded-index (GRIN)
fibers. Indeed, such fibers exhibit a periodic self-imaging
of the injected field pattern due to the interference between
the different propagating modes [28]. This is due to the
fact that the propagation constants of the modes are equally

spaced and they have almost identical group velocity [29].
This creates a periodic evolution of the spatial size of the
light pattern and therefore induces a periodic evolution of
the effective nonlinearity in the propagation direction [30,31].
Recent experiments showed that PRs produced by this GPI
can reach detunings from the pump on the order of hundreds
of terahertzs [9].

In the present work we study GPI in a system having internal
and external forcing with different periodicity. We consider a
multimode GRIN fiber supporting self-imaging (at the origin
of the internal forcing), with an additional modulation of the
core diameter (inducing the external forcing). The overall
longitudinal evolution of the spatial pattern exhibits two spatial
frequencies. This results in the generation of characteristic
spectral components which differ from the usual PR frequen-
cies.

We consider two different regimes, which give rise to quite
different GPI spectral components and have to be treated by
different analytic tools. In the first case, the core modulation pe-
riod and the self-imaging distance are close. The self-imaging
intensity pattern along the fiber is thus modulated by a slow en-
velope, reminiscent of a moiré effect resulting from the beating
of two similar frequencies. The resulting intensity profile can
be calculated analytically by a multiple-scale expansion. In the
second case, the core modulation period is much longer that the
self-imaging distance. In this case the resulting intensity profile
is again a slow modulation of the self-imaging pattern, but the
longer period is now equal to the modulation period of the fiber
core. In this case, multiple-scale expansion does not converge
and Wentzel-Kramers-Brillouin approximation has to be used.
The calculated patterns modulate the natural frequency of
an equivalent oscillator, whose parametric resonances can be
calculated by standard means and constitute the modified GPI
spectrum, as we will show in the following.

The outline of the paper is as follows. After this introduc-
tion, in Sec. II we report numerical simulations illustrating the
self-imaging pattern and the parametric instability spectrum
for a modulated GRIN fiber. In Sec. III we calculate the
cw evolution of the beam along the propagation coordinate,
characterized by two spatial periods. In Sec. IV we study the
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parametric instabilities generated by the spatial pattern when
group-velocity dispersion is considered and provide estimates
for the frequency of unstable bands. We summarize in Sec. V.

II. PARAMETRIC INSTABILITY IN PERIODIC
GRIN FIBERS

Spatiotemporal light propagation in multimode GRIN fibers
can be described by the generalized nonlinear Schrödinger
equation (GNLSE) [9,32]

i∂zE = 1

2β0
∇2

⊥E − β2

2
∂2
t E − β0g(z)

2
r2E + χ |E|2E, (1)

where E is the electric-field envelope measured in
√

W/m, ∇2
⊥

is the Laplacian over the transverse coordinates, r2 = x2 + y2,
β0 = k0n0 (n0 being the refractive index at the core center
and k0 the vacuum wave number at the carrier frequency ω0),
β2 is the group-velocity dispersion, g(z) = 2�/ρ2

c (z) [with
ρc(z) the fiber core radius and � the relative refractive index
difference between core and cladding, � = (n2

0 − n2
clad)/2n2

0],
and χ = ω0n2/c is the nonlinear coefficient. We approx-
imate the refractive index profile by n2(x,y,z) = n2

0[1 −
2�r2/ρc(z)2], so the waveguide is modeled as a pure harmonic
potential with a depth varying along z. In the following, we
restrict our study to light propagation over short distances
(a few centimeters), so the linear coupling between modes
due to fiber imperfections can be disregarded. Moreover, we
assume that the fiber is excited with a Gaussian beam at the
center so that the field presents circular symmetry. This allows
us to solve Eq. (1) by means of a split-step Fourier method
[11] in cylindrical coordinates [33], significantly reducing the
numerical integration time.

It is worth noting that Eq. (1) shows some similarity to the
Gross-Pitaevskii equation used in the field of Bose-Einstein
condensates [3–6]. There are, however, two substantial differ-
ences: (i) BECs are usually studied in the repulsive case, which
leads to a defocusing behavior, as opposed to the focusing
Kerr nonlinearity of the fiber, and (ii) in BECs the dispersion
operator has the same signs for all the transverse dimensions,
whereas in fibers in the normal dispersion regime (β2 > 0) that
we will consider hereafter, dispersion and diffraction operators
has different signs in Eq. (1).

We start by considering a uniform commercial GRIN fiber,
whose parameters are reported in the caption of Fig. 1. By
injecting into this fiber a Gaussian beam of size a0 = 20 μm
at a wavelength λ0 = 1064 nm, a periodic light pattern is gen-
erated with a period ξ = π/

√
g0 ≈ 600 μm (g0 = 2�/ρ2

0 ).
This can be observed in Fig. 1(a), which shows the evolution
of the intensity in the core center I (z) = |E(z,x = 0,y = 0)|2
(normalized to the input one) as a function of fiber length
(normalized to the self-imaging period ξ ). Figure 1(b) shows
the output spectrum obtained at a normalized distance of
16, which exhibits three distinct GPI sidebands in the range
100–220 THz detuning from the pump. We then consider the
propagation of the same input beam in a modulated fiber,
with a period Lmod of 700 μm and a modulation depth of
3 μm. Figure 1(c) shows that the varying core diameter
induces an additional modulation of the light intensity along
the propagation. The self-imaging pattern is now modulated
by an envelope of longer period L. As we will see hereafter,

FIG. 1. Results obtained from direct numerical simulation of
the GNLSE (1). (a) and (c) Evolution of the intensity in the core
center normalized to the input one versus fiber length normalized
to the self-imaging period ξ in a fiber with (a) a uniform core
and (c) a varying core. (b) and (d) Output spectrum in a fiber
with (b) a uniform core and (d) a varying core. The parameters
are typical of commercially available GRIN fibers: n0 = 1.47, n2 =
3.2 × 10−20 m2/W, ρ0 = 26 μm, � = 8.8 × 10−3, λ0 = 1064 nm,
a0 = 20 μm, fiber length (b) 1.4 cm and (d) 3 cm, I0 = 20 GW/cm2,
and β2 = 16.55 × 10−27 s2/m.

L depends on the relation between the natural self-imaging
period ξ and modulation period Lmod. In the present example,
Lmod is chosen to be close to ξ and the resulting dynamics
may be understood as a kind of moiré pattern. As shown
in Fig. 1(d), this double periodicity in the spatial behavior
produces new spectral bands around those obtained with a
uniform fiber, in a similar fashion to what was observed in a
single-mode dispersion-oscillating fiber with doubly periodic
dispersion [34]. The process leading to the generation of these
new spectral components will be analyzed and explained in the
following sections.

III. CALCULATION OF THE SELF-IMAGING PATTERN

To compute the spatial evolution of the beam profile, we
start from Eq. (1), assuming cw propagation (∂t = 0):

i∂zE = 1

2β0
∇2

⊥E − β0g(z)

2
r2E + χ |E|2E. (2)

An approximated solution of Eq. (2) in the weakly nonlinear
regime is a Gaussian beam with parameters varying along the
propagation coordinate, which can be calculated by exploiting
the method of moments [35] or variational techniques [36].
The solution reads

|Es(x,y,z)|2 = A2
0

(
a0

a(z)

)2

exp

(
− r2

a(z)2

)
, (3)

where a(z) is the solution of the following equation (overdots
stand for the z derivative):

ä + g(z)a + C

a3
= 0, C ≡

(
n2a

2
0A

2
0

2n0
− 1

β2
0

)
. (4)
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The whole dynamics is thus ruled by the beam radius a(z).
Equation (4) is a singular nonlinear Hill equation of Ermakov
type whose solution can be written as [37,38]

a(z) =
√

u(z)2 − Cv(z)2

W 2
, (5)

where u(z) and v(z) are two linearly independent solutions of
the equation

ẍ + g(z)x = 0, (6)

W = uv̇ − u̇v = const is the Wronskian, and the initial
conditions are u(0) = a0, u̇(0) = ȧ(0), v(0) = 0, and v̇(0) �= 0.
The linear Hill equation (6) is solvable in closed form only for
very particular forms of g(z) [39]. We consider here a harmonic
modulation of the fiber core ρ(z) = ρ0[1 + δ cos(kz)], where
δ describes the amplitude and k = 2π/Lmod the period of
modulation.

In the (Lmod,δ) plane, there are regions (known as Arnold
tongues) where solutions of Eq. (6) become unbounded. This
instability stems from the fact that the natural spatial frequency
knat ≡ √

g0 = √
2�/ρ0 of the oscillator described by Eq. (6)

is varied periodically with wave number k. The tips of the
Arnold tongues fulfill the parametric resonance condition
knat = m(k/2) (m integer), i.e., the natural spatial frequency
is a multiple of half the wave number of the spatial forcing,
which gives the following condition on the ratio between the
modulation period and self-imaging distance:

Lmod = m ξ, m = 1,2, . . . . (7)

When the condition (7) is not satisfied, the evolution of the
beam size is periodic (or quasiperiodic) [39]. Moreover, even
if the condition (7) is satisfied, there is a threshold on the
modulation depth δ for the emergence of parametric instability,
which in general increases for higher-order resonances. For
the rest of the paper we assume to be in the absence of spatial
parametric resonances.

Depending on the ratio between the modulation and self-
imaging period, we can recover three different situations:
Lmod � ξ , Lmod ≈ ξ , and Lmod 	 ξ . The first case is the least
interesting: In fact, the fast oscillating terms in Eq. (6) can be
averaged out and the beam evolves as in a uniform fiber. The
other two cases present quite peculiar behaviors, which are
analyzed in detail below.

A. Moiré pattern: Lmod ≈ ξ

The most interesting case arises when Lmod ≈ ξ and the
modulation depth δ is small enough to avoid unbounded
evolution. By assuming a small modulation amplitude δ � 1
and expanding 1/ρ(z) at second order in the small parameter
δ, Eq. (6) takes the following form:

ẍ + 2�

ρ2
0

[1 − 2δ cos(kz) + 3δ2 cos2(kz)]x = 0. (8)

Two independent approximate solutions of Eq. (8) can be found
by using multiscale techniques (see the Appendix):

u(z) = (4g0 − k2)a0

(4 + 2δ)g0 − k2

[
cos(

√
g0σz) + δg0

k

(
cos[(

√
g0σ − k)z]

2
√

g0 − k
− cos[(

√
g0σ + k)z]

2
√

g0 + k

)]
, (9)

v(z) = −B

[
sin(

√
g0σz) + δg0

k

(
sin[(

√
g0σ − k)z]

2
√

g0 − k
− sin[(

√
g0σ + k)z]

2
√

g0 + k

)]
, (10)

where

W = −B
(4g0 − k2)a0

(4 + 2δ)g0 − k2

√
g0σ, (11)

σ = 1 + δ2(8g0 − 3k2)

4(4g0 − k2)
, (12)

and B �= 0 is a constant, which does not appear in the
expression of a(z). Equations (9) and (10) give the expression
of the beam radius through Eq. (5). A comparison between
the beam evolution obtained from Eqs. (9) and (10) and the
numerical solution of Eq. (4) is reported in Fig. 2, which shows
remarkable agreement. In general, the solution is a combina-
tion of trigonometric functions of incommensurate arguments
and thus is not strictly periodic. For small enough core radius
modulation, we can safely assume σ ≈ 1. In this case, the
spatial behavior can be described as a combination of functions
with period ξ and functions with period Lmod. If we choose
Lmod and ξ to be commensurate, the evolution of the beam is
periodic with a longer period, which verifies L = pLmod = qξ

(p and q integers). In this regime, the resulting spatial behavior
can be understood as a moiré pattern, where two patterns with

close periodicity ξ and Lmod are superimposed, giving rise to a
new longer periodicity L. If Lmod and ξ are incommensurate,

FIG. 2. Evolution of the intensity in the core center calculated
from numerical solution of Eq. (2) (blue curve) and the exact solution
(red curve) obtained from Eqs. (3), (5), (9), and (10). The parameters
are the same as in Fig. 1(c).
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FIG. 3. Evolution of the intensity at the core center calculated
from numerical solution of Eq. (4) (red dashed line) and the analytical
solution (13) (blue solid line) for Lmod = 5ξ . The other parameters
are as in Fig. 1(c).

the evolution is only quasiperiodic. However, we can find the
p and q that approximate the quasiperiodic evolution with
periodic one with great accuracy. As we will illustrate below,
the GPI spectrum resulting from a periodic or quasiperiodic
evolution does not present qualitative differences.

B. Adiabatic modulation: Lmod � ξ

When Lmod 	 ξ , variations over the intensity are adiabatic
and we can use the Wentzel-Kramers-Brillouin approximation
[40] to find two independent solutions u(z) and v(z) of Eq. (6),
which inserted in Eq. (5) give the following expression for the
beam size:

a(z) =

√√√√
a2

0

√
g(0)

g(z)
cos2[φ(z)] − C

a2
0

√
g(0)g(z)

sin2[φ(z)].

(13)

The phase φ(z) = ∫ z

0 dz′√g(z′) reads

φ(z) = 2
√

g0

k
√

1 − δ2

(
tan−1

[√
1 − δ

1 + δ
tan

(
kz

2

)]
+ πm

)
,

m =
⌊

z

Lmod
+ 1

2

⌋
, (14)

where �x� = max{m ∈ Z|m � x}. A comparison between the
beam evolution obtained from Eqs. (13) and (14) and the
numerical solution of Eq. (4) is reported in Fig. 3, which
shows perfect agreement. We can see that the fast-varying
self-imaging pattern of period ξ is modulated adiabatically in
a sinusoidal fashion by the longer period Lmod (Lmod = 5ξ in
this example). When the amplitude of modulation tends to 0
(δ → 0), the phase simplifies to φ(z) ≈ π/ξz. In this limit,
the spatial behavior can be again described as a combination
of functions with period ξ and functions with period Lmod. If
Lmod and ξ are chosen to be commensurate, the evolution of
the beam is periodic with a longer period which verifies L =
pLmod = qξ , like the case whereLmod ≈ ξ . In the general case,

where δ �= 0 we observe a self-imaging pattern modulated
by an envelope of period L = Lmod, which gives rise to a
quasiperiodic behavior.

IV. LINEAR STABILITY ANALYSIS AND GPI GAIN

We move now to the study of the stability of the cw spatial
profile found in the preceding section with respect to time
periodic perturbations. We assume a spatiotemporal field of
the form

E(x,y,z,t) = [1 + δE(z,t)]Es(x,y,z), (15)

where Es is the approximated spatial electric field from Eq. (3)
and δE(z,t) is a small perturbation homogeneous in the
transverse plane. By substituting the ansatz (15) in Eq. (1),
after linearization we obtain

iEs∂zδE = −β2

2
Es∂

2
t δE + χ |Es |2Es(δE + δE∗), (16)

which projected on E∗
s gives

i∂zδE = −β2

2
∂2
t δE + χA2

0a
2
0

2a(z)2
(δE + δE∗). (17)

A similar equation can be obtained when studying MI in
single-mode fibers with oscillating nonlinearity [20–22,26].
By considering a time harmonic perturbation of the form
δE = a(z)ei�t + b∗(z)e−i�t , we get the system[

ȧ

ḃ

]
= i

[
β2�

2

2 + F (z) F (z)

−F (z) −(
β2�

2

2 + F (z)
)
][

a

b

]
, (18)

where

F (z) = χA2
0a

2
0

2a(z)2
, (19)

which can be reduced to a second-order ordinary differential
equation for y = a + b:

ÿ + β2�
2

2

(
β2�

2

2
+ 2F (z)

)
y = 0. (20)

Since we have restricted our analysis to bounded evolutions
of a(z), the function F (z) is (quasi)periodic as discussed in
preceding section. In this case, Eq. (20) is again a Hill equation.
Note that Eq. (20) rules the evolution of the time periodic
perturbations, so an unbounded evolution for y implies the
instability of the cw field. The values of the perturbation
frequency � for which the evolution of y becomes unbounded
gives thus the GPI spectrum.

A. Constant core diameter

We start by considering a uniform fiber, which has already
been studied in [32]. In this case the beam radius a(z) assumes
the simple expression

a2(z) = a2
0[cos2(

√
g0z) + C sin2(

√
g0z)], (21)

where C = (1 − P)/β2
0a4

0g0 = −C/g0a
4
0 and P =

n2β
2
0A2

0a
2
0/2n0 is a dimensionless parameter measuring

the distance from beam collapse (here we assume P � 1)
[32,36]. Expression (21) is recovered by setting δ = 0 in
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FIG. 4. The GPI gain for the uniform fiber case. (a) Output
spectrum obtained by solving numerically the GNLSE (1). The black
dashed lines correspond to unstable frequencies obtained from the
parametric resonance condition (24). (b) Floquet spectrum obtained
from Eq. (18). The parameters are A2

0 = 20 GW/cm2, a0 = 20 μm,
and fiber length 2.2 cm. The remaining parameters are as in Figs. 1(a)
and 1(b).

Eqs. (5), (9), and (10). The average value of F (z) can be
calculated as

Fav = 1

ξ

∫ ξ

0
F (z)dz = χA2

0

2
√
C

. (22)

The parametric resonance condition for Eq. (20), which
reads

β2�
2

2

(
β2�

2

2
+ 2Fav

)
=

(
m

π

ξ

)2

, (23)

permits us to find the central frequencies of the GPI bands as

�2
m = 2

β2

(−Fav +
√

F 2
av + g0 m2

)
, m = 1,2, . . . . (24)

The full GPI spectrum can be calculated by means of Floquet
theory. This consists in solving the system (18) for two
independent initial conditions (e.g., [1,0]T and [0,1]T ) over
one period (z = ξ in this case). This system can be solved
only numerically because of the nontrivial form of F (z). The
two solutions calculated at z = ξ compose the two columns
of the 2 × 2 Floquet matrix, whose eigenvalues μ1 and μ2

determine the stability of the cw solution. If one eigenvalue
(say, μ) has modulus greater than one, the solution is unstable
and the perturbations grow exponentially along z with gain
G(�) = ln |μ|/ξ .

Figure 4 presents a comparison between the spectrum
obtained from the numerical solution of the full GNLSE (1),
starting from a cw perturbed by a small random noise, for
a 2.2-cm-long uniform fiber [Fig. 4(a)] and the gain spectrum
obtained from Floquet theory [Fig. 4(b)]. Vertical black dashed

lines represent the frequencies �m given by Eq. (24) for m =
1, . . . ,5, which are in excellent agreement with the locations of
maximum gain. Note that in the low-intensity limit (A0 → 0),
they can be approximated as �2

m ≈ 2πm/ξβ2 [9]. The gain
spectrum obtained from Floquet theory, plotted in Fig. 4(b),
is in excellent agreement with the spectrum obtained from
direct numerical simulation, plotted in Fig. 4(a), concerning
the frequency and width of the gain bands, as well as their
relative intensity.

B. Varying core diameter

When the core diameter varies periodically, the spatial
dynamics becomes richer and the self-imaging pattern is
modulated, as described by Eqs. (5), (9), and (10) for Lmod ≈ ξ

or Eqs. (13) and (14) for Lmod 	 ξ . As we will show in
the following, this spatial dynamics generates additional GPI
bands.

For the sake of simplicity, we consider a modulation period
commensurate with the self-imaging distance, i.e., p Lmod =
q ξ (where p and q are two integers). In this case the spatial
evolution can be considered periodic with period L = q ξ ,
which allows us to obtain a simple analytic expression for the
maxima of GPI gain. The parametric resonance condition for
Eq. (20) reads now

β2�
2

2

(
β2�

2

2
+ 2Fav

)
=

(
m

π

L

)2

, (25)

where we have assumed that the average nonlinear forcing
term Fav is the same as in the case of the uniform fiber. It is
convenient to write the integer as m = m1q + m2, which gives
the following expression for the central frequencies of the GPI
bands:

�2
m1,m2

= 2

β2

[
−Fav +

√
F 2

av + g0

(
m1 + m2

q

)2]
. (26)

The index m1 = 0,1, . . . counts the main resonances, which
correspond to the ones obtained in the uniform case for m2 = 0
and m1 �= 0 [see Eq. (24)]. The most important information
which can be extracted from Eq. (26) is that we have the
generation of new sidebands around the principal ones. The
number m2 describes these additional subharmonic resonances
deriving from the longer modulation period L > ξ . The inter-
val of values for m2 depends on the parity of q and is defined
formally for q even as

q = 2n ⇒
{−n + 1 � m2 � n, m1 �= 0

1 � m2 � n, m1 = 0
(27)

or odd as

q = 2n + 1 ⇒
{−n � m2 � n, m1 �= 0

1 � m2 � n, m1 = 0.
(28)

For example, we consider now a shallow modulation (δ =
0.12) of the fiber, with a period Lmod = 8/7ξ . Figure 5(a)
reports the spectrum after a propagation of 3 cm from nu-
merical simulations of the GNLSE (1). We can observe the
characteristic splitting of bands due to the double periodicity.
Black dashed lines show the frequency of unstable sidebands
given by Eq. (24), which are in excellent agreement with the
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FIG. 5. Modulated fiber case. (a) Output spectrum obtained by
solving numerically the GNLSE (1). The black dashed lines corre-
spond to unstable frequencies obtained from Eq. (26). (b) Floquet
spectrum obtained from Eq. (18). The parameters are δ = 0.12,
Lmod = (8/7)ξ , A2

0 = 20 GW/cm2, and fiber length 3 cm. The
remaining parameters are as in Figs. 1(a) and 1(b).

numerical simulation result. We can calculate the width and
position of bands by performing a numerical Floquet analysis
as described in the preceding section. As in the constant
core case, the frequency, width, and relative intensity of the
sidebands is in excellent agreement with numerical simulations
[Fig. 5(a)].

It is interesting to investigate the gain spectrum as a function
of the ratio Lmod/ξ between the modulation period and the self-
imaging distance. We start by considering the range Lmod ≈ ξ ,
where the spatial moiré pattern is generated. Figure 6(a) shows
the GPI gain map as a function of frequency and modulation
period, calculated by means of the Floquet theory described
before, using expressions (5), (9), and (10) for the beam size.
The corresponding ratio between periods has been chosen
to be commensurate and verifies Lmod = (n + 16)/(n + 12)ξ ,
where n is an integer in the interval [0,20]. The overall period of
the spatial pattern is thus given by L = (n + 16)ξ . Remarkable
agreement is found with the unstable frequencies predicted
by Eq. (24), which are reported in Fig. 6(a) as black dashed
curves. For each principal resonance m1 = 1,2,3, one can
notice the generation of additional sideband pairs m2 = ±4,
whose frequency separation increases with the modulation
period. These additional sideband pairs appear at the index
m2 = ±4 because, for the definition of the modulation period
used in this example, each value of n generates an overall
period L composed of four slow oscillations (the pattern is
quasiperiodic of period ≈L/4).

The other interesting case occurs when the modulation
period of the core diameter is chosen to be several times

greater than the self-imaging distance, i.e., Lmod 	 ξ , where
the spatial pattern is described by Eqs. (13) and (14). In
this case, the relation between Lmod and ξ has been chosen
to verify Lmod = (12 + n)/4ξ , where now n is taken in the
interval [0,68], giving an overall period L = (n + 12)ξ . The
corresponding Floquet gain map is reported in Fig. 6(b), where
one can notice some qualitative differences. For the smallest
modulation period, only a pair of sidebands appears, well
detached from the fundamentals ones, corresponding to m1 =
1,2. By increasing the modulation period, additional sideband
pairs stem out and they all tend to cluster around the principal
ones. For the longer modulation period considered here, at
least three couples of sidebands merge with the fundamental
ones, giving rise to a single structured band. Also in this case,
remarkable agreement is found with the unstable frequencies
predicted by Eq. (24) (black dashed curves).

The results of Floquet analysis are essentially supported
by direct numerical integration of Eq. (1), as evidenced by
Figs. 6(c) and 6(d), which report the output spectrum after a
propagation distance of 3 cm as a function of Lmod. In order
to get rid of any randomness in the initial condition, we add a
coherent seed to the cw (a short hyperbolic secant of duration
1 fs and intensity 10−5 smaller than the cw pump). Moreover,
Lmod has been chosen to be equally spaced between the upper
and lower limits considered, so the ratio of Lmod to ξ is not
necessarily commensurate. This fact confirms that considering
the spatial behavior as strictly periodic does not produce any
qualitative difference.

V. CONCLUSION

We have studied theoretically GPI in a graded-index mul-
timode fiber with an axially modulated core diameter. We
have shown that a periodic modulation of the core diam-
eter allows one to generate new GPI sidebands. We have
developed a theory to predict the frequency of these addi-
tional sidebands, which is in excellent agreement with direct
numerical simulations of the GNLSE and Floquet stability
analysis. In our simulations we have used realistic parameters,
which provides solid evidence that the described effects can
be experimentally observed. Even if we assumed a circular
symmetry of the problem throughout the paper, we verified by
numerical simulations that the processes are robust with respect
to perturbations such as fiber inhomogeneities or radially
asymmetric input conditions. Our study contributes to a further
understanding of the rich dynamics related to nonlinear waves
propagating in multimode fibers. From an application point of
view, the generation of multiple GPI sidebands in periodically
modulated GRIN fibers can be exploited to optimize the
spectral extent and/or the spectral power density of high-
power supercontinuum sources based on highly multimode
fibers.
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APPENDIX: MULTISCALE ANALYSIS

In this appendix, we give some details on the method used to
approximate the beam evolution in the limit Lmod ≈ ξ . We start
from Eq. (8), where we define the dimensionless coefficients

w = √
g/k, ε = w2δ, and z̄ = kz to get

ẍ +
(

w2 − 2ε cos(z̄) + 3ε2

w2
cos2(z̄)

)
x = 0. (A1)

The initial assumption Lmod ≈ ξ implies w ≈ 1, thus we can
safely perform a multiscale development in ε � 1 [39] up
to first order. By defining z̄n = εnz̄ and x = ∑

n=0 εnxn and
equating equal powers of ε, an infinite hierarchy of equations
is obtained. From this infinite set equations, we retain only up
to order ε2:

(
D2

0 + w2)x0 = 0 for ε0, (A2)(
D2

0 + w2)x1 = −2[D1D0 − cos(z̄0)]x0 for ε1, (A3)

(
D2

0 + w2
)
x2 = −2[D1D0 − cos(z̄0)]x1 −

(
2D2D0 + D2

1 + 3

2w3
cos(z̄0)

)
x0 for ε2, (A4)

where Dn = ∂z̄n
. At order ε0, we find

x0 = A(z̄1,z̄2)eiwz + A∗(z̄1,z̄2)e−iwz, (A5)

where A(z̄1,z̄2) is a complex function depending on the slower variables z̄1 and z̄2. To know the dependence of this function on
z1 and z2, Eq. (A5) is substituted in Eq. (A3) and secular terms are forced to vanish. We obtain the following solution for x1:

x1 = A(z̄2)

(−ei(w+1)z̄0

2w + 1
+ ei(w−1)z̄0

2w − 1

)
+ c.c., (A6)

where c.c. denotes the complex conjugate. To find A(z̄2), we substitute x1 in Eq. (A4) and impose again that secular terms vanish,
resulting in

A = C

2
ei(φz̄2+β), φ = 8w2 − 3

4w3(4w2 − 1)
, (A7)
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where C and β are two real constants fixed by the boundary conditions. By writing the complete function x = x0 + εx1 + O(ε2),
we obtain the general solution

x = C

[
cos(w̃z + β) + ε

(
cos[(w̃ − 1)z + β]

2w − 1
− cos[(w̃ + 1)z + β]

2w + 1

)]
+ O(ε2), w̃ = w

(
1 + δ2(8ω2 − 3)

4(4ω2 − 1)

)
. (A8)

From this equation we can readily obtain u(z) and v(z) by imposing the appropriate boundary conditions.
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